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Abstract

The Method of Least Squares is a procedure to determine the best fit line to data; the
proof uses calculus and linear algebra. The basic problem isto find the best fit straight
line y = ax + b given that, forn ∈ {1, . . . , N}, the pairs(xn, yn) are observed. The
method easily generalizes to finding the best fit of the form

y = a1f1(x) + ⋅ ⋅ ⋅+ cKfK(x); (0.1)

it is not necessary for the functionsfk to be linearly inx – all that is needed is thaty is to
be a linear combination of these functions.
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1 Description of the Problem

Often in the real world one expects to find linear relationships between variables. For example,
the force of a spring linearly depends on the displacement ofthe spring:y = kx (herey is
the force,x is the displacement of the spring from rest, andk is the spring constant). To test
the proposed relationship, researchers go to the lab and measure what the force is for various
displacements. Thus they assemble data of the form(xn, yn) for n ∈ {1, . . . , N}; hereyn is
the observed force in Newtons when the spring is displacedxn meters.
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Figure 1: 100 “simulated” observations of displacement andforce (k = 5).

Unfortunately, it is extremely unlikely that we will observe a perfect linear relationship.
There are two reasons for this. The first is experimental error; the second is that the underlying
relationship may not be exactly linear, but rather only approximately linear. (A standard
example is the force felt on a falling body. We initially approximate the force asF = mg with
g the acceleration due to gravity; however, this is not quite right as there is a resistive force
which depends on the velocity.) See Figure 1 for a simulated data set of displacements and
forces for a spring with spring constant equal to5.

The Method of Least Squares is a procedure, requiring just some calculus and linear alge-
bra, to determine what the “best fit” line is to the data. Of course, we need to quantify what
we mean by “best fit”, which will require a brief review of someprobability and statistics.

A careful analysis of the proof will show that the method is capable of great generaliza-
tions. Instead of finding the best fit line, we could find the best fit given byanyfinite linear
combinations of specified functions. Thus the general problem is given functionsf1, . . . , fK ,
find values of coefficientsa1, . . . , aK such that thelinear combination

y = a1f1(x) + ⋅ ⋅ ⋅+ aKfK(x) (1.1)

is the best approximation to the data.
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2 Probability and Statistics Review

We give a quick introduction to the basic elements of probability and statistics which we need
for the Method of Least Squares; for more details see [BD, CaBe, Du, Fe, Kel, LF, MoMc].

Given a sequence of datax1, . . . , xN , we define themean (or theexpected value) to be
(x1 + ⋅ ⋅ ⋅+ xN )/N . We denote this by writing a line abovex: thus

x =
1

N

N
∑

n=1

xn. (2.2)

The mean is the average value of the data.
Consider the following two sequences of data:{10, 20, 30, 40, 50}and{30, 30, 30, 30, 30}.

Both sets have the same mean; however, the first data set has greater variation about the mean.
This leads to the concept of variance, which is a useful tool to quantify how much a set of data
fluctuates about its mean. Thevariance1 of {x1, . . . , xN}, denoted by�2

x
, is

�2

x
=

1

N

N
∑

n=1

(xi − x)2; (2.3)

thestandard deviation�x is the square root of the variance:

�x =

√

√

√

⎷

1

N

N
∑

n=1

(xi − x)2. (2.4)

Note that if thex’s have units of meters then the variance�2

x
has units ofmeters2, and the

standard deviation�x and the meanx have units of meters. Thus it is the standard deviation
that gives a good measure of the deviations of thex’s around their mean, as it has the same
units as our quantity of interest.

There are, of course, alternate measures one can use. For example, one could consider

1

N

N
∑

n=1

(xn − x). (2.5)

Unfortunately this is a signed quantity, and large positivedeviations can cancel with large
negatives. In fact, the definition of the mean immediately implies the above is zero! This,
then, would be a terrible measure of the variability in data,as it is zero regardless of what the
values of the data are.

We can rectify this problem by using absolute values. This leads us to consider

1

N

N
∑

n=1

∣xn − x∣. (2.6)

1For those who know more advanced statistics, for technical reasons the correct definition of the sample
variance is to divide byN − 1 and notN .
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While this has the advantage of avoiding cancellation of errors (as well as having the same
units as thex’s), the absolute value function is not a good function analytically. It is not
differentiable. This is primarily why we consider the standard deviation (the square root of
the variance) – this will allow us to use the tools from calculus.

We can now quantify what we mean by “best fit”. If we believey = ax+b, theny−(ax+b)
should be zero. Thus given observations

{(x1, y1), . . . , (xN , yN)}, (2.7)

we look at
{y1 − (ax1 + b), . . . , yN − (axN + b)}. (2.8)

The mean should be small (if it is a good fit), and the sum of squares of the terms will measure
how good of a fit we have.

We define

E(a, b) :=
N
∑

n=1

(yn − (axn + b))2 . (2.9)

Large errors are given a higher weight than smaller errors (due to the squaring). Thus our pro-
cedure favors many medium sized errors over a few large errors. If we used absolute values to
measure the error (see equation (2.6)), then all errors are weighted equally; however, the ab-
solute value function is not differentiable, and thus the tools of calculus become inaccessible.

Remark 2.1 (Choice of how to measure errors). As the point is so important, it is worth
looking at one more time. There are three natural candidatesto use in measuring the error
between theory and observation:

E1(a, b) =
N
∑

n=1

(yi − (axi + b)) , (2.10)

E2(a, b) =

N
∑

n=1

∣yi − (axi + b)∣ (2.11)

and

E3(a, b) =

N
∑

n=1

(yi − (axi + b))2 . (2.12)

The problem with(2.10)is that the errors are signed quantities, and positive errors can cancel
with negative errors. The problem with(2.11)is that the absolute value function is not differ-
entiable, and thus the tools and results of calculus are unavailable. The problem with(2.12)
is that errors are not weighted equally: large errors are given significantly more weight than
smaller errors. There are thus problems with all three. Thatsaid, the problems with(2.12)
is not so bad when compared to its advantages, namely that errors cannot cancel and that
calculus is available. Thus, most people typically use(2.12)and measure errors by sums of
squares.
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3 The Method of Least Squares

Given data{(x1, y1), . . . , (xN , yN)}, we defined the error associated to sayingy = ax+ b by

E(a, b) :=

N
∑

n=1

(yn − (axn + b))2 . (3.13)

Note that the error is a function of two variables, the unknown parametersa andb.
The goal is to find values ofa andb that minimize the error. In multivariable calculus we

learn that this requires us to find the values of(a, b) such that the gradient ofE with respect
to our variables (which area andb) vanishes; thus we require

∇E =

(

∂E

∂a
,
∂E

∂b

)

= (0, 0), (3.14)

or
∂E

∂a
= 0,

∂E

∂b
= 0. (3.15)

Note we do not have to worry about boundary points: as∣a∣ and∣b∣ become large, the fit will
clearly get worse and worse. Thus we do not need to check on theboundary.

DifferentiatingE(a, b) yields

∂E

∂a
=

N
∑

n=1

2 (yn − (axn + b)) ⋅ (−xn)

∂E

∂b
=

N
∑

n=1

2 (yn − (axn + b)) ⋅ (−1). (3.16)

Setting∂E/∂a = ∂E/∂b = 0 (and dividing by -2) yields

N
∑

n=1

(yn − (axn + b)) ⋅ xn = 0

N
∑

n=1

(yn − (axn + b)) = 0. (3.17)

Note we can divide both sides by -2 as it is just a constant; we cannot divide byxi as that
varies withi.

We may rewrite these equations as
(

N
∑

n=1

x2

n

)

a+

(

N
∑

n=1

xn

)

b =

N
∑

n=1

xnyn

(

N
∑

n=1

xn

)

a +

(

N
∑

n=1

1

)

b =

N
∑

n=1

yn. (3.18)
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We have obtained that the values ofa andb which minimize the error (defined in (3.13))
satisfy the following matrix equation:

⎛

⎝

∑

N

n=1
x2

n

∑

N

n=1
xn

∑

N

n=1
xn

∑

N

n=1
1

⎞

⎠

⎛

⎝

a

b

⎞

⎠ =

⎛

⎝

∑

N

n=1
xnyn

∑

N

n=1
yn

⎞

⎠ . (3.19)

We need a fact from linear algebra. Recall the inverse of a matrix A is a matrixB such

thatAB = BA = I, whereI is the identity matrix. IfA =

(

� �
 �

)

is a2×2 matrix where

detA = �� − � ∕= 0, thenA is invertible and

A−1 =
1

�� − �

(

� −
−� �

)

. (3.20)

In other words,AA−1 =

(

1 0
0 1

)

here. For example, ifA =

(

1 2
3 7

)

thendetA = 1 and

A−1 =

(

7 −2
−3 1

)

; we can check this by noting (through matrix multiplication) that

(

1 2
3 7

)(

7 −2
−3 1

)

=

(

1 0
0 1

)

. (3.21)

We can show the matrix in (3.19) is invertible (so long as at least two of thexn’s are
distinct), which implies

⎛

⎝

a

b

⎞

⎠ =

⎛

⎝

∑

N

n=1
x2

n

∑

N

n=1
xn

∑

N

n=1
xn

∑

N

n=1
1

⎞

⎠

−1 ⎛

⎝

∑

N

n=1
xnyn

∑

N

n=1
yn

⎞

⎠ . (3.22)

Denote the matrix from (3.19) byM . The determinant ofM is

detM =
N
∑

n=1

x2

n
⋅

N
∑

n=1

1−
N
∑

n=1

xn ⋅
N
∑

n=1

xn. (3.23)

As

x =
1

N

N
∑

n=1

xn, (3.24)

we find that

detM = N
N
∑

n=1

x2

n
− (Nx)2

= N2

(

1

N

N
∑

n=1

x2

n
− x2

)

= N2 ⋅ 1

N

N
∑

n=1

(xn − x)2, (3.25)
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where the last equality follows from simple algebra. Thus, as long as all thexn are not equal,
detM will be non-zero andM will be invertible. Using the definition of variance, we notice
the above could also be written as

detM = N2�2

x
. (3.26)

Thus we find that, so long as thex’s are not all equal, the best fit values ofa and b are
obtained by solving a linear system of equations; the solution is given in(3.22).

We rewrite (3.22) in a simpler form. Using the inverse of the matrix and the definition of
the mean and variance, we find

⎛

⎝

a

b

⎞

⎠ =
1

N2�2
x

(

N −Nx

−Nx
∑

N

n=1
x2

n

)

⎛

⎝

∑

N

n=1
xnyn

∑

N

n=1
yn

⎞

⎠ . (3.27)

Expanding gives

a =
N
∑N

n=1 xnyn −Nx
∑N

n=1 yn
N2�2

X

b =
−Nx

∑N
n=1 xnyn +

∑N
n=1 x

2
n

∑N
n=1 yn

N2�2
X

x =
1

N

N
∑

n=1

xi

�2
x =

1

N

N
∑

n=1

(xi − x)2. (3.28)

As the formulas fora and b are so important, it is worth giving another expression for
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them. We also have

a =

∑N
n=1 1

∑N
n=1 xnyn −

∑N
n=1 xn

∑N
n=1 yn

∑N
n=1 1

∑N
n=1 x

2
n −

∑N
n=1 xn

∑N
n=1 xn

b =

∑N
n=1 xn

∑N
n=1 xnyn −

∑N
n=1 x

2
n

∑N
n=1 yn

∑N
n=1 xn

∑N
n=1 xn −

∑N
n=1 x

2
n

∑N
n=1 1

. (3.29)

Remark 3.1. The formulas above fora andb are reasonable, as can be seen by a unit analysis.
For example, imaginex is in meters andy is in seconds. Then ify = ax+ b we would needb
andy to have the same units (namely seconds), anda to have units seconds per meter. If we
substitute in the units for the various quantities on the right hand side of(3.28), we do seea
andb have the correct units. While this is not a proof that we have not made a mistake, it is a
great reassurance. No matter what you are studying, you should always try unit calculations
such as this.

There are other, equivalent formulas fora andb; these give the same answer, but arrange
the algebra in a slightly different sequence of steps. Essentially what we are doing is the
following: image we are given

4 = 3a+ 2b

5 = 2a+ 5b.

If we want to solve, we can proceed in two ways. We can use the first equation to solve for
b in terms ofa and substitute in, or we can multiply the first equation by 5 and the second
equation by 2 and subtract; theb terms cancel and we obtain the value ofa. Explicitly,

20 = 15a+ 10b

10 = 4a+ 10b,

which yields
10 = 11a,

or
a = 10/11.

Remark 3.2. The data plotted in Figure 1 was obtained by lettingxn = 5 + .2n and then
letting yn = 5xn plus an error randomly drawn from a normal distribution withmean zero
and standard deviation4 (n ∈ {1, . . . , 100}). Using these values, we find a best fit line of

y = 4.99x+ .48; (3.30)
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thusa = 4.99 andb = .48. As the expected relation isy = 5x, we expected a best fit value of
a of 5 andb of 0.

While our value fora is very close to the true value, our value ofb is significantly off. We
deliberately chose data of this nature to indicate the dangers in using the Method of Least
Squares. Just because we know4.99 is the best value for the slope and.48 is the best value
for they-intercept doesnotmean that these are good estimates of the true values. The theory
needs to be supplemented with techniques which provide error estimates. Thus we want to
know something like, given this data, there is a99% chance that the true value ofa is in
(4.96, 5.02) and the true value ofb is in (−.22, 1.18); this is far more useful than just knowing
the best fit values.

If instead we used

Eabs(a, b) =
N
∑

n=1

∣yn − (axn + b)∣ , (3.31)

then numerical techniques yield that the best fit value ofa is 5.03 and the best fit value ofb
is less than10−10 in absolute value. The difference between these values and those from the
Method of Least Squares is in the best fit value ofb (the least important of the two parameters),
and is due to the different ways of weighting the errors.

Exercise 3.3.Consider the observed data(0, 0), (1, 1), (2, 2). It should be clear that the best
fit line isy = x; this leads to zero error in all three systems of measuring error, namely(2.10),
(2.11)and (2.12); however, show that if we use(2.10) to measure the error then liney = 1
also yields zero error, and clearly this should not be the best fit line!

Exercise 3.4.Generalize the method of least squares to find the best fit quadratic to y = ax2+
bx+c (or more generally the best fit degreem polynomial toy = amx

m+am−1x
m−1+⋅ ⋅ ⋅+a0).

While for any real world problem, direct computation determines whether or not the re-
sulting matrix is invertible, it is nice to be able to prove the determinant is always non-zero
for the best fit line (if all thex’s are not equal).

Exercise 3.5.If the x’s are not all equal, must the determinant be non-zero for thebest fit
quadratic or the best fit cubic?

Looking at our proof of the Method of Least Squares, we note that it was not essential that
we havey = ax + b; we could have hady = af(x) + bg(x), and the arguments would have
proceeded similarly. The difference would be that we would now obtain

⎛

⎝

∑

N

n=1
f(xn)

2
∑

N

n=1
f(xn)g(xn)

∑

N

n=1
f(xn)g(xn)

∑

N

n=1
g(xn)

2

⎞

⎠

⎛

⎝

a

b

⎞

⎠ =

⎛

⎝

∑

N

n=1
f(xn)yn

∑

N

n=1
g(xn)yn

⎞

⎠ . (3.32)

Finally, we comment briefly on a very important change of variable that allows us to use
the Method of Least Squares in many more situations than one might expect. Consider the
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case of a researcher trying to prove Newton’s Law of Universal Gravity, which says the force
felt by two massesm1 andm2 has magnitudeGm1m2/r

2, wherer is the distance between the
objects. If we fix the masses, then we expect the magnitude of the force to be inversely pro-
portional to the distance. We may write this asF = k/rn, where we believen = 2 (the value
for k depends onG and the product of the masses). Clearly it isn that is the more important
parameter here. Unfortunately, as written, we cannot use the Method of Least Squares, as one
of the unknown parameters arises non-linearly (as the exponent of the separation).

We can surmount this problem by taking a logarithmic transform of the data. Setting
K = log k, ℱ = logF andℛ = log r, the relationF = k/rn becomesℱ = nℛ+ K. We are
now in a situation where we can apply the Method of Least Squares. The only difference from
the original problem is how we collect and process the data; now our data is not the separation
between the two masses, but rather the logarithm of the separation. Arguing along these lines,
many power relations can be converted to instances where we can use the Method of Least
Squares. We thus (finally) fulfill a promise made by many high school math teachers years
ago: logarithms can be useful!

Exercise 3.6.Consider the generalization of the Method of Least Squares given in (3.32).
Under what conditions is the matrix invertible?

Exercise 3.7.The method of proof generalizes further to the case when one expectsy is a
linearcombination ofK fixed functions. The functions need not be linear; all that isrequired
is that we have a linear combination, saya1f1(x) + ⋅ ⋅ ⋅ + aKfK(x). One then determines
thea1, . . . , aK that minimize the variance (the sum of squares of the errors)by calculus and
linear algebra. Find the matrix equation that the best fit coefficients(a1, . . . , aK) must satisfy.

Exercise 3.8.Consider the best fit line from the Method of Least Squares, sothe best fit values
are given by(3.22). Is the point(x, y), wherex = 1

n

∑

N

n=1
xn andy =

∑

N

n=1
yn, on the best

fit line? In other words, does the best fit line go through the “average” point?

Exercise 3.9(Kepler’s Third Law). Kepler’s third law states that ifT is the orbital period
of a planet traveling in an elliptical orbit about the sun (and no other objects exist), then
T 2 = CL3, whereL is the length of the semi-major axis. I always found this the hardest of the
three laws; how would one be led to the right values of the exponents from observational data?
One way is through the Method of Least Squares. SetT = log T , ℒ = logL andc = log C.
Then a relationship of the formT a = CLb becomesaT = bℒ + c, which is amenable to the
Method of Least Squares. The semi-major axis of the the 8 planets (sadly, Pluto is no longer
considered a planet) are Mercury 0.387, Venus 0.723, Earth 1.000, Mars 1.524, Jupiter 5.203,
Saturn 9.539, Uranus 19.182, Neptune 30.06 (the units are astronomical units, where one
astronomical unit is 1.496⋅108 km); the orbital periods (in years) are 0.2408467, 0.61519726,
1.0000174, 1.8808476, 11.862615, 29.447498, 84.016846 and 164.79132. Using this data,
apply the Method of Least Squares to find the best fit values ofa andb in T a = CLb (note, of
course, you need to use the equationaT = bℒ+ C).

Actually, as phrased above, the problem is a little indeterminate for the following reason.
Imagine we haveT 2 = 5L3 or T 4 = 25L6 or T =

√
5L1.5 or evenT 4 = 625L12. All of
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these are the same equation! In other words, we might as well make our lives easy by taking
a = 1; there really is no loss in generality in doing this. This is yet another example of how
changing our point of view can really help us. At first it lookslike this is a problem involving
three unknown parameters,a, b andC; however,there is absolutely no loss in generality in
taking a = 1; thus let us make our lives easier and just look at this special case.

For your convenience, here are the natural logarithms of thedata: the lengths of the semi-
major axes are

{−0.949331, −0.324346, 0, 0.421338, 1.64924, 2.25539, 2.95397, 3.4032}

and the natural logarithms of the periods (in years) are

{−1.42359, −0.485812, 0.0000173998, 0.631723, 2.47339, 3.38261, 4.43102, 5.10468}.

The problem asks you to find the best fit values ofa and b. In some sense this is a bit
misleading, as there are infinitely many possible values forthe pair (a, b); however, all of
these pairs will have the sameratio a/b (which Kepler says should be close to 3/2 or 1.50). It
is this ratio that is truly important. The content of Kepler’s Third Law is that the square of the
period is proportional to the cube of the semi-major axis. The key numbers are the powers of
the period and the length (thea and theb), not the proportionality constant. This is why I only
ask you to find the best fit values ofa andb and notC (or C), asC (or C) is not as important.
If we takea = 1 then the best fit value ofC is 0.000148796, and the best fit value ofb is almost
1.50.

Our notes above have many different formulas to find the best fit valuesa and b for a
relationy = ax+ b. For us, we haveT = b

a
ℒ + C

a
. Thus, for this problem, the role ofa from

before is being played byb
a

and the role ofb from before is being played byC
a
. Therefore if we

want to find the best fit value for the ratiob
a

for this problem, we just use the first of the two
formulas from(3.29).
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