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1. THE GAMMA FUNCTION

In this chapter we’ll explore some of the strange and wonderful properties of the Gamma function
Γ(s), defined by

Fors > 0 (or actuallyℜ(s) > 0), theGamma function Γ(s) is

Γ(s) =

∫ ∞

0

e−xxs−1dx =

∫ ∞

0

e−xdx

x
.

There are countless integrals or functions we can define. Just looking at it, there is nothing to make
you think it will appear throughout probability and statistics, but it does. We’ll see where it occurs
and why, and discuss many of its most important properties.

1.1. Existence ofΓ(s). Looking at the definition ofΓ(s), it’s natural to ask:Why do we have re-
strictions ons? Whenever you are given an integrand, you must make sure it is well-behaved before
you can conclude the integral exists. Frequently there are two trouble points to check, nearx = 0
and nearx = ±∞ (okay, three points). For example, consider the functionf(x) = x−1/2 on the
interval[0,∞). This function blows up at the origin, but only mildly. Its integral is2x1/2, and this is
integrable near the origin. This just means that

lim
�→0

∫ 1

�

x−1/2dx

exists and is finite. Unfortunately, even though this function is tending to zero, it approaches zero so
slowly for largex that it is not integrable on[0,∞). The problem is that integrals such as

lim
B→∞

∫ B

1

x−1/2dx

is infinite. Can the reverse problem happen, namely our function decays fast enough for largex but
blows up too rapidly for smallx? Sure – the following is a standard, albeit initially strange looking,
example. Consider

f(x) =

{

1
x log2 x

if x > 0

0 otherwise.
1
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Our function has a nice integral:
∫

1

x log2 x
dx =

∫

(log x)−2 1

x
dx =

∫

(log x)−2d logx = −(log x)−1.

We check the two limits:

lim
B→∞

∫ B

1

dx

x log2 x
= lim

B→∞

(

− 1

log x

)

∣

∣

∣

∣

∣

B

1

= − lim
B→∞

1

logB
= 0.

What about the second limit? We have

lim
�→0

∫ 1

�

1

x log2 x
dx = lim

�→0

(

− 1

log x

)

∣

∣

∣

∣

∣

1

�

= lim
�→0

1

log �
= −∞

(to see the last, write� as1/n and sendn → ∞).
So it’s possible for a positive function to fail to be integrable because it decays too slowly for large

x, or it blows up too rapidly for smallx. As a rule of thumb, if asx → ∞ a function is decaying
faster than1/x1+� for any epsilon, then the integral at infinity will be finite. For smallx, if asx → 0
the function is blowing up slower thanx−1+� then the integral at 0 will be okay near zero. You should
always do tests like this, and get a sense for when things willexist and be well-defined.

Returning to the Gamma function, let’s make sure it’s well-defined for anys > 0. The integrand
is e−xxs−1. As x → ∞, the factorxs−1 is growing polynomially but the terme−x is decaying
exponentially, and thus their product decays rapidly. If wewant to be a bit more careful and rigorous,
we can argue as follows: choose some integerM > s+ 1701 (we put in a large number to alert you
to the fact that the actual value of our number does not matter). We clearly haveex > xM/M !, as
this is just one term in the Taylor series expansion ofex. Thuse−x < M !/xM , and the integral for
largex is finite and well-behaved, as it’s bounded by

∫ B

1

e−xxs−1dx ≤
∫ B

1

M !x−Mxs−1dx

=

∫

M !

∫ B

1

xs−M−1

= M !
xs−M

s−M

∣

∣

∣

∣

∣

B

1

=
M !

s−M

[

1

BM−s
− 1

]

.

It was very reasonable to try this. We know theex grows very rapidly, soe−x decays quickly. We
need to borrow some of the decay frome−x to handle thexs−1 piece.

What about the other issue, nearx = 0? Well, nearx = 0 the functione−x is bounded; it’s largest
value is whenx = 0 so it is at most 1. Thus

∫ 1

0

e−xxs−1dx ≤
∫ 1

0

1 ⋅ xs−1dx

=
xs

s

∣

∣

∣

∣

∣

1

0

=
1

s
.

We’ve shown everything is fine fors > 0; what if s ≤ 0? Could these values be permissible
as well? The same type of argument as above shows that there are no problems whenx is large.
Unfortunately, it’s a different story for smallx. For x ≤ 1 we clearly havee−x ≥ 1/e. Thus our
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integrand is at least as large asxs−1/e. If s ≤ 0, this is no longer integrable on[0, 1]. For definiteness,
let’s dos = −2 Then we have

∫ ∞

0

e−xx−3dx ≥
∫ ∞

0

1

e
x−3dx

=
1

e
x−2

∣

∣

∣

∣

∣

1

0

,

and this blows up.

The arguments above can (and should!) be used every time you meet an integral. Even though our
analysis hasn’t suggested a reason why anyone wouldcare about the Gamma function, we at least
know that it is well-defined and exists for alls > 0. In the next section we’ll show how to make
sense of Gamma for all values ofs. This should be a bit alarming – we’ve just spent this section
talking about being careful and making sure we only use integrals where they are well-defined, and
now we want to talk about putting in values such ass = −3/2? Obviously, whatever we do, it won’t
be anything as simple as just pluggings = −3/2 into the formula.

If you’re interested,Γ(−3/2) = 4
√
�/3 – we’ll prove this soon!

1.2. The Functional Equation of Γ(s). We turn to one of the most important property ofΓ(s). In
fact, this property allows us to make sense ofanyvalue ofs as input, such as thes = −3/2 of the
last section. Obviously this can’t mean just naively throwing in anys in the definition, though many
good mathematicians have accidentally done so. What we’re going to see is the theAnalytic (or
Meromorphic) Continuation .. The gist of this is that we can take a functionf that makes sense in
one region and extend its definition to a functiong defined on a larger region in such a way that our
new functiong agrees withf where they are both defined, butg is defined for more points.

The following absurdity is a great example. What is

1 + 2 + 4 + 8 + 16 + 32 + 64 + ⋅ ⋅ ⋅?
Well, we’re adding all the powers of 2, thus it’s clearly zero, right? Wrong – the “natural” meaning
for this sum is−1! A sum of infinitely many positive terms is negative? What’s going on here?

This example comes from something you’ve probably seen manytimes, the geometric series. If
we take the sum

1 + r + r2 + r3 + r4 + r5 + r6 + ⋅ ⋅ ⋅
then,so long as∣r∣ < 1, the sum is just 1

1−r
. There are many ways to see this.ADD REF TO THE

SHOOTING GAME . The most common, as well as one of the most boring, is to let

Sn = 1 + r + ⋅ ⋅ ⋅+ rn.

If we look atSn − rSn, almost all the terms cancels; we’re left with

Sn − rSn = 1− rn+1.

We factor the left hand side as(1− r)Sn, and then dividing both sides by1− r gives

Sn =
1− rn+1

1− r
.

If ∣r∣ < 1 thenlimn→∞ rn = 0, and thus taking limits gives
∞
∑

m=0

rm = lim
n→∞

Sn = lim
n→∞

1− rn+1

1− r
=

1

1− r
.

This is known as thegeometric series formula, and is used in a variety of problems.
Let’s rewrite the above. The summation notation is nice and compact, but that’s not what we want

right now – we want to really see what’s going on. We have

1 + r + r2 + r3 + r4 + r5 + r6 + ⋅ ⋅ ⋅ =
1

1− r
, ∣r∣ < 1.
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Note the left hand side makes sense only for∣r∣ < 1, but the right hand side makes sense forall
values ofr other than 1! We say the right hand side is an analytic continuation of the left, with a pole
at s = 1 (poles are where our functions blow-up).

Let’s define the function

f(x) = 1 + x + x2 + x3 + x4 + x5 + +x6 + ⋅ ⋅ ⋅ .
For ∣x∣ < 1 we also have

f(x) =
1

1− x
.

And now the big question: what isf(2)? If we use the second definition, it’s just1
1−2

= −1, while if
we use the first definition its that strange sum of all the powers of 2. THIS is the sense in which we
mean the sum of all the powers of 2 is -1. We do not mean pluggingin 2 for the series expansion;
instead, we evaluate the extended function at 2.

It’s now time to apply these techniques to the Gamma function. We’ll show, using integration by
parts, that Gamma can be extended for alls (or at least for alls except the negative integers and
zero). Before doing the general case, let’s do a few representative examples to see why integration
by parts is such a good thing to do. Recall

Γ(s) =

∫ ∞

0

e−xxs−1dx, s > 0.

The easiest value ofs to take iss = 1, as then thexs−1 term becomes the harmlessx0 = 1. In this
case, we have

Γ(1) =

∫ ∞

0

e−xdx = −e−x

∣

∣

∣

∣

∣

∞

0

= −0 + 1 = 1.

Building on our success, what is the next easiest value ofs to take? A little experimentation suggests
we try s = 2. This will makexs−1 equalx, a nice, integer power. We find

Γ(2) =

∫ ∞

0

e−xxdx.

Now we can begin to see why integration by parts will play suchan important role. If we letu = x
anddv = e−xdx, thendu = dx andv = −e−x, then we’ll see great progress – we start with needing
to integratexe−x and after integration by parts we’re left with having to doe−x, a wonderful savings.
Putting in the details, we find

Γ(2) = uv

∣

∣

∣

∣

∣

∞

0

−
∫ ∞

0

vdu

= −xe−x

∣

∣

∣

∣

∣

∞

0

+

∫ ∞

0

e−xdx.

The boundary term vanishes (it’s clearly zero at zero; use L’Hopital to evaluate it at∞, giving
limx→∞

x
ex

= limx→∞
1
ex

= 0), while the other integral is justΓ(1). We’ve thus shown that

Γ(2) = Γ(1);

however, it is more enlightening to write this in a slightly different way. We tooku = x and then
saiddu = dx; let’s write it asu = x1 anddu = 1dx. This leads us to

Γ(2) = 1Γ(1).

At this point you should be skeptical – does it really matter?Anything times 1 is just itself! It
does matter. If we were to calculateΓ(3), we would find it equals2Γ(2), and if we then progressed
to Γ(4) we would see it’s just3Γ(3). This pattern suggestsΓ(s+ 1) = sΓ(s), which we now prove.
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We have

Γ(s+ 1) =

∫ ∞

0

e−xxs+1−1dx =

∫ ∞

0

e−xxsdx.

We now integrate by parts. Letu = xs anddv = e−x; we’re basically forced to do it this way ase−x

has a nice integral, and by settingu = xs when we differentiate the power of our polynomial goes
down, leading to a simpler integral. We thus have

u = xs, du = sxs−1dx, dv = e−xdx, v = −e−x,

which gives

Γ(s+ 1) = −xse−x

∣

∣

∣

∣

∣

∞

0

+

∫ ∞

0

e−xsxs−1dx

= 0 + s

∫ ∞

0

e−xxs−1dx = sΓ(s),

completing the proof. This relation is so important its worth isolating it, and giving it a name.

Functional equation ofΓ(s): The Gamma function satisfies

Γ(s+ 1) = sΓ(s).

This allows us to extend the Gamma function to alls. We call the
extension the Gamma function as well, and it is well-defined and finite
for all s save the negative integers and zero.

Let’s return to the example from the previous section. Laterwe’ll prove thatΓ(1/2) =
√
�. For

now we assume we know this, and show how we can figure out whatΓ(−3/2) should be. From the
functional equation,Γ(s+ 1) = sΓ(s). We can rewrite this asΓ(s) = s−1Γ(s+ 1), and we can now
use this to ‘walk up’ froms = −3/2, where we don’t know the value, tos = 1/2, where we assume
we do. We have

Γ

(

−3

2

)

= −2

3
Γ

(

−1

2

)

= −2

3
⋅ (−2) Γ

(

1

2

)

=
4
√
�

3
.

This is the power of the functional equation – it allows us to define the Gamma function essentially
everywhere, so long as we know its values fors > 0. Why are zero and the negative integers special?
Well, let’s look atΓ(0):

Γ(0) =

∫ ∞

0

e−xx0−1dx =

∫ ∞

0

e−xx−1dx.

The problem is that this is not integrable. While it decays very rapidly for largex, for smallx it looks
like 1/x. The details are:

lim
�→0

∫ 1

�

e−xx−1dx ≥ 1

e
lim
�→0

∫ 1

�

dx

x
=

1

e
lim
�→0

log x

∣

∣

∣

∣

∣

1

�

= lim
�→0

− log � = ∞.

ThusΓ(0) is undefined, and hence by the functional equation it is also undefined for all the negative
integers.

1.3. The Factorial Function and Γ(s). In the last section we showed thatΓ(s) satisfies the func-
tional equationΓ(s+1) = sΓ(s). This is reminiscent of a relation obeyed by a better known function,
the factorial function. Remember

n! = n ⋅ (n− 1) ⋅ (n− 2) ⋅ ⋅ ⋅ 3 ⋅ 2 ⋅ 1;
we write this in a more suggestive way as

n! = n ⋅ (n− 1)!.
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Note how similar this looks to the relationship satisfied byΓ(s). It’s not a coincidence – the Gamma
function is a generalization of the factorial function!

We’ve shown thatΓ(1) = 1, Γ(2) = 1, Γ(3) = 2, and so on. We can interpret this asΓ(n) =
(n−1)! for n ∈ {1, 2, 3}; however, applying the functional equation allows us to extend this equality
to all n. We proceed by induction. Proofs by induction have two steps, the base case (where you
show it holds in some special instance) and the inductive step (where you assume it holds forn and
then show that implies it holds forn+ 1).

We’ve already done the base case, as we’ve checkedΓ(1) = 0!. We checked a few more cases
then we needed to. Typically that’s a good strategy when doing inductive proofs. By getting your
hands dirty and working out a few cases in detail, you often get a better sense of what’s going on,
and you can see the pattern. Remember, we initially wroteΓ(2) = Γ(1), but after some thought (as
well as years of experience) we rewrote it asΓ(2) = 1 ⋅ Γ(1).

We now turn to the inductive step. We assumeΓ(n) = (n−1)!, and we must showΓ(n+1) = n!.
From the functional equation,Γ(n + 1) = nΓ(n); but by the inductive stepΓ(n) = (n − 1)!.
Combining givesΓ(n + 1) = n(n − 1)!, which is just(n + 1)!, or what we needed to show. This
completes the proof. □

We now have two different ways to calculate say 1020!. The first is to do the multiplications out:
1020 ⋅ 1019 ⋅ 1018 ⋅ ⋅ ⋅ . The second is to look at the corresponding integral:

1020! = Γ(1021) =

∫ ∞

0

e−xx1020dx.

There are advantages to both methods; we wanted to discuss some of the benefits of the integral
approach, as this is definitely not what most people have seen. Integration is hard; most people don’t
see it until late in high school or college. We all know how to multiply numbers – we’be been doing
this since grade school. Thus, why make our lives difficult byconverting a simple multiplication
problem to an integral?

The reason is a general principle of mathematics – often by looking at things in a different way,
from a higher level, new features emerge that you can exploit. Also, once we write it as an integral we
have a lot more tools in our arsenal; we can use results from integration theory and from analysis to
study this. We do this in Chapter 2, and see just how much we canlearn about the factorial function
by recasting it as an integral.

1.4. Special Values ofΓ(s). We know thatΓ(n+1) = n! whenevern is a non-negative integer. Are
there choices ofs that are important, and if so, what are they? In other words, we’ve just generalized
the factorial function. What was the point? It may be that thenon-integral values are just curiosities
that don’t really matter, and the entire point might be to have the tools of calculus and analysis
available to studyn!. This, however, is most emphaticallynot the case. Some of these other values
are very important in probability; in a bit of foreshadowing, we’ll say they play a central role in the
subject.

So, what are the most important Because of the functional equation, once we knowΓ(1) we
know the Gamma function at all non-negative integers, whichgives us all the factorials. So 1 is an
important choice ofs. We’ll now see thats = 1/2 is also very important.

One of the most important, if not the most important, distribution is the normal distribution. We
sayX is normally distributed with mean� and variance�2, writtenX ∼ N(�, �2), if the density
function is

f�,�(x) =
1√
2��2

e−(x−�)2/2�2

.

Looking at this density, we see there are two parts. There’s the exponential part, and the constant
factor of1/

√
2��2. Because the exponential function decays so rapidly, the integral will be finite and

thus, if appropriately normalized, we will have a probability density. The hard part is determining
just what this integral is. Another way of formulating this question is: Letg(x) = e−(x−�)2/2�2

. As
it decays rapidly and is never negative, it can be rescaled tointegrate to one and hence become a
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probability density. That scale factor is just1/c, where

c =

∫ ∞

−∞
e−(x−�)2/2�2

.

In ChapterADD REF we’ll see numerous applications and uses of the normal distribution. It’s
not hard to make an argument that it is important, and thus weneedto know the value of this integral.
That said, why is this in the Gamma function chapter?

The reason is that, with a little bit of algebra and some change of variables, we’ll see that this
integral is just

√
2Γ(1/2). We might as well assume� = 0 and� = 1 (if not, then step 1 is just to

change variables and lett = x−�
�

. So let’s look at

I :=

∫ ∞

−∞
e−x2/2dx

= 2

∫ ∞

0

e−x2/2dx.

This only vaguely looks related to the Gamma function. The Gamma function is the integral ofe−x

times a polynomial inx, while here we have the exponential of−x2/2. Looking at this, we see that
there’s a natural change of variable to try to make our integral look like the Gamma function at some
special point. We have to tryu = x2/2, as this is the only way we’ll end up with the exponential of
the negative of our variable. We want to finddx in terms ofu anddu for the change of variables,
thus we rewriteu = x2/2 asx = (2u)1/2, which givesdx = (2u)−1/2du. Plugging all of these in,
we see

I = 2

∫ ∞

0

e−u(2u)−1/2du

=
√
2

∫ ∞

0

e−uu−1/2du.

We’re almost done – this does look very close to the Gamma function; there are just two issues, one
trivial and one minor. The first is that we’re using the letteru instead ofx, but that’s fine as we can
use whatever letter we want for our variable. The second is thatΓ(s) involves a factor ofus−1 and
we haveu−1/2. This is easily fixed; we just write

u− 1

2 = u
1

2
− 1

2
− 1

2 = u
1

2
−1;

we justadded zero, one of the most useful things to do in mathematics. (It takesawhile to learn how
to ‘do nothing’ well, which is why we keep pointing this out.)Thus

I =
√
2

∫ ∞

0

e−uu
1

2
−1du =

√
2Γ(1/2).

We did it – we’ve found another value ofs that is important. Now we just need a way to find out
whatΓ(1/2) equals! We could of course just go back to the standard normal’s density and do the
polar coordinate trick (seeADD REF); however, it is possible to evaluate this directly, and a lot can
be gained by doing so. We’ll give a few different proofs.

1.4.1. The Cosecant Identity: First Proof.Books have entire chapters on the various identities satis-
fied by the Gamma function. In this section we’ll concentrateon one that is particularly well-suited
to our investigation ofΓ(1/2), namely the cosecant identity.

The cosecant identityWe have

Γ(s)Γ(1− s) = � csc(�s) =
�

sin(�s)
.

Before proving this, let’s take a moment, as it really is justa moment, to use this to finish our
study. For almost alls the cosecant identity relates two values, Gamma ats and Gamma at1 − s; if
you know one of these values, you know the other. Unfortunately, this means that in order for this
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identity to be useful, we have to know at least one of the two values. Unless, of course, we make the
veryspecial choice of takings = 1/2. As 1/2 = 1− 1/2, the two values are the same, and we find

Γ(1/2)2 = Γ(1/2)Γ(1/2) =
�

sin(�/2)
= �;

taking square-roots givesΓ(1/2) =
√
�.

In this and the following subsections, we’ll give various proofs of the cosecant identity. If all you
care about is using it, you can of course skip this; however, if you read on you’ll get some insight
as to how people come up with formulas like this, and how they prove them. The arguments will
become involved in places, but we’ll try to point out why we are doing what we’re doing, so that if
you come across a situation like this in the future, a new situation where you are the first one looking
at a problem and there is no handy guidebook available, you’ll have some tools for your studies.

Proof of the cosecant identity.We’ve seen the cosecant identity is useful; now let’s see a proof. How
should we try to prove this? Well, one side isΓ(s)Γ(1−s). Both of these numbers can be represented
as integrals. So this quantity is really a double integral. Whenever you have a double integral, you
should start thinking about changing variables or changingthe order of integration, or maybe even
both! The point is using the integral formulations gives us astarting point. This argument might
not work, but it’s something to try (and, for many math problems, one of the hardest things is just
figuring out where to begin).

What we are about to write looks like it does what we have decided to do, but there’stwo subtle
mistakes:

Γ(s)Γ(1− s) =

∫ ∞

0

e−xxs−1dx ⋅
∫ ∞

0

e−xx1−s−1dx

=

∫ ∞

0

e−xxs−1 ⋅ e−xx1−s−1dx. (1)

Why is this wrong? The first expression is the integral representation ofΓ(s), the second expression
is the integral representation ofΓ(1− s), so their product isΓ(s)Γ(1− s) and then we just collecting
terms? Unfortunately,NO!. The problem is that we used the same dummy variable for both integra-
tions. We cannot write it as one integral – we had two integrations, each with adx, and then ended up
with just onedx. This is one of the most common mistakes students make. By notusing a different
letter for the variables in each integration, we accidentally combined them and went from a double
integral to a single integral.

We should use two different letters, which in a fit of creativity we’ll take to bex andy. Then

Γ(s)Γ(1− s) =

∫ ∞

0

e−xxs−1dx ⋅
∫ ∞

0

e−yy1−s−1dy

=

∫ ∞

y=0

∫ ∞

x=0

e−xxs−1e−yy−sdxdy.

While the result we’re gunning for, the cosecant formula, isbeautiful and important, even more
important (and far more useful!) is to learn how to attack problems like this. There aren’t that many
options for dealing with a double integral. You can integrate as given, but in this case that would be
a bad idea as we would just get back the product of the Gamma functions. What else can we do? We
can switch the orders of integration. Unfortunately, that too isn’t any help; switching orders can only
help us if the two variables are mingled in the integral, and that isn’t the case now. Here, the two
variables aren’t seeing each other; if we switch the order ofintegration, we haven’t really changed
anything. Only one option remains: we need to change variables.

This is the hardest part of the proof. We have to figure out a good change of variables. Let’s look
at the first possible choice. We havexs−1y−s = (x/y)s−1y−1; perhaps a good change of variables
would be to letu = x/y? If we are to do this, we fixy, and then for fixedy we setu = x/y, giving
du = dx/y. The1/y is encouraging, as we had an extray earlier. This leads to

Γ(s)Γ(1− s) =

∫ ∞

y=0

e−y

[
∫ ∞

u=0

e−uyus−1du

]

dy.
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Now switching orders of integration is non-trivial, asu andy appear together. That gives

Γ(s)Γ(1− s) =

∫ ∞

u=0

us−1

[
∫ ∞

y=0

e−(u+1)ydy

]

du

=

∫ ∞

u=0

us−1

[

−e−(u+1)y

u+ 1

∣

∣

∣

∣

∣

∞

0

]

dy

=

∫ ∞

u=0

us−1 1

u+ 1
dy =

∫ ∞

u=0

us−1

u+ 1
du.

Warning: we have to be very careful above, and make sure the interchange is justified.Remember
earlier in the chapter when we had a long discussion about theimportance of making sure an integral
makes sense? The integrand above isus−1

u+1
. It has to decay sufficiently rapidly asu → ∞ and it

cannot blow up too quickly asu → 0 if the integral is to be finite. If you work out what this entails,
it forcess ∈ (0, 1); if s ≤ 0 then it blows up too rapidly near 0, while ifs ≥ 1 it doesn’t decay fast
enough at infinity.

In hindsight, this restriction is not surprising, and in fact we should have expected it. Why?
Remember earlier in the proof we remarked that there weretwo mistakes in (1); if you were really
alert, you would have noticed we only mentionedone mistake! What is the missing mistake? We
used the integral representation of the Gamma function. That is only valid when the argument is
positive. Thus we needs > 0 and1 − s > 0; these two inequalities forces ∈ (0, 1). If you didn’t
catch this mistake this time, don’t worry about it; just be aware of the danger in the future. This
is one of the most common errors made (by both students and researchers). It’s so easy to take a
formula that works in some cases and accidentally use it in a place where it is not valid.

Alright. For now, let’s restrict ourselves to takings ∈ (0, 1). We leave it as an exercise to show that
if the relationship holds fors ∈ (0, 1) then it holds for alls. Hint: keep using the functional equation
of the Gamma function. It’s easy to see how thecsc(�s) or thesin(�s) changes if we increases by
1; the Gamma pieces follow with a bit more work.

Now we really can say

Γ(s)Γ(1− s) =

∫ ∞

0

us−1

u+ 1
du. (2)

What next? Well, we have two factors,us−1 and 1
u+1

. Note the second looks like the sum of a
geometric series with ratio−u. Admittedly, this is not going to be an obvious identification at first,
but the more math you do, the more experience you gain and the easier it is to recognize patterns.
We know

∑∞
n=0 r

n = 1
1−r

, so all we have to do is taker = −u.
We must be careful – we’re about to make the same mistake again, namely using a formula where

it isn’t applicable. It’s very easy to fall into this trap. Fortunately, there’s a way around it. We split
the integral into two parts, the first part is whenu ∈ [0, 1] and the second whenu ∈ [1,∞]. In
the second part we’ll then change variables by settingv = 1/u and do a geometric series expansion
there.Splitting an integral is another useful technique to master. It allows us to break acomplicated
problem up into simpler ones, ones where we have more resultsat our disposal to attack it.

For the second integral, we’ll make the changev = 1/u. This givesdv = −du/u2 or du = −v2dv
(since1/u2 = v2), and the bounds of integration go from beingu : 1 → ∞ to v : 1 → 0 (we’ll then
use the negative sign to switch the order of integration to the more commonv : 0 → 1). Continuing
onward, we have

Γ(s)Γ(1− s) =

∫ 1

0

us−1

u+ 1
du+

∫ ∞

1

us−1

u+ 1
du

=

∫ 1

0

us−1

u+ 1
du+

∫ ∞

1

−
∫ 0

1

(1/v)s−1

(1/v) + 1
v2dv

=

∫ 1

0

us−1

u+ 1
du+

∫ ∞

1

+

∫ 1

0

v−s

v + 1
dv.
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Note how similar the two expressions are. We now use the geometric series formula, and then we’ll
interchange the integral and the sum. Everything can be justified becauses ∈ (0, 1), so all the
integrals exist and are well behaved, giving

Γ(s)Γ(1− s) =

∫ 1

0

us−1
∞
∑

n=0

(−1)nundu+

∫ 1

0

v−s
∞
∑

m=0

(−1)mvmdv

=
∞
∑

n=0

(−1)n
∫ 1

0

us−1+ndu+
∞
∑

m=0

(−1)m
∫ 1

0

vm−sdv

=

∞
∑

n=0

(−1)n
us+n

n+ s

∣

∣

∣

∣

∣

1

0

+

∞
∑

m=0

(−1)m
vm+1−s

m+ 1− s

∣

∣

∣

∣

∣

1

0

=

∞
∑

n=0

(−1)n
1

n+ s
+

∞
∑

m=0

(−1)m
1

m+ 1− s
.

Note we used two different letters for the different sums. While we could have used the lettern
twice, it’s a good habit to use different letters. What happens now is that we’ll adjust the counting a
bit to easily combine them.

The two sums look very similar. They both look like a power of negative one divided by either
k + s or k − s. Let’s rewrite both sums in terms ofk. The first sum has one extra term, which we’ll
pull out. In the first sum we’ll setk = n, while in the second we’ll setk = m+1 (so(−1)m becomes
(−1)k−1 = (−1)k+1. We get

Γ(s)Γ(1− s) =
1

s
+

∞
∑

k=1

(−1)k
1

k + s
+

∞
∑

k=1

(−1)k+1 1

k − s

=
1

s
+

∞
∑

k=1

(−1)k
[

1

k + s
− 1

k − s

]

=
1

s
+

∞
∑

k=1

(−1)k
2s

k2 − s2

=
1

s
−

∞
∑

k=1

(−1)k
−2s

k2 − s2
.

It may not look like it, but we’ve just finished the proof. The problem is recognizing the above is
� csc(�s) = �/ sin(�s). This is typically proved in a complex analysis course; see for instanceADD
REF.

We can at least see it’s reasonable. We’re claiming

�

sin(�s)
=

1

s
−

∞
∑

k=1

(−1)k
2s

k2 − s2
.

If s is an integer thensin(�s) = 0 and thus the left hand side is infinite, while exactly one of the
terms on the right hand side blows up. This at least shows our answer is reasonable. Or mostly
reasonable. It seems likely that our sum isc/ sin(�s) for somec, but it isn’t clear that that constant is
�. Fortunately, there’s even a way to get that, but it involvesknowing a bit more about certain special
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sums. If we takes = 1/2 then the sum becomes

1

1/2
−

∞
∑

k=1

(−1)k
1

k2 − (1/2)2
= 2−

∞
∑

k=1

(−1)k

k2 − 1/4

= 2−
∞
∑

k=1

(−1)k4

4k2 − 1

= 2− 4
∞
∑

k=1

1

(2k − 1)2

Now add something about this – a non-standard formula!

1.4.2. The Cosecant Identity: Second Proof.We already have a proof of the cosecant identity for the
Gamma function – why do we need another? For us, the main reason is educational. The goal of this
book is not to teach you have to answer one specific problem at one moment in your life, but rather to
give you the tools to solve a variety of new problems wheneveryou encounter them. Because of that,
it’s worth seeing multiple proofs as different approaches emphasize different aspects of the problem,
or generalize better for other questions.

Let’s go back to the set-up. We hads ∈ (0, 1) and

Γ(s)Γ(1− s) =

∫ ∞

0

e−xxs−1dx ⋅
∫ ∞

0

e−yy1−s−1dy

=

∫ ∞

y=0

∫ ∞

x=0

e−xxs−1e−yy−sdxdy.

We’ve already talked about what our options are. We can’t integrate it as is, or we’ll just get back
the two Gamma functions. We can’t change the order of integration, as thex andy variables are not
mingled and thus changing the order of integration won’t really change the problem. The only thing
left to do is change variables.

Before we setu = x/y. We were led to this because we sawxs−1y−s = (x/y)s−1y−1, and thus it’s
not unreasonable to setu = x/y. Are there any other ‘good’ choices for a change of variable?There
is, but it’s not surprising if you don’t see it. It’s our old friend, polar coordinates.

It should seem a little strange to use polar coordinates here. After all, we use those for problems
with radial and angular symmetry. We use them for integrating over circular regions.NONE of this
is happening here! That said, we think a good case can be made for trying this.

∙ First, we don’t know that many change of variables; we do knowpolar coordinates, so we
might as well try it.

∙ Second, we’re trying to show the answer is� csc(�s) = �/ sin(�s). The answer involves the
sine function, so perhaps this suggests we should try polar coordinates.

At the end of the day, a method either works or it doesn’t. We hope the above at least motivates
why we’re trying this here, and can provide guidance for you in the future.

Recall for polar coordinates we have the following relations:

x = r cos �, y = r sin �, dxdy = rdrd�.
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What are the bounds of integration? We’re integrating over the upper right quadrant,x, y : 0 → ∞.
In polar coordinates it becomesr : 0 → ∞ and� : 0 → �/2. Our integral now becomes

Γ(s)Γ(1− s) =

∫ �/2

�=0

∫ ∞

r=0

e−r cos �(r cos �)s−1e−r sin �(r sin �)−srdrd�

=

∫ �/2

�=0

∫ ∞

r=0

e−r(cos �+sin �)

(

cos �

sin �

)s−1
1

sin �
drd�

=

∫ �/2

�=0

(

cos �

sin �

)s−1
1

sin �

[
∫ ∞

r=0

e−r(cos �+sin �)dr

]

d�

=

∫ �/2

�=0

(

cos �

sin �

)s−1
1

sin �

[

−e−r(cos �+sin �)

cos � + sin �

]∞

0

d�

=

∫ �/2

�=0

(

cos �

sin �

)s−1
1

sin �

1

cos � + sin �
d�.

It doesn’t look like we’ve made much progress, but we’re justone little change of variables away
from a great simplification. Note that a lot of the integrand only depends oncos �/ sin � = ctan�
(the cotangent of�). If we do make the change of variablesu = ctan� thendu = − csc2 � = 1/ sin�;
if you don’t remember this formula, you can get it by the quotient rule:

ctan′(�) =

(

cos �

sin �

)′

=
cos′ � sin � − sin′ � cos �

sin2 �

=
− sin2 � − cos2 �

sin2 �
= − 1

sin2 �
.

Now things are looking really promising; our proposed change of variables needs a1/ sin2 �, and we
already have a1/ sin � in the integrand. We get the other by writing

1

cos � + sin �
=

1

sin �

1

(cos �/ sin �) + 1
=

1

sin �

1

ctan� + 1
.

All that remains is to find the bounds of integration. Ifu = ctan� = cos �/ sin �, then� : 0 → �/2
corresponds tou : ∞ → 0 (don’t worry that we’re integrating from infinity to zero – wehave a
minus sign floating around, and that will flip the order of integration).

Putting all the pieces together, we find

Γ(s)Γ(1− s) =

∫ �/2

�=0

ctans−1�

ctan� + 1

d�

sin2 �

=

∫ 0

u=∞

us−1

u+ 1
(−du) =

∫ ∞

0

us−1

u+ 1
du.

This integral should look familiar – it is exactly the integral we saw in the previous section, in
equation (2). Thus from here onward we can just follow the steps in that section.

A lot of students freeze when they first see a difficult math problem. Why varies from student to
student, but a common refrain is. “I didn’t know where to start.” For those who feel that way, this
should be comforting. There are (at least!) two different change of variables we can do, both leading
to a solution for the problem. As you continue in math you’ll see again and again that there are many
different approaches you can take. Don’t be afraid to try something. Work with it for awhile and see
how it goes. If it isn’t promising you can always backtrack and try something else.

1.4.3. The Cosecant Identity: Special Cases = 1/2. While obviously we would like to prove the
cosecant formula for arbitrarys, themost important choice ofs is clearlys = 1/2. We needΓ(1/2)
in order to write down the density functions for normal distributions. Thus, while it would be nice to
have a formula for anys, it’s still cause for celebration if we can handle justs = 1/2.



13

Remember in (2) that we showed

Γ(s)Γ(1− s) =

∫ ∞

0

us−1

u+ 1
du.

Takings = 1/2 gives

Γ(1/2)2 =

∫ ∞

0

u−1/2

1 + u
du.

We’re going to solve this with a highly non-obvious change ofvariable. Let’s state it first, see how
it works, and then discuss why this is a reasonable thing to try. Here it is: takeu = z2, soz = u1/2

anddz = du/2
√
u. Note how beautifully this fits with our integral. We have au−1/2du term already,

which becomes2dz. Substituting gives

Γ(1/2)2 =

∫ ∞

0

2dz

1 + z2
= 2

∫ ∞

0

dz

1 + z2
.

Looking at this integral, you should think of the trigonometric substitutions from calculus. Whenever
you see1− z2 you should tryz = sin � or z = cos �; when you see1 + z2 you should tryz = tan �.
Let’s make this change of variables. The reason it’s so useful is the Pythagorean formula

sin2 � + cos2 � = 1

becomes, on dividing both sides bycos2 �,

tan2 � + 1 =
1

cos2 �
= sec2 �.

Lettingz = tan � means we replace1+z2 with sec2 �. Further,dz = sec2 �d� (if you don’t remember
this, just use the quotient rule:tan � = sin �/ cos �). Asz : 0 → ∞, we have� : 0 → �/2. Collecting
everything gives

Γ(1/2)2 = 2

∫ �/2

0

1

sec2 �
sec2 �d�

= 2

∫ �/2

0

d� = 2
�

2
= �,

and ifΓ(1/2)2 = � thenΓ(1/2) =
√
� as claimed!

And there we have it: a correct, elementary proof thatΓ(1/2) =
√
�. You should be able to follow

the proof line by line, but that’s not the point of mathematics. The point is toseewhy the author is
choosing to do these steps so taht you too could create a prooflike this.

There were two changes of variables. The first was replacingu with z2, and the second was
replacingz with tan �. The two changes are related. How can anyone be expected to think of
these? To be honest, when writing this chapter one of us had toconsult their notes from teaching
a similar course several years ago. We remembered that somehow tangents came into the problem,
but couldn’t remember the exact trick we thought of so long ago. It’s not easy. It takes time, but
the more you do, the more patterns you can detect. We have a1 + u in the denominator; we know
how to handle terms such as1 + z2 through trig substitution. As the cosecant identity involves trig
functions, that suggests this could be a fruitful avenue to explore. It’s not a guarantee, but we might
as well try it and see where it leads.
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Flush with our success, the most natural thing to try next arethese substitutions for generals. If
we do this, we would find

Γ(s)Γ(1− s) =

∫ ∞

0

z2s−2

1 + z2
2zdz

= 2

∫ ∞

0

z2s−1

1 + z2
dz

= 2

∫ �/2

0

tan2s−1 �

sec2 �
sec2 �d�

= 2

∫ �/2

0

tan2s−1 �d�.

We now see how specials = 1/2 is. For this, and only for this, value does the integrand collapse
to just being the constant function 1, which is easily integrated. Any other choice ofs forces us to
have to find integrals of powers of the tangent function, which is no easy task! Formulas do exist;
for example,

∫

tan �d� =
1

2
√
2

[

− 2arctan
(

1−
√
2
√
tan �

)

+ 2arctan
(

1 +
√
2
√
tan �

)

+ log
(

1−
√
2
√
tan � + tan �

)

− log
(

1 +
√
2
√
tan � + tan �

)

]

.

1.5. The Beta Function and the Gamma Function.TheBeta function is defined by

B(a, b) =

∫ 1

0

ta−1(1− t)b−1dt, a, b > 0.

This is a very slight resemblance with the Gamma function; both involve the integration variable
raised to a parameter minus 1. It turns out this is not just a coincidence or a stretch of the imagination,
but rather these two functions are intimately connected by:

Fundamental Relation of the Beta Function:Fora, b > 0 we have

B(a, b) :=

∫ 1

0

ta−1(1− t)b−1dt =
Γ(a)Γ(b)

Γ(a + b)
.

With a little bit of algebra, we can rearrange the above and find

Γ(a+ b)

Γ(a)Γ(b)

∫ 1

0

ta−1(1− t)b−1dt = 1;

this means that we’ve discovered a new density, the density of theBeta distribution :

fa,b =

{

Γ(a+b)
Γ(a)Γ(b)

ta−1(1− t)b−1dt if 0 ≤ t ≤ 1

0 otherwise.

We’ll discuss this distribution in greater detail inADD REF. For now we’ll just say briefly that it’s
an important family of densities as a lot of times our input isbetween 0 and 1, and the two parameters
a andb give us a lot of freedom in creating ‘one-hump’ distributions (namely densities that go up
and then go down). We plot several of these densities in Figure 1

1.5.1. Proof of the Fundamental Relation.We prove the fundamental relation of the Beta function.
While this is an important result, remember that our purposein doing so is to help you see how to
attack problems like this. Multiplying both sides byΓ(a + b), we see that we must prove

Γ(a)Γ(b), Γ(a+ b)

∫ 1

0

ta−1(1− t)b−1dt
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FIGURE 1. Plots of Beta densities for(a, b) equal to (2, 2), (2, 4), (4, 2), (3, 10), and
(10, 30).

are equal. There are two ways to do this; we can either work with the product of the Gamma
functions, or expand theΓ(a + b) term and combine it with the other integral.

Let’s try working with the product of the Gamma functions. Note that we can use the integral
representation freely, as we’ve assumeda, b > 0. Note how different this is than the last section,
where we had to restrict tos ∈ (0, 1). Anyway, we’ll argue along the lines of our first proof of the
cosecant identity, and we find

Γ(a)Γ(b) =

∫ ∞

0

e−xxa−1dx

∫ ∞

0

e−yyb−1dy

=

∫ ∞

y=0

∫ ∞

x=0

e−(x+y)xa−1yb−1dxdy.

Remember, we can’t change the order of integration, as that won’t gain us anything as the two
variables are not mixed. Our only remaining option is to change variables. We’ve fixedy and are
integrating with respect tox. Let’s try x = yu sodx = ydu; we’ve seen changes of variables like
this helped in the previous section, and this will at least mix things up. We find

Γ(a)Γ(b) =

∫ ∞

y=0

[
∫ ∞

u=0

e−(1+y)u(yu)a−1yb−1ydu

]

dy

=

∫ ∞

y=0

∫ ∞

u=0

ya+b−1ua−1e−(1+u)ydudy

=

∫ ∞

u=0

∫ ∞

y=0

ya+b−1ua−1e−(1+u)ydydu.

We’ve changed variables and then switched the order of integration. So right now we’re fixingu
and then integrating with respect toy. Foru fixed, consider the change of variablest = (1 + u)y.
This is a good choice, and a somewhat reasonable one to try. Weneed to get aΓ(a + b) arising
somehow. For that, we want something like the exponential ofthe negative of one of our variables.
Right now we havee−(1+u)y, which isn’t of the desired form. By lettingt = (1 + u)y, however, it
now becomese−t. Again, what drives this change of variables is trying to getsomething looking like
Γ(a+ b); note how useful it is to have a sense of what the answer is!
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Anyway, if t = (1 + u)y thendy = dt/(1 + u) and our integral becomes

Γ(a)Γ(b) =

∫ ∞

u=0

∫ ∞

t=0

(

t

1 + u

)a+b−1

ua−1e−t 1

1 + u
dtdu

=

∫ ∞

u=0

(

u

1 + u

)a−1(
1

1 + u

)b−1 [∫ ∞

t=0

e−tta+b−1dt

]

du

= Γ(a+ b)

∫ ∞

u=0

(

u

1 + u

)a−1(
1

1 + u

)b−1

du,

where we used the definition of the Gamma function to replace the t-integral withΓ(a + b). We’re
definitely making progress – we’ve found theΓ(a+ b) factor.

We should also comment on how we wrote the algebra above. We combined everything that was
to thea−1 power together, and what was left was to theb+1 power. Again, this is a promising sign;
we’re trying to show that this equalsΓ(a + b) times an integral involvingxa−1 and(1 − x)b−1; it’s
not exactly this, but it is close. (You might be a bit worried that we have ab+1 and not ab− 1 – it’ll
work out after yet another change of variables). So, lookingat what we have and again comparing it
with where we want to go, what’s the next change of variables?Let’s try � = u

1+u
, so1 − � = 1

1+u

andd� = du
(1+u)2

(by the quotient rule), ordu = (1 + u)2d� = d�
(1−�)2

. Sinceu : 0 → ∞, � : 0 → 1.
Thus

Γ(a)Γ(b) = Γ(a+ b)

∫ 1

0

�a−1(1− �)b+1 d�

(1− �)2

= Γ(a+ b)

∫ 1

0

�a−1(1− �)b−1d�,

which is what we needed to show!
As always, after going through a long proof we should stop, pause, and think about what we did

and why. There were several change of variables and an interchange of orders of integration. As
we’ve already discussed why these changes of variables are reasonable, we won’t rehash that here.
Instead, we’ll talk one more time about how useful it is to know the answer. If you can guess the
answer somehow, that can provide great insight as to what to do. For this problem, knowing we
wanted to find a factor ofΓ(a + b) helped us make the change of variables to fix the exponential.
And knowing we wanted factors like a variable to thea− 1 power suggested the change of variables
� = u

1−u
.

1.5.2. The Fundamental Relation andΓ(1/2). We give yet another derivation ofΓ(1/2), this time
using properties of the Beta function. Takinga = b = 1/2 gives

Γ

(

1

2

)

Γ

(

1

2

)

= Γ

(

1

2
+

1

2

)
∫ 1

0

t1/2−1(1− t)1/2−1dt

= Γ(1)

∫ 1

0

t−1/2(1− t)−1/2dt.

As always, the question becomes: what’s the right change of variables? If we think back to our
studies of the Gamma function, we haveΓ(1/2)2 was supposed to be�/ sin(�/2). This is telling us
that trig functions should play a big role, so perhaps we wantto do something to facilitate using trig
functions or trig substitution. If so, one possibility is totaket = u2. This makes the factor(1−t)−1/2

equal to(1− u2)−1/2, which is ideally suited for a trig substitution.
Now for the details. We sett = u2 or u = t1/2, sodu = dt/2t1/2 or t−1/2dt = 2du; we write it

like this as we have at−1/2dt already! The bounds of integration are still 0 to 1, and we have

Γ

(

1

2

)2

=

∫ 1

0

(1− u2)−1/22du.
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We now use trig substitution. Takeu = sin �, du = cos �d�, andu : 0 → 1 becomes� : 0 → �/2
(we choseu = sin � overu = cos � as this way the bounds of integration become0 to �/2 and not
�/2 to 0, though of course either approach is fine). We now have

Γ

(

1

2

)2

= 2

∫ �/2

0

(1− sin2 �)−1/2 cos �d�

= 2

∫ �/2

0

cos �d�

(cos2 �)1/2

= 2

∫ �/2

0

d� = 2 ⋅ �
2

= �,

which gives us yet another way to seeΓ(1/2) =
√
�.

2. STIRLING ’ S FORMULA

It is possible to look at probabilities without seeing factorials, but you have to do a lot of work to
avoid them. Remember thatn! is the product of the firstn positive integers, with the convention that
0! = 1. Thus3! = 3 ⋅ 2 ⋅ 1 = 6 and4! = 4 ⋅ 3! = 24. There is a nice combinatorial interpretation:n!
is the number of ways to arrangen people in a line when order matters (there aren choices for the
first person, thenn − 1 for the second, and so on). With this point of view, we interpret 0! = 1 as
meaning there is just one way to do arrange nothing!

Factorials arise everywhere, sometimes in an obvious manner and sometimes in a hidden one. The
first instance of factorials encountered in probability is with the binomial coefficients,

(

n
k

)

= n!
k!(n−k)!

.
Remember this is the number of ways to choosek objects fromn when order does not matter.

There are, however, less obvious occurrences of the factorial function. Perhaps the best hidden
one occurs in the density function of the standard normal,1√

2�
exp(−x2/2). It turns out that

√
� =

(−1/2)!. You should be hearing alarm bells upon reading this; after all, we’ve defined the factorial
function for integer input, and now we are taking the factorial, not just of a negative number, but of
a negative rational! What does this mean? How do we interpretthe factorial of−1/2? What does it
mean to ask about the number of ways of order -1/2 people?

The answer to this is through the Gamma function,Γ(s), where

Γ(s) =

∫ ∞

0

e−xxs−1dx, ℜ(s) > 0.

Some authors write this as

Γ(s) =

∫ ∞

0

e−xxs dx

x
.

There is no difference in the two expressions, though they look different. Writingdx/x emphasizes
how nicely the measure transforms under rescaling: if we send x to u = ax for any fixeda, then
dx/x = du/u.

It turns out the Gamma function generalizes the factorial function: if n is a non-negative integer
thenΓ(n + 1) = n!. We described this and other properties of the Gamma function in ADD REF.

The purpose of this chapter is to describe Stirling’s formula for approximatingn! for largen, and
discuss some applications. The key fact is
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Stirling’s formula : As n → ∞, we have

n! ≈ nne−n
√
2�n;

by this we mean

lim
n→∞

n!

nne−n
√
2�n

= 1.

More precisely, we have the following series expansion:

n! = nne−n
√
2�n

(

1 +
1

12n
+

1

288n2
− 139

51840n3
− ⋅ ⋅ ⋅

)

.

Whenever you see a formula, you should always try some simpletests to see if it is reasonable.
What kind of tests can we apply? Well, Stirling’s formula claims thatn! ≈ nne−n

√
2�n. As

n! = n(n − 1) ⋅ ⋅ ⋅1, clearlyn! ≤ nn, which is consistent with Stirling though it is too large by
approximatelye−n. What about a lower bound? Well, clearlyn! ≥ n(n−1) ⋅ ⋅ ⋅ n

2
(we’ll assumen/2

is even for convenience), son! ≥ (n/2)n/2. While this is a lower bound, it is a poor one; it looks
like nn/22−n/2; the power ofn should ben and notn/2 according to Stirling. There’s a bit of an art
to finding good, elementary upper and lower bounds. This is a more advanced topic and requires a
‘feel’ for how to proceed; nevertheless, it’s a great skill to develop. So as not to interrupt the flow,
we’ll hold off on these more elementary bounds for now, and wait till §2.5 to show you how close
one can get to Stirling just by knowing how to count.

What other checks can we do? Well,(n + 1)!/n! = n+ 1; let’s see what Stirling gives:

(n + 1)!

n!
=

(n+ 1)n+1e−(n+1)
√

2�(n+ 1)

nne−n
√
2�n

= (n+ 1) ⋅
(

n + 1

n

)n

⋅ 1
e
⋅
√

n+ 1

n

= (n+ 1)

(

1 +
1

n

)n
1

e

√

1 +
1

n
.

As n → ∞, (1 + 1/n)n → e (this is the definition ofe; seeADD REF) and
√

1 + 1/n → 1; thus
our approximation above is basically(n+ 1) ⋅ e ⋅ 1

e
⋅ 1, which isn+ 1 as needed for consistency!

While the arguments above are not proofs, they are almost as valuable. It is essential to be able
to look at a formula and get a feel for what it is saying, and forwhether or not it is true. By some
simple inspection, we can get upper and lower bounds that sandwich Stirling’s formula. Moreover,
Stirling’s formula is consistent with(n + 1)! = (n + 1)n!. This gives us reason to believe we’re on
the right track, especially when we see how close our ratio was ton+ 1.

A full proof of Stirling’s formula is beyond the scope of a first course in probability. The purpose
of this chapter is to give several arguments supporting it, and discuss some of its applications. Our
hope is that the time spent on these arguments will give you a better sense of what’s going on.

2.1. Stirling’s Formula and Probabilities. Before getting bogged down in the technical details of
the proofs of Stirling’s formula, let’s first spend some timeseeing how it can be used. Our first
problem is inspired by a phenomenon that surprises many students. Imagine we have a fair coin, so
it lands on heads half the time and tails half the time. If we flip it 2n times, we expect to getn heads;
thus if we flip it two million times we expect one million heads. It turns out that asn → ∞, the
probability of gettingexactlyn heads in2n tosses of the fair coin tends to zero!

This result can seem quite startling. The expected value from 2n tosses isn heads, and the prob-
ability of gettingn heads tends to zero? What’s going on? If this is the expected value, shouldn’t it
be very likely! The key to understanding this problem is to note that while the expected value isn
heads in2n tosses, the standard deviation is

√

n/2; returning to the case of two million tosses, we
expect one million heads with fluctuations of the size 700. Ifnow we tossed the coin two trillion
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times, we would expect one trillion heads and fluctuations onthe order of 700,000. Asn increases,
the ‘window’ about the mean where outcomes are likely is growing like the standard deviation, i.e.,
it is growing like

√
N (up to some constants). Thus the probability is being sharedamong more

and more values, and thus it makes sense that the probabilities of individual, specific outcomes (like
exactlyn tosses) is going down. In summary: the probability of exactly n heads in2n tosses is going
down as the probability is being spread over a wider and widerset. We now use Stirling’s formula to
quantify just how rapidly this probability decays.

For largen, we can painlessly approximaten! with Stirling’s formula. Remember we are trying to
answer:What is the probability of getting exactlyn heads in2n tosses of a fair coin?

It is very easy to write down the answer: it is simply

Prob(exactly n heads in 2n tosses) =

(

2n

n

)(

1

2

)n(
1

2

)n

=
1

22n
.

The reason is that each of the22n strings of heads and tails are equally likely, and there are
(

2n
n

)

strings with exactlyn heads. How big is
(

2n
n

)

?
It’s now Stirling’s formula to the rescue. We have

(

2n

n

)

=
(2n)!

n!n!

≈ (2n)2ne−2n
√
2� ⋅ 2n

nne−n
√
2�n ⋅ nne−n

√
2�n

=
22n√
�n

;

thus the probability of exactlyn heads is
(

2n

n

)

1

22n
≈ 1√

�n
.

This means that ifn = 100 there is a little less than a 6% chance of getting half heads, while if
n = 1, 000, 000 the probability falls to less than .06%.

The above exercise was actually discussed in the 2008 presidential primary season. Obama and
Clinton each received 6,001 votes in the democratic primaryin Syracuse, NY. While there were
12,346 votes cast in the primary, for simplicity let’s assume that there were just 12,002, and ask what
is the probability of a tie. If we assume each candidate is equally likely to get any vote, the answer
is just

(

12,002
6,001

)

/212,002. The exact answer is approximately 0.00728; using our approximation from
above we would estimate it as

1√
� ⋅ 12, 002 ≈ 0.00514,

which is fairly close to the true answer.

While we found the probability is a little less than 1%, some news outlets reported that the proba-
bility was about one in a million, with some going so far as to say it was “almost impossible”. Why
are there such different answers? It all depends on how you model the problem. If we assume the
two candidates are equally likely to get each vote, then we get an answer of a little less than 1%.
If, however, we take into account other bits of information,then the story changes. For example,
Clinton was then a senator from NY, and it should be expected that she’ll do better in her current
home state. In fact, she won the state overall with 57.37% of the vote to Obama’s 40.32%. Again for
ease of analysis, let’s say Clinton had 57% and Obama 43%. If we use these numbers, we no longer
assume each voter is equally likely to vote for Clinton or Obama, and we find the probability of a tie
is just

(

12002
6001

)

.576001.436001. Using Stirling’s formula, we found
(

2n
n

)

≈ 22n/
√
�n. Thus, under these
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assumptions, the probability of a tie is approximately

212002√
� ⋅ 6001

⋅ .576001.436001 ≈ 1.877 ⋅ 10−54.

Note how widely different the probabilities are depending on our assumption of what is to be ex-
pected!

2.2. Stirling’s Formula and Convergence of Series.Another great application of Stirling’s for-
mula is to help us determine for whatx certain series converge. We have lots of powerful tests from
calculus for this purpose, such as the ratio, root and integral test; we review these inADD REF;
however, we can frequently avoid having to use these tests and instead use the simpler comparison
test by applying Stirling’s formula.

For our first example, let’s take

ex = 1 + x+
x2

2!
+

x3

3!
+ ⋅ ⋅ ⋅ =

∞
∑

n=0

xn

n!
.

We want to find out for whichx does it converge. Using the ratio test we would see that it converges
for any choice ofx. We could use the root test, but that requires us to know a little bit about the
growth ofn!; fortunately Stirling’s formula gives us this information. We have

n!1/n ≈
(

nne−n
√
2�n

)1/n

=
n

e
;

as this tends to infinity we find(1/n!)1/n tends to zero, and thus by the root test the radius of conver-
gence is infinity (i.e., the series converges for allx).

While the above is a method to determine that the series forex converges for allx, it is quite
unsatisfying. In addition to using Stirling’s formula we also had to use the powerful root test. Is it
possible to avoid using the root test, and determine that theseries always convergesjust by using
Stirling’s formula? The answer is yes, as we now show.

We wish to show the series forex converges for allx. The idea is thatn! grows so rapidly that,
no matter whatx we take,xn/n! rapidly tends to zero. If we can show that, for alln sufficiently
large,∣xn/n!∣ < r(x) for somer(x) less than 1, then the series forex converges by the comparison
test; we wroter(x) to emphasize that the bound may depend onx. Explicitly, let’s say our inequality
holds for alln ≥ N(x). To determine if a series converges, it is enough to study thetail, as the finite
number of summands in the beginning don’t affect convergence. We have

∣

∣

∣

∣

∣

∣

∞
∑

n=N(x)

xn

n!

∣

∣

∣

∣

∣

∣

≤
∞
∑

n=N(x)

r(x)n =
r(x)N(x)

1− r(x)
.

We are thus reduced to proving that∣xn/n!∣ ≤ r(x) < 1 for all n large for somer(x) < 1. Plugging
in Stirling’s formula, we see thatxn/n! looks like

xn

nne−n
√
2�n

=
1√
2�n

(ex

n

)n

≤
(ex

n

)n

.

For any fixedx, oncen ≥ 2ex+ 1 then∣ex/n∣ ≤ 1/2, which completes the proof.

MOVE THIS TO ANOTHER CHAPTER, SAY THE GENERATING FUNCTION CH AP-
TER. We can use this type of argument to prove many important series converge. Let’s consider the
moment generating function of the standard normal (for the definition and properties of the moment
generating function, see §ADD REF). The moments of the standard normal are readily determined;
thenth moment is

�n =

∫ ∞

−∞
xn 1√

2�
e−x2/2dx =

{

(2m− 1)!! if n = 2m is even

0 if n = 2m+ 1 is odd,
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where the double factorial means take every other term untilyou reach 2 or 1. Thus4!! = 4 ⋅ 2,
5!! = 5 ⋅ 3 ⋅ 1, 6!! = 6 ⋅ 4 ⋅ 2 and so on. The moment generating function,MX(t), is

MX(t) =

∞
∑

n=0

�n

n!
tn =

∞
∑

m=0

(2m− 1)!!

(2m)!
t2m.

There are many ways to do the algebra. We need to understand how rapidly (2m− 1)!!t2m/(2m)! is
decaying. We have

(2m− 1)!!

(2m)!
=

(2m− 1)!!

(2m)!! ⋅ (2m− 1)!!
=

1

2m ⋅ (2m− 2) ⋅ ⋅ ⋅2 =
1

2mm!
.

Thus

MX(t) =

∞
∑

m=0

t2m

2mm!
=

(t2/2)m

m!
= et

2/2.

2.3. From Stirling to the Central Limit Theorem. This section becomes a bit technical, and can
safely be skipped; however, if you spend the time mastering it you’ll learn some very useful tech-
niques for attacking and estimating probabilities, and seea very common pitfall and learn how to
avoid it.

The Central Limit Theorem is one of the gems of probability, saying the sum of nice independent
random variables converges to being normally distributed as the number of summands grows. As
a powerful application of Stirling’s formula, we’ll show itimplies the Central Limit Theorem for
the special case when the random variablesX1, . . . , X2N are all binomial random variables. It is
technically easiest if we normalize these by

Prob(Xi = n) =

⎧



⎨



⎩

1/2 if n = 1

1/2 if n = −1

0 otherwise.

(3)

Think of this as a 1 for a head and a -1 for a tail; this normalization allows us to say that the expect
value of the sumX1+ ⋅ ⋅ ⋅+X2N = 0. As we may interpretXi as whether or not theith toss is a head
or a tail, this is the expected number of heads (which is zero).

LetX1, . . . , X2N be independent binomial random variables with probabilitydensity given by (3).
Then the mean is zero as1 ⋅ (1/2) + (−1) ⋅ (1/2) = 0, and the variance of each is

�2 = (1− 0)2 ⋅ 1
2
+ (−1 − 0)2 ⋅ 1

2
= 1.

Finally, we set
S2N = X1 + ⋅ ⋅ ⋅+X2N .

Its mean is zero. This follows from

E[S2N ] = E[X1] + ⋅ ⋅ ⋅+ E[X2N ] = 0 + ⋅ ⋅ ⋅+ 0 = 0.

Similarly, we see the variance ofS2N is 2N . We therefore expectS2N to be on the order of 0, with
fluctuations on the order of

√
2N .

Let’s consider the distribution ofS2N . We first note that the probability thatS2N = 2k+1 is zero.
This is becauseS2N equals the number of heads minus the number of tails, which isalways even: if
we havek heads and2N − k tails thenS2N equals2N − 2k.

The probability thatS2N equals2k is just
(

2N
N+k

)

(1
2
)N+k(1

2
)N−k. This is because forS2N to equal

2k, we need2k more1’s (heads) than−1’s (tails), and the number of1’s and−1’s add to2N . Thus
we haveN +k heads (1’s) andN −k tails (−1’s). There are22N strings of1’s and−1’s,

(

2N
N+k

)

have
exactlyN + k heads andN − k tails, and the probability of each string is(1

2
)2N . We have written

(1
2
)N+k(1

2
)N−k to show how to handle the more general case when there is a probability p of heads

and1− p of tails.
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We now use Stirling’s Formula to approximate
(

2N
N+k

)

. We find

(

2N

N + k

)

≈ (2N)2Ne−2N
√
2� ⋅ 2N

NNe−N
√
2�NNNe−N

√
2�N

=
(2N)2N

(N + k)N+k(N − k)N−k

√

N

�(N + k)(N − k)

=
22N√
�N

1

(1 + k
N
)N+ 1

2
+k(1− k

N
)N+ 1

2
−k

.

The rest of the argument is just doing some algebra to show that this converges to a normal distri-
bution. There is, unfortunately, a very common trap people frequently fall into when dealing with
factors such as these. To help you avoid these in the future, we’ll describe this common error first
and then finish the proof.

We would like to use the definition ofex from ADD REF to deduce that asN → ∞,
(

1 + w
N

)N ≈
ew; unfortunately, we must be a little more careful as the values ofk we consider grow withN . For
example, we might believe that(1 + k

N
)N → ek and(1− k

N
)N → e−k, so these factors cancel. Ask

is small relative toN we may ignore the factors of1/2, and then say

(

1 +
k

N

)k

=

(

1 +
k

N

)N ⋅ k
N

→ ek
2/N ;

similarly, (1 − k
N
)−k → ek

2/N . Thus we would claim (and we shall see later in Lemma 2.1 that this
claim is in error!) that

(

1 +
k

N

)N+ 1

2
+k (

1− k

N

)N+ 1

2
−k

→ e2k
2/N .

We show that
(

1 + k
N

)N+ 1

2
+k (

1− k
N

)N+ 1

2
−k → ek

2/N . The importance of this calculation is that
it highlights how crucialratesof convergence are. While it is true that the main terms of(1± k

N
)N are

e±k, the error terms (in the convergence) are quite important, and yield large secondary terms when
k is a power ofN . What happens here is that the secondary terms from these twofactors reinforce
each other. Another way of putting it is that one factor tendsto infinity while the other tends to zero.
Remember that∞ ⋅ 0 is one of our undefined expressions; it can be anything depending on how
rapidly the terms grow and decay; we’ll say more about this atthe end of the section.

The short of it is that we cannot, sadly, just use
(

1 + w
N

)N ≈ ew. We need to be more careful. The
correct approach is to take the logarithms of the two factors, Taylor expand the logarithms, and then
exponentiate. This allows us to better keep track of the error terms.

Before doing all of this, we need to know roughly what range ofk will be important. As the
standard deviation is

√
2N , we expect that the onlyk’s that really matter are those within a few

standard deviations from 0; equivalently,k’s up to a bit more than
√
2N . We can carefully quantify

exactly how large we need to studyk by using Chebyshev’s Inequality (seeADD REF). From this
we learn that we need only studyk where∣k∣ is at mostN

1

2
+�. This is because the standard deviation

of S2N is
√
2N . We then have

Prob(∣S2N − 0∣ ≥ (2N)1/2+�) ≤ 1

(2N)2�
,

because(2N)1/2+� = (2N)�StDev(S2N ). Thus it suffices to analyze the probability thatS2N = 2k

for ∣k∣ ≤ N
1

2
+ 1

9 .
We now come to the promised lemma which tells us what the rightvalue is for the product; the

proof will show us how we should attack problems like this in general.
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Lemma 2.1.For any� ≤ 1
9
, forN → ∞ with k ≤ (2N)1/2+�, we have

(

1 +
k

N

)N+ 1

2
+k (

1− k

N

)N+ 1

2
−k

−→ ek
2/NeO(N−1/6).

Proof: Recall that for∣x∣ < 1,

log(1 + x) =

∞
∑

n=1

(−1)n+1xn

n
.

As we are assumingk ≤ (2N)1/2+�, note that any term below of sizek2/N2, k3/N2 or k4/N3 will
be negligible. Thus if we define

Pk,N :=

(

1 +
k

N

)N+ 1

2
+k (

1− k

N

)N+ 1

2
−k

then using the big-Oh notation fromADD REF we find

logPk,N =

(

N +
1

2
+ k

)

log

(

1 +
k

N

)

+

(

N +
1

2
− k

)

log

(

1− k

N

)N+ 1

2
−k

=

(

N +
1

2
+ k

)(

k

N
− k2

2N2
+O

(

k3

N3

))

+

(

N +
1

2
− k

)(

− k

N
− k2

2N2
+O

(

k3

N3

))

=
2k2

N
− 2

(

N +
1

2

)

k2

2N2
+O

(

k3

N2
+

k4

N3

)

=
k2

N
+O

(

k2

N2
+

k3

N2
+

k4

N3

)

.

As k ≤ (2N)1/2+�, for � < 1/9 the big-Oh term is dominated byN−1/6, and we finally obtain that

Pk,N = ek
2/NeO(N

−1/6),

which completes the proof. □

We now finish the proof ofS2N converging to a Gaussian. Combining Lemma 2.1 with (4) yields
(

2N

N + k

)

1

22N
≈ 1√

�N
e−k2/N .

The proof of the Central Limit Theorem in this case is completed by some simple algebra. We are
studyingS2N = 2k, so we should replacek2 with (2k)2/4. Similarly, since the variance ofS2N is
2N , we should replaceN with (2N)/2. While these may seem like unimportant algebra tricks, it
is very useful to gain an ease at doing this. By doing such small adjustments we make it easier to
compare our expression with its conjectured value. We find

Prob(S2N = 2k) =

(

2N

N + k

)

1

22N
≈ 2

√

2� ⋅ (2N)
e−(2k)2/2(2N).

RememberS2N is never odd. The factor of2 in the numerator of the normalization constant above
reflects this fact, namely the contribution from the probability that S2N is even is twice as large as
we would expect, because it has to account for the fact that the probability thatS2N is odd is zero.
Thus the above looks like a Gaussian with mean0 and variance2N . ForN large such a Gaussian
is slowly varying, and integrating from2k to2k+2 is basically2/

√

2�(2N) ⋅ exp−(2k)2/2(2N). □

As our proof was long, let’s spend some time going over the keypoints. We were fortunate in that
we had an explicit formula for the probability, and that formula involved binomial coefficients. We
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used Chebyshev’s inequality to limit which probabilities we had to investigate. We then expanded
using Stirling’s formula, and did some algebra to make our expression look like a Gaussian.

For a nice challenge: Can you generalize the above argumentsto handle the case whenp ∕= 1
2
.

2.4. Integral Test and the Poor Man’s Stirling. Using the integral test from calculus, we’ll show
that

nne−n ⋅ e ≤ n! ≤ nne−n ⋅ en.

As we’ve remarked throughout the book, whenever we see a formula our first response should be
to test its reasonableness. Before going through the proof,let’s compare this to Stirling’s formula,
which saysn! ≈ nne−n

√
2�n. We correctly identify the main factor ofnne−n, but we miss the factor

of
√
2�n. It is interesting to note how much we miss by. Our lower boundis juste while our upper

bound isen. If we take the geometric mean of these two (recall the geometric mean ofx andy is√
xy),

√
e ⋅ en, we gete

√
n. This is approximately2.718

√
n, which is remarkably close to the true

answer, which is
√
2�n ≈ 2.5063

√
n.

The gist of the above is: our answer is quite close. The arguments below are fairly elementary.
The involve the integral test from calculus, and the Taylor series expansion oflog(1 + x), which is
justx− x2

2
+ x3

3
− ⋅ ⋅ ⋅ . While the algebra grows a bit at the end, it’s important not to let that distract

from the main idea, which is that we can approximate a sum verywell and fairly easily through an
integral. The difficulty is when we want to quantify how closethe integral is to our sum; this requires
us to do some slightly tedious book-keeping. We go through the details of this proof to highlight how
you can use these techniques to attack problems. We’ll recapthe arguments afterwards, emphasizing
what you should take-away from all of this.

Now, to the proof! LetP = n! (we use the letterP becauseproductstarts withP ). It is very hard
to look at a product and have a sense of what it’s saying. This is in part because our experience in
previous classes is always with sums, not products. For example, in calculus we encounter Riemann
sums all the time; I’ve never seen a Riemann product!

We thus want to convert our problem onn! to a related one where we have more experience. The
natural thing to do is to take the logarithm of both sides. Thereason is that the logarithm of a product
is the sum of the logarithms. This is excellent general advice: you should have a Pavlovian response
to take a logarithm whenever you run into a product.

Returning to our problem, we have

logP = log n! = log 1 + log 2 + ⋅ ⋅ ⋅+ logn =

n
∑

k=1

log k.

We want to approximate this sum with an integral. Note that iff(x) = log x then this function is
increasing forx ≥ 1. We claim this means

∫ n

1

log tdt ≤
n
∑

k=1

log k ≤
∫ n+1

2

log tdt.

This follows by looking at the upper and lower sums; note thisis the same type of argument as you’ve
seen in proving the Fundamental Theorem of Calculus (the oldupper and lower sum approach); see
Figure 2. This is probably the most annoying part of the argument, getting the bounds for the integrals
correct.

We now come to the hardest part of the argument. We need to knowwhat is the integral oflog t.
This is not one of the standard functions, but it turns out to have a relatively simple anti-derivative,
namelyt log t − t. While it is very hard to find a typical anti-derivative, it’svery straightforward
to check and make sure it works – all we have to do is take the derivative. We can now use this to
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FIGURE 2. Lower and upper bound forlogn! whenn = 10.

approximatelog n!. Note we only make the upper integral larger if we start it at 1and not 2. We find

(t log t− t)
∣

∣

∣

n

t=1
≤ log n! ≤ (t log t− t)

∣

∣

∣

n+1

t=1

n log n− n+ 1 ≤ log n! ≤ (n+ 1) log(n+ 1)− (n + 1) + 1.

We’ll study the lower bound first. From

n logn− n+ 1 ≤ logn!,

we find after exponentiating that

en logn−n+1 = nne−n ⋅ e ≤ n!.

What about the upper bound? We have

(n+ 1) log(n+ 1)− n = (n + 1) log

(

n

(

1 +
1

n

))

− n

= (n + 1) logn+ (n+ 1) log

(

1 +
1

n

)

− n

= n log n+ log n− n+ (n− 1)

(

1

n
− 1

2n2
+

1

3n2
− ⋅ ⋅ ⋅

)

≤ n log n+ log n− n+ 1,

where the last follows from the fact that we have an alternating series, and so truncating after a
positive term overestimates the sum. Exponentiating gives

n! ≤ en logn−n+logn+1 = nne−n ⋅ en.
Putting the two bounds together, we’ve shown that

nne−n ⋅ e ≤ n! ≤ nne−n ⋅ en,
which is what we wanted to show. Note our arguments were entirely elementary, and introduce many
nice and powerful techniques that can be used for a variety ofproblems. We replace a sum with an
integral. We replace a complicated function,log(n + 1), with its Taylor expansion. We note that
for an alternating series, if we truncate after a positive term we over-estimate. Finally, and most
importantly, we’ve seen how to get a handle on products – we should take logarithms and convert the
product to a sum!

2.5. Elementary Approaches towards Stirling’s Formula. In the last section we used the integral
test to get very good upper and lower bounds forn!. While the bounds are great, we did have to use
calculus twice. Once was in applying the integral test, and the other was being inspired to see that
the anti-derivative oflog t is t log t− t; while it is easy to check this by differentiation, if you haven’t
seen such relations before it looks like it is a real challenge to find.

In this section we’ll present an entirely elementary approach to estimates of Stirling’s formula.
We’ll mostly avoid using calculus, instead just counting ina clever manner.You may safely skip
this section; however, the following arguments highlight agreat way to look at estimation, and these
ideas will almost surely be useful for a variety of other problems that you’ll encounter over the years.
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2.5.1. Lower bounds towards Stirling, I.One of the most useful skills you can develop is the knack
for how to approximate well a very complicated quantity. While we can often resort to a computer for
brute force computations to get a feel for the answer, there are times when the parameter dependence
is so wild that this is not realistic. Thus, it is very useful to learn how to look at a problem and glean
something about the behavior as parameters change.

Stirling’s formula provides a wonderful testing ground forsome of these methods. Remember it
says thatn! ∼ nne−n

√
2�n asn tends to infinity. We’ve already seen how to get a reasonable upper

bound without too much work; what about a good lower bound? Our first attempt (seeADD REF)
was quite poor; now we show a truly remarkable approach that leads to a very good lower bound
with very little work.

To simplify the presentation, we assume thatn = 2N for someN ; if we don’t make this assump-
tion, we need to use floor functions throughout, or do a bit more arguing (which we’ll do later). Using
the floor function makes the formulas and the analysis look more complicated, and the key insight,
the main idea, is now buried in unenlightening algebra whichis required to make the statements
true. We prefer to concentrate on this special case as we can then highlight the method without being
bogged down in details.

The idea is to usedyadic decompositions. This is a powerful idea, and is used throughout math-
ematics. We study the factors ofn! in the intervalsI1 = (n/2, n], I2 = (n/4, n/2], I3 = (n/8, n/4],
. . . , IN = (1, 2). Note onIk that each of then/2k factors is at leastn/2k. Thus

n! =

N
∏

k=1

∏

m∈Ik

m

≥
N
∏

k=1

( n

2k

)n/2k

= nn/2+n/4+n/8+⋅⋅⋅+n/2N2−n/24−n/48−n/8 ⋅ ⋅ ⋅ (2N)−n/2N .

Let’s look at each factor above slowly and carefully. Note the powers ofn almostsum ton; they
would if we just addn/2N = 1 (since we are assumingn = 2N ). Remember, though, thatn = 2N ;
there is thus no harm in multiplying by(n/2N)n/2

N
as this is just11. We now haven! is greater than

nn/2+n/4+n/8+⋅⋅⋅+n/2N+n/2N2−n/24−n/48−n/8 ⋅ ⋅ ⋅ (2N)−n/2N (2)−n/2N .

Thus then-term givesnn. What of the sum of the powers of2? That’s just

2−n/24−n/48−n/8 ⋅ ⋅ ⋅ (2N)−n/2N ⋅ 2−n/2N = 2−n(1/2+2/4+3/8+⋅⋅⋅N/2N)2−2N/2N

> 2−n(
∑N

k=0
k/2k)

≤ 2−n(
∑

∞

k=0
k/2k)2−1

= 2−2n−1 =
1

2
4−n.

To see this, we use the following wonderful identity:
∞
∑

k=0

kxk =
x

(1− x)2
;

for a proof, see the section on differentiating identitiesADD REF.
Putting everything together, we find

n! ≥ 1

2
nn−14−n,

which compares favorably to the truth, which isnne−n.

As with many things in life, we can get a better result if we arewilling to do a little more work.
For example, consider the intervalI1 = (n/2, n]. We can pair elements at the beginning and the end:
n andn/2+1, n−1 andn/2+2, n−2 andn/2+3 and so on until3n/4 and3n/4+1; for example,
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if we have the interval(8, 16] then the pairs are: (16,9), (15,10), (14,11), and (13,12). We now use
one of the gold standard problems from calculus: if we want tomaximizexy given thatx + y = L
then the maximum occurs whenx = y = L/2. This is frequently referred to as the Farmer Bob (or
Brown) problem, and is given the riveting interpretation that if we are trying to find the rectangular
pen that encloses the maximum area for his cows to graze giventhat the perimeter isL, then the
answer is a square. Thus of all our pairs, the one that has the largest product is3n/4 with 3n/4 + 1,
and the smallest isn andn/2 + 1, which has a product exceedingn2/2. We therefore decrease the
product of all elements inI1 by replacing each product with

√

n2/2 = n/
√
2. Thus a little thought

gives us that

n ⋅ (n− 1) ⋅ ⋅ ⋅ 3n
4

⋅ ⋅ ⋅
(n

2
+ 1
)

⋅ n
2

≥
(

n√
2

)n/2

=

(

n
√
2

2

)n/2

,

a nice improvement over(n/2)n/2, and this didn’t require too much additional work!
We now do a similar analysis onI2; again the worst case is from the pairn/2 andn/4 + 1 which

has a product exceedingn2/8. Arguing as before, we find

∏

m∈I2

m ≥
(

n√
8

)n/4

=

(

n

2
√
2

)n/4

=

(

n
√
2

4

)n/4

.

At this point hopefully the pattern is becoming clear. We have almost exactly what we had before;
the only difference is that we have an

√
2 in the numerator each time instead of just ann. This leads

to very minor changes in the algebra, and we find

n! ≥ 1

2
(n
√
2)n4−n = nn(2

√
2)−n.

Notice how close we are tonne−n, as2
√
2 ≈ 2.82843, which is just a shade larger thane ≈ 2.71828.

It’s amazing how close our analysis has brought us to Stirling; we’re in striking distance of it in fact!

We end this section on elementary questions with a few thingsfor you to try.

Can you modify the above argument to get a reasonably good upper bound forn!?

After reading the above argument, you should be wondering exactly how far can we push things.
What if we didn’t do a dyadic decomposition; what if instead we did say a triadic:(2n/3, n],
(4n/9, 2n/3], . . . . Or perhaps fix ar and look at(rn, n], (r2n, rn], . . . for some universal constant
r. Using this and the pairing method described above, what is the largest lower bound attainable. In
other words, what value ofr maximizes the lower bound for the product.

2.5.2. Lower bounds towards Stirling, II.We continue seeing just how far we can push elementary
arguments. Of course, in some sense there is no need to do this; there are more powerful approaches
that yield better results with less work. As this is true, we’re left with the natural, nagging question:
why spend time reading this?

There are several reasons for giving these arguments. Even though they are weaker than what
we can prove, they need less machinery. To prove Stirling’s formula, or good bounds towards it,
requires results from calculus, real and complex analysis;it’s nice to see what we can do just from
basic properties of the integers. Second, there are numerous problems where we just need some
simple bound. By carefully going through these pages, you’ll get a sense of how to generate such
elementary bounds, which we hope will help you in something later in life.

Again, the rest of the material in this subsection is advanced and not needed in the rest of the book.
You may safely skip it, but we urge you to at least skim these arguments.

We now generalize our argument showing thatn! > (n/4)n for n = 2N to any integern; in other
words, it was harmless assumingn had the special formn = 2N . Suppose2k < n < 2k+1. Then we
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can writen = 2k +m for some positivem < 2k, and use our previous result to conclude:

n! = n ⋅ (n− 1) ⋅ ⋅ ⋅ (2k + 1) ⋅ (2k)! > (2k)m ⋅ (2k)! > (2k)m ⋅ (2k/4)2k .
Our goal, then, is to prove that this quantity is greater than(n/4)n. Here’s one possible method:
write

2km ⋅ (2k/4)2k = (n/4)�.

If � > n, then we’re done. Taking logarithms, we find:

k ⋅m ⋅ log 2 + 2k ⋅ log(2)(k − 2) = �(log(n)− 2 log 2).

Solving for� gives

� =
k ⋅m ⋅ log 2 + 2k ⋅ log(2)(k − 2)

log(n)− 2 log 2
.

Remember, we want to show that� > n. Substituting in our prior expressionn = 2k + m, this is
equivalent to showing

k ⋅m ⋅ log 2 + 2k ⋅ log(2)(k − 2)

log(2k +m)− 2 log 2
> 2k +m.

So long as2k+m > 4, the denominator is positive, so we may multiply through without altering the
inequality:

log(2)(k(2k +m)− 2k+1) > (2k +m) log(2k +m)− log(2)2k+1 − 2m log 2

With a bit of algebra, we can turn this into a nicer expression:

log(2k)(2k +m) > (2k +m)(log(2k +m)− 2m log 2

2m log 2 > (2k +m) log(1 +m/2k)

2 log 2 > (1 + 2k/m) log(1 +m/2k).

Let’s write t = m/2k. Then showing that� > n is equivalent to showing

2 log 2 > (1 + 1/t) log(1 + t)

for t ∈ (0, 1). Why (0, 1)? Since we know0 < m < 2k, then0 < m/2k < 1, so t is always
between 0 and 1. While we’re only really interested in whether this equation holds whent is of the
form m/2k, if we can prove it for allt in (0,1), then it will automatically hold for the special values
we care about. Lettingf(t) = (1 + 1/t) log(1 + t), we seef ′(t) = (t − log(1 + t))/t2, which is
positive for all t > 0 (fun exercise: show that the limit ast approaches 0 off ′(t) is 1/2). Since
f(1) = 2 log 2, we see thatf(t) < 2 log 2 for all t ∈ (0, 1). Therefore� > n, son! > (n/4)n for all
integern.

2.5.3. Lower bounds towards Stirling, III. Again, this subsectionmay safely be skipped; it’s the last
in our chain of seeing just how far elementary arguments can be pushed. Reading this is a great way
to see how to do such arguments, and if you continue in probability and mathematics there is a good
chance you’ll have to argue along these lines some day.

We’ve given a few proofs now showing thatn! > (n/4)n for any integern. However, we know
that Stirling’s formula tells us thatn! > (n/e)n. Why have we been messing around with 4, then,
and where doese come into play? The following sketch doesn’tprovethatn! > (n/e)n, but hints
suggestively thate might come enter into our equations.

In our previous arguments we’ve takenn and then broken the number line up into the following
intervals: {[n, n/2), [n/2, n/4), . . . }. The issue with this approach is that[n, n/2) is a pretty big
interval, so we lose a fair amount of information by approximatingn ⋅ (n− 1) ⋅ ⋅ ⋅ n

2
by (n/2)n/2. It

would be better if we could use a smaller interval. Therefore, let’s think about using some ratior < 1,
and supposen = (1/r)k. We would like to divide the number line into {[n, rn), [rn, r2n), . . . },
although the problem we run into is thatrℓn isn’t always going to be an integer for every integer
ℓ < k. Putting that issue aside for now (this is why this isn’t a proof!), let’s proceed as we typically
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do: having broken up the number line, we want to say thatn! is greater than the product of the
smallest number in each interval raised to the number of integers in that interval:

n! > (rn)(1−r)n(r2n)r⋅(1−r)n ⋅ (r3n)r2⋅(1−r)n ⋅ ⋅ ⋅ (rk ⋅ n)rk−1⋅(1−r)n.

Sincerk+mn < 1 for all m > 1, we can extend this product to infinity:

n! > (rn)(1−r)n(r2n)r⋅(1−r)n ⋅ (r3n)r2⋅(1−r)n ⋅ ⋅ ⋅ (rk ⋅ n)rk−1⋅(1−r)n ⋅ ⋅ ⋅ .
Let’s simplify this a bit. Looking at then terms, we have

n(1−r+r−r2+r2−⋅⋅⋅ )n = nn

because the sum telescopes. Looking at ther terms we see

rn(1−r)(1+2r+3r2+⋅⋅⋅ ) = rn(1−r)/r(r+2r2+3r3+⋅⋅⋅ )

= rn(1−r)/r⋅r/(1−r)2

= rn/(1−r),

where in the third step we use the identity
∞
∑

k=1

krk =
r

(1− r)2
;

remember we used this identity earlier as well! Combining the two terms, we have

n! > (r1/(1−r)n)n.

To make this inequality as strong as possible, we want to find the largest possible value ofr1/(1−r)

for r ∈ (0, 1). Substitutingz = 1/(1− r), this becomes: what is the limit asz → ∞ of (1− 1/z)z?
We’ve encountered this limit before in SectionREFERENCE, and the answer is1/e (of course!).
Thus we see that this argument gives a heuristic proof thatn! > (n/e)n.

2.6. Stationary Phase and Stirling. Any result as important as Stirling’s formula deserves multiple
proofs. The proof below is a modification from Eric W. Weisstein’s post “Stirling’s Approximation"
on MathWorld–A Wolfram Web Resource; see

http://mathworld.wolfram.com/StirlingsApproximation.html.

To prove the theorem, we’ll use the identity

n! = Γ(n+ 1) =

∫ ∞

0

e−xxn dx. (4)

A review of the Gamma function, including a proof of this identity, can be foundADD REF.

In order to get an approximation, we would like to find where the integrand is largest. Because of
the exponential factor in the integrand, we will take the logarithm before differentiating. We can do
this as maximizing a positive functionf(x) is equivalent to maximizinglog f(x). There are many
useful versions of this principle: in calculus it is often easier to minimize the square of the distance
rather than the distance (as this avoids the square-root function).

We find
d

dx
log(e−xxn) =

d

dx
(−x+ n log x) =

n

x
− 1.

The maximum value of the integrand is therefore seen to occuronly for x = n. The exponential
factor shrinks much more quickly than the growth ofxn, so weassumethatx = n+� with ∣�∣ much
smaller thenn. We are not going to say anything further about this assumption; the purpose here is
to provide another argument in support of Stirling’s formula, not to provide the proof in all its glory
and gory. We have

log x = log(n + �) = log n+ log
(

1 +
�

n

)

.
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We now expand the second term using the Taylor series forlog(1 + x) to find

log(n + �) = log n+
�

n
− 1

2

�2

n2
+ ⋅ ⋅ ⋅ .

Therefore

log(xne−x) = n log x− x ≈ n

(

log n+
�

n
− 1

2

�2

n2

)

− (n + �)

= n log n− n− �2

2n2
.

It follows that

xne−x ≈ exp

(

n logn− n− �2

2n2

)

= nne−n ⋅ exp
(

− �2

2n2

)

.

Returning to the integral expression forn! of (4), we have

n! =

∫ ∞

0

e−xxn dx

≈
∫ ∞

−n

nne−n ⋅ exp
(

− �2

2n2

)

d�

≈ nne−n ⋅
∫ ∞

−∞
exp

(

− �2

2n2

)

d�.

In the last step, we rely on the fact that the integrand is verysmall for� < −n. The integral is the
the same as the one we would obtain in integrating a normal density with mean0 and variance

√
n.

Its value is
√
2�n. We thus have

n! ≈ nne−n
√
2�n,

which is the statement of the theorem. □

2.7. The Central Limit Theorem and Stirling. We end this chapter with one more proof of Stir-
ling’s formula. We continue our trend of needing more and more input. Our first proof was very
elementary, essentially just the integral test. The secondwas more complicated, needing the Gamma
function. Our final approach involves an application of the Central Limit Theorem, one of the gems
of probability. We prove the Central Limit Theorem inADD REF; if you haven’t seen the proof you
can go to that section, or take the result on faith for now and read up on it later.

The idea of the proof is to apply the Central Limit Theorem to asum of independent, identically
distributed Poisson random variables with parameter 1. We have an explicit formula for this proba-
bility, as a sum of appropriately normalized Poissonian random variables is itself Poissonian. We also
know what this probability is (or at least approximately is)by the Central Limit Theorem. Equating
the two gives Stirling’s formula.

Remember
(1) X has a Poisson distribution with parameter� means

Prob(X = n) =

{

�ne−�

n!
if n ≥ 0 is an integer

0 otherwise.

(2) If X1, . . . , XN are independent, identically distributed random variables with mean�, vari-
ance�2 and a little more (such as the third moment is finite, or the moment generating
function exists), thenX1 + ⋅ ⋅ ⋅+XN converges to being normally distributed with meann�
and variancen�2.

Let’s flesh out the details. An important and useful fact about Poisson random variables is that the
sum ofn independent identically distributed Poisson random variables with parameter� is a Poisson
random variable with parametern�. As the mass function for a Poisson random variableY with
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parameter� is Prob(Y = m) = �me−�/m! for m a non-negative integer and 0 otherwise. Thus the
probability density ofX1 + ⋅ ⋅ ⋅+Xn is

f(m) =

{

nme−n/m! if m is a non-negative integer

0 otherwise.

Forn large,X1+ ⋅ ⋅ ⋅+Xn (in addition to being a Poisson random variable with parametern) is by
the Central Limit Theorem approximately normal with meann ⋅ 1 and variancen (as the mean and
variance of a Poisson random variable with parameter� is � for each). We must be a bit careful due
to the discreteness of the values taken on byX1 + ⋅ ⋅ ⋅+Xn; however, a little inspection shows that
the Central Limit Theorem allows us to approximate the probability n− 1

2
≤ X1+ ⋅ ⋅ ⋅+Xn ≤ n+ 1

2
with

∫ n+ 1

2

n− 1

2

1√
2�n

exp
(

− (x− n)2 /2n
)

dx =
1√
2�n

∫ 1/2

−1/2

e−t2/2ndt.

As n is large, we may approximatee−t2/2n with the zeroth term of its Taylor series expansion about
t = 0, which is 1. Thus

Prob

(

n− 1

2
≤ X1 + ⋅ ⋅ ⋅+Xn ≤ n+

1

2

)

≈ 1√
2�n

⋅ 1 ⋅ 1,

where the second 1 is from the length of the interval; however, we can easily calculate the left hand
side, as this is just the probability our Poisson random variableX1+ ⋅ ⋅ ⋅+Xn with parametern takes
on the valuen; this isnne−n/n!. We thus find

nne−n

n!
≈ 1√

2�n
=⇒ n! ≈ nne−n

√
2�n.

One of the most common mistakes in this approach is forgetting that the Poisson is discrete and the
standard normal is continuous.Thus, to approximate the Poisson’s mass atn, we should integrate
the continuous density of the standard normal fromn− 1/2 to n + 1/2. It’s just fortuitous that, for
this problem, we get the same answer if we forget about the integral.
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