A Simple Counterexample to Havil's "Reformulation" of the Riemann Hypothesis

Jonathan Sondow
209 West 97th Street
New York, NY 10025
jsondow@alumni.princeton.edu

The Riemann Hypothesis (RH) is "the greatest mystery in mathematics" [3]. It is a conjecture about the Riemann zeta function. The zeta function allows us to pass from knowledge of the integers to knowledge of the primes.

In his book Gamma: Exploring Euler's Constant [4, p. 207], Julian Havil claims that the following is "a tantalizingly simple reformulation of the Riemann Hypothesis."

Havil's Conjecture. If

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{a}} \cos (b \ln n)=0 \quad \text { and } \quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{a}} \sin (b \ln n)=0
$$

for some pair of real numbers a and b, then $a=1 / 2$.

In this note, we first state the RH and explain its connection with Havil's Conjecture. Then we show that the pair of real numbers $a=1$ and $b=2 \pi / \ln 2$ is a counterexample to Havil's Conjecture, but not to the RH. Finally, we prove that Havil's Conjecture becomes a true reformulation of the RH if his conclusion "then $a=1 / 2$ " is weakened to "then $a=1 / 2$ or $a=1$."

The Riemann Hypothesis In 1859 Riemann published a short paper On the number of primes less than a given quantity [6], his only one on number theory. Writing s for a complex variable, he assumes initially that its real
part $\Re(s)$ is greater than 1 , and he begins with Euler's product-sum formula

$$
\prod_{p} \frac{1}{1-\frac{1}{p^{s}}}=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \quad(\Re(s)>1)
$$

Here the product is over all primes p. To see the equality, expand each factor $1 /\left(1-1 / p^{s}\right)$ in a geometric series, multiply them together, and use unique prime factorization.

Euler proved his formula only for real $s(>1)$. He used it to give a new proof of Euclid's theorem on the infinitude of the primes: if there were only finitely many, then as $s \rightarrow 1^{+}$the left-hand side of the formula would approach a finite number while the right-hand side approaches the harmonic series $\sum 1 / n=\infty$. Going further than Euclid, Euler also used his formula to show that, unlike the squares, the primes are so close together that

$$
\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{11}+\frac{1}{13}+\frac{1}{17}+\frac{1}{19}+\frac{1}{23}+\frac{1}{29}+\frac{1}{31}+\frac{1}{37}+\cdots=\infty
$$

Aiming to go even further, Riemann develops the properties of the Riemann zeta function $\zeta(s)$. He defines it first as the sum of the series in Euler's formula,

$$
\begin{equation*}
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\frac{1}{1^{s}}+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\cdots \quad(\Re(s)>1) \tag{1}
\end{equation*}
$$

which converges by comparison with the p-series (here $p=\Re(s)$)

$$
\sum\left|\frac{1}{n^{s}}\right|=\sum \frac{1}{n^{\Re(s)}}
$$

Using other formulas for $\zeta(s)$, Riemann extends its definition to the whole complex plane, where it has one singularity, a simple pole at $s=1$, reflecting Euler's observation that $\zeta(s) \rightarrow \sum 1 / n=\infty$ as $s \rightarrow 1^{+}$.

Riemann analyzes the zeros of $\zeta(s)$, which he calls the roots of the equation $\zeta(s)=0$. He shows that there are none in the right half-plane $\{s: \Re(s)>1\}$, and that the only ones in the left half-plane $\{s: \Re(s)<0\}$
are the negative even integers $s=-2,-4,-6, \ldots$. (These real zeros had been found by Euler more than a century earlier-see [1].)

Turning his attention to the zeros in the closed strip $\{s: 0 \leq \Re(s) \leq 1\}$, Riemann proves that they are symmetrically located about the vertical line $\Re(s)=1 / 2$. Using an integral, he estimates the number of them with imaginary part between 0 and some bound T. Then he says:

One finds in fact about this many [on the line] within these bounds and it is very likely that all of the [zeros in the strip are on the line]. One would of course like to have a rigorous proof of this; however, I have tentatively put aside the search for such a proof after some fleeting vain attempts

Thus was born the now famous and still unproven RH.

Riemann Hypothesis. If $\zeta(s)=0$ and $s \neq-2,-4,-6, \ldots$, then $\Re(s)=1 / 2$.

Around 1896 Hadamard and de la Vallée Poussin, independently, took a step in the direction of the RH by proving that $\zeta(s) \neq 0$ on the line $\Re(s)=1$. This was a crucial ingredient in their proofs of the Prime Number Theorem (PNT), which estimates $\pi(x)$, the number of primes p with $2 \leq p \leq x$. Conjectured by Gauss in 1792 at the age of 15 , the PNT says that $\pi(x)$ is asymptotic to $x / \ln x$ as $x \rightarrow \infty$. More precisely, Gauss's guess was that $\pi(x)$ is asymptotic to the logarithmic integral

$$
\operatorname{Li}(x)=\int_{2}^{x} \frac{d t}{t}
$$

which is equal to $x / \ln x$ plus a smaller quantity. If the RH is true, then the PNT's asymptotic formula $\pi(x) \sim \operatorname{Li}(x)$ comes with a good bound on the error $\pi(x)-\operatorname{Li}(x)$. Namely, the RH implies: for any $\epsilon>0$, the inequality

$$
|\pi(x)-\operatorname{Li}(x)|<C x^{\frac{1}{2}+\epsilon} \quad(x \geq 2)
$$

holds, with some positive number C that depends on ϵ but not on x. In fact, this statement is equivalent to the RH , and the appearance of $1 / 2$ in both is not a coincidence.

Since $\zeta(s) \neq 0$ when $\Re(s)=1$, the symmetry of the zeros in the strip $\{s: 0 \leq \Re(s) \leq 1\}$ implies that they lie in the open strip $\{s: 0<\Re(s)<1\}$. In 1914 Hardy proved that infinitely many of them lie on the line $\Re(s)=1 / 2$. That lends credence to the RH, but of course does not prove it. Hardy's result was later improved by Selberg and others, who showed that a positive percentage of the zeros in the strip lie on its center line. Using computers and further theory, the first 10^{13} zeros have been shown to lie on the line. For more on the RH, the PNT, and their historical background, consult [2], [3], and [4, Chapter 16].

In order to relate the RH to Havil's Conjecture, we need to introduce a function closely related to $\zeta(s)$.

The alternating zeta function For s with positive real part, the alternating zeta function $\zeta_{*}(s)$ (also known as the Dirichlet eta function $\eta(s)$) is defined as the sum of the alternating series

$$
\zeta_{*}(s)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{s}}=\frac{1}{1^{s}}-\frac{1}{2^{s}}+\frac{1}{3^{s}}-\frac{1}{4^{s}}+\frac{1}{5^{s}}-\frac{1}{6^{s}}+\cdots \quad(\Re(s)>0)
$$

which we now show converges. Since $\Re(s)>0$, the nth term approaches 0 as $n \rightarrow \infty$, so that we only need to show convergence for the series formed by grouping the terms in odd-even pairs. Writing each pair as an integral

$$
\frac{1}{n^{s}}-\frac{1}{(n+1)^{s}}=s \int_{n}^{n+1} \frac{d x}{x^{s+1}}
$$

with n odd, we set $\sigma=\Re(s)$ and bound the integral:

$$
\left|\int_{n}^{n+1} \frac{d x}{x^{s+1}}\right| \leq \int_{n}^{n+1} \frac{d x}{\left|x^{s+1}\right|}=\int_{n}^{n+1} \frac{d x}{x^{\sigma+1}}<\frac{1}{n^{\sigma+1}}
$$

As the series $\sum n^{-\sigma-1}$ converges, so does the alternating series for $\zeta_{*}(s)$.

When $\Re(s)>1$ the alternating series converges absolutely, and so we may rewrite it as the difference

$$
\begin{aligned}
\zeta_{*}(s) & =\frac{1}{1^{s}}+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\frac{1}{5^{s}}+\frac{1}{6^{s}}+\cdots-2\left(\frac{1}{2^{s}}+\frac{1}{4^{s}}+\frac{1}{6^{s}}+\cdots\right) \\
& =\frac{1}{1^{s}}+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\frac{1}{5^{s}}+\frac{1}{6^{s}}+\cdots-\frac{2}{2^{s}}\left(\frac{1}{1^{s}}+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\cdots\right) \\
& =\zeta(s)-\frac{2}{2^{s}} \zeta(s)
\end{aligned}
$$

Thus the alternating zeta function is related to the Riemann zeta function by the simple formula

$$
\begin{equation*}
\zeta_{*}(s)=\left(1-2^{1-s}\right) \zeta(s) \tag{2}
\end{equation*}
$$

We derived it for s with $\Re(s)>1$, but a theorem in complex analysis guarantees that the formula then remains valid over the whole complex plane.

At the point $s=1$, the simple pole of $\zeta(s)$ is cancelled by a zero of the factor $1-2^{1-s}$. This agrees with the fact that $\zeta_{*}(s)$ is finite at $s=1$. Indeed, $\zeta_{*}(1)$ is equal to Mercator's alternating harmonic series

$$
\zeta_{*}(1)=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots=\ln 2 .
$$

The product formula (2) shows that $\zeta_{*}(s)$ vanishes at each zero of the factor $1-2^{1-s}$ with the exception of $s=1$. (This can also be proved without using (2) -an elementary proof is given in [5], [7], and [8].) It is a nice exercise to show that the zeros of $1-2^{1-s}$ lie on the line $\Re(s)=1$, and occur at the points s_{k} given by

$$
s_{k}=1+i \frac{2 \pi k}{\ln 2} \quad(k=0, \pm 1, \pm 2, \pm 3, \ldots)
$$

Thus s_{k} is also a zero of $\zeta_{*}(s)$ if $k \neq 0$.
Since $1-2^{1-s} \neq 0$ when $\Re(s) \neq 1$, relation (2) also shows that $\zeta_{*}(s)$ and $\zeta(s)$ have the same zeros in the strip $\{s: 0<\Re(s)<1\}$. The first one is

$$
\rho_{1}=0.5+14.1347251417346937904572519835624702707842571156992 \ldots i
$$

the Greek letter ρ (rho) standing for root. Using a calculator, the reader can see it is likely that $\zeta_{*}\left(\rho_{1}\right)=0$. But be patient: at $s=\rho_{1}$ the alternating series for $\zeta_{*}(s)$ converges very slowly, because its nth term has modulus $\left|(-1)^{n-1} n^{-\rho_{1}}\right|=n^{-1 / 2}$. For example, to get $n^{-1 / 2}<0.1$, you need $n>100$.

If we substitute the series for $\zeta_{*}(s)$ into equation (2) and solve for $\zeta(s)$, we obtain the formula

$$
\begin{equation*}
\zeta(s)=\frac{1}{1-2^{1-s}} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{s}} \quad(\Re(s)>0, s \neq 1) \tag{3}
\end{equation*}
$$

Since the series converges whenever $\Re(s)>0$, the right-hand side makes sense for all $s \neq 1$ with positive real part, the first factor's poles at $s=s_{k} \neq 1$ being cancelled by zeros of the second factor. Thus the formula extends the definition (1) of $\zeta(s)$ to a larger domain.

We can now explain the relation between the RH and Havil's Conjecture.

The counterexample Let's write $s=a+i b$, where a and b are real numbers. Euler's famous formula

$$
e^{i x}=\cos x+i \sin x
$$

shows that

$$
\frac{1}{n^{s}}=\frac{1}{n^{a+i b}}=\frac{1}{n^{a}} e^{-i b \ln n}=\frac{1}{n^{a}}(\cos (b \ln n)-i \sin (b \ln n)) .
$$

Now if $a=\Re(s)>0$, then

$$
\begin{align*}
\zeta_{*}(s)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{s}} & =\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{a}}(\cos (b \ln n)-i \sin (b \ln n)) \tag{4}\\
& =-\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{a}} \cos (b \ln n)+i \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{a}} \sin (b \ln n)
\end{align*}
$$

Up to sign, the last two series are the real and imaginary parts of $\zeta_{*}(s)$. Hence $\zeta_{*}(s)=0$ if and only if both series vanish. Since they are the same series as in Havil's Conjecture and $\zeta_{*}(s)=0$ at $s=s_{1}=1+2 \pi i / \ln 2$, the
pair of real numbers $a=1$ and $b=2 \pi / \ln 2$ is a counterexample to Havil's Conjecture.

On the other hand, since the theorem of Hadamard and de la Vallée Poussin says that $\zeta(s)$ has no zeros with real part equal to 1 , the point $s_{1}=1+2 \pi i / \ln 2$ is not a counterexample to the RH. Therefore, Havil's Conjecture is not a reformulation of the RH.

Note that from looking at the two series in his conjecture it is not at all clear that they are equal to 0 when $a=1$ and $b=2 \pi / \ln 2$. This shows the power of the alternate formulation $\zeta_{*}\left(s_{1}\right)=0$. Havil gives formula (3) for $\zeta(s)$, but not the equivalent formula (2) for $\zeta_{*}(s)$. That may account for his having overlooked the zeros of the factor $1-2^{1-s}$ in (2).

To conclude, we give a true reformulation of the RH.

The RH without tears Here is a corrected version of Havil's Conjecture.

New Conjecture. If

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{a}} \cos (b \ln n)=0 \quad \text { and } \quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{a}} \sin (b \ln n)=0 \tag{5}
\end{equation*}
$$

for some pair of real numbers a and b, then $a=1 / 2$ or $a=1$.

Let's show that this is indeed a reformulation of the RH.

Proposition. The New Conjecture is true if and only if the RH is true.

Proof. Suppose the New Conjecture is true. Assume $\zeta(s)=0$ and $s \neq-2,-4,-6, \ldots$ By Riemann's results and the Hadamard-de la Vallée Poussin theorem, s lies in the open strip $\{s: 0<\Re(s)<1\}$. Then relation (2) gives $\zeta_{*}(s)=0$. Writing $s=a+i b$, equation (4) yields the equalities in (5), and so by the New Conjecture $a=1 / 2$ or $a=1$. But $a=\Re(s)<1$. Hence $\Re(s)=1 / 2$. Thus the New Conjecture implies the RH.

Conversely, suppose the RH is true. Assume a and b satisfy condition (5). In particular, both series in (5) converge, and so their nth terms tend to 0 as $n \rightarrow \infty$. It follows that the sum of the squares of the nth terms, namely, $n^{-2 a}$, also tends to 0 . Hence $a>0$. Then with $s=a+i b$ equation (4) applies, and (5) yields $\zeta_{*}(s)=0$. Now relation (2) shows that s is a zero of $\zeta(s)$ or of $1-2^{1-s}$. In the first case the RH says $a=1 / 2$, and in the second case we know $a=1$. Thus the RH implies the New Conjecture.

Acknowledgments I am very grateful to Jacques Gélinas and Steven J. Miller for valuable suggestions and corrections, and to Jussi Pahikkala for helpful comments that led to improvements in the presentation.

References

[1] Raymond Ayoub, Euler and the zeta function, Amer. Math. Monthly 81 (1974), 1067-1086.
[2] Peter Borwein, Stephen Choi, Brendan Rooney, and Andrea Weirathmueller, eds., The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike, CMS Books in Mathematics, no. 27, Springer, New York, 2008.
[3] Marcus du Sautoy, The Music of the Primes: Searching to Solve the Greatest Mystery in Mathematics, HarperCollins, New York, 2004.
[4] Julian Havil, Gamma: Exploring Euler's Constant, Princeton University Press, Princeton, 2003; paperback edition, 2009.
[5] PlanetMath, Zeros of Dirichlet eta function (2010), available at http: //planetmath.org/encyclopedia/ZerosOfDirichletEtaFunction. html.
[6] Bernhard Riemann, Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse, Monatsberichte der Berliner Akademie (November, 1859)

145-153; in Gesammelte Werke, 145, Teubner, Leipzig, 1892; reprinted by Dover, New York, 1953; On the number of primes less than a given quantity (trans. D. R. Wilkins) in [2] 190-198; also available at http:// www.maths.tcd.ie/pub/HistMath/People/Riemann/Zeta/EZeta.pdf.
[7] Jonathan Sondow, Zeros of the alternating zeta function on the line $\Re(s)=1$, Amer. Math. Monthly 110 (2003), 435-437.
[8] Wikipedia, Dirichlet eta function: Landau's problem (2010), available at http://en.wikipedia.org/wiki/Dirichlet_eta_function.

