
TAKEAWAYS FROM UNDERGRADUATE MATH CLASSES

STEVEN J. MILLER

ABSTRACT. Below we summarize some items to take away from various undergraduate classes. In
particular, what are one time tricks and methods, and what are general techniques to solve a variety
of problems, as well as what have we used from various classes. Comments and additions welcome!
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1. CALCULUS I AND II (M ATH 103 AND 104)

We used a variety of results and techniques from 103 and 104:

(1) Standard integration theory: For us, the most important technique is integration by parts;
one of many places it is used is in computing the moments of theGaussian. Integration by
parts is a very powerful technique, and is frequently used. While most of the time it is clear
how to choose the functionsu anddv, sometimes we need to be a bit clever. For example,
consider the second moment of the standard normal:(2�)−1/2

∫∞
−∞ x2 exp(−x2/2)dx. The

Date: December 6, 2010.
1



2 STEVEN J. MILLER

natural choices are to takeu = x2 or u = exp(−x2/2), but neither of these work as they
lead to choices fordv that do not have a closed form integral. What we need to do is split
the two ‘natural’ functions up, and letu = x anddv = exp(−x2/2)xdx. The reason is that
while there is no closed form expression for the anti-derivative of the standard normal, once
we havexdx instead ofdx then we can obtain nice integrals. One final remark on integrating
by parts: it is a key ingredient in the ‘Bring it over’ method (which will be discussed below).

(2) Definition of the derivative: Recall

f ′(x) = lim
ℎ→0

f(x+ ℎ)− f(x)

ℎ
.

In upper level classes, the definition of the derivative is particularly useful when there is a
split in the definition of a function. For example, consider

f(x) =

{
exp(−1/x2) if x ∕= 0

0 if x = 0.

This function has all derivatives zero atx = 0, but is non-zero forx ∕= 0. Thus the Taylor
series (see below) does not converge in a neighborhood of positive length containing the
origin. This function shows how different real analysis is from complex analysis. Explic-
itly, here we have an infinitely differentiable function which is not equal to its Taylor series
in a neighborhood ofx = 0; if a complex function is differentiable once it is infinitely dif-
ferentiable and it equals its derivative in a neighborhood of that point.

(3) Taylor series: Taylor expansions are very useful, allowing us to replace complicated func-
tions (locally) by simpler ones. The moment generating function of a random variable is a
Taylor series whose coefficients are the moments of the distribution. Another instance is in
proving the Central Limit Theorem from probability.Taylor’s Theorem: If f is differen-

tiable at least n+1 times on [a, b], then for all x ∈ [a, b], f(x) =
∑n

k=0
f(k)(a)

k!
(x− a)k plus

an error that is at most maxa≤c≤x ∣f (n+1)(c)∣ ⋅ ∣x− a∣n+1.

(4) L’Hopital’s Rule: This is one of the most useful ways to compare growth rates of different
functions. It works for ratios of differentiable functionssuch that either both tend to zero
or both tend to±∞. We used this in class to see that, asx → ∞, (log x)A ≪ xB ≤ ex for
anyA,B > 0. (Recallf(x) ≪ g(x) means there is someC such that for allx sufficiently
large,∣f(x)∣ ≤ Cg(x).) We also used L’Hopital to take the derivatives of the troublesome
functionℎ(x) = exp(−1/x2) for x ∕= 0 and0 otherwise (this function is the key to why
real analysis is so much harder than complex analysis). We can also use L’Hopital’s Rule to
determine whether or not certain sequences converge.
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2. MULTIVARIABLE CALCULUS (MATH 105/106)

(1) Dot product, Cross product: If −→v = (v1, . . . , vn) and−→w = (w1, . . . , wn) then the dot
product is−→v ⋅ −→w = v1w1 + ⋅ ⋅ ⋅+ vnwn, and the angle� between the two vectors is given
by

−→v ⋅−→w
∣∣−→v ∣∣ ∣∣−→w ∣∣ . If n = 3, then the cross product is defined by

∣∣∣∣∣∣

−→
i

−→
j

−→
k

v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣
= (v2w3 − v3w2, v3w1 − v1w3, v1w2 − v2w1).

The cross product gives the area of the parallelogram generated by−→v and−→w .

(2) Definition of the Derivative: One Variable: Let f : ℝ → ℝ be a function. We sayf is
differentiable atx0, and denote this byf ′(x0) or df/dx, if the following limit exists:

f ′(x0) = lim
ℎ→0

f(x0 + ℎ)− f(x0)

ℎ
.

We may also write this limit by

f ′(x0) = lim
x→x0

f(x0 + ℎ)− f(x0)

ℎ
,

or as

lim
x→x0

f(x0 + ℎ)− f(x0)− f ′(x0)ℎ

ℎ
= 0.

(3) Definition of the Derivative: Several Variables, One Output: Let f : ℝn → ℝ be a
function ofn variablesx1, . . . , xn. We say the partial derivative with respect toxi exists at
the pointa = (a1, . . . , an) if

lim
ℎ→0

f(−→a + ℎ−→e i)− f(−→a )
ℎ

exists, where
−→a + ℎ−→e i = (a1, . . . , ai−1, ai + ℎ, ai+1, . . . , an).

Let f : ℝ2 → ℝ. The tangent plane approximation tof at (x0, y0) is given by

z = f(x0, y0) +
∂f

∂x
(x0, y0)(x− x0) +

∂f

∂y
(x0, y0)(y − y0),

provided of course the two partial derivatives exist (and this naturally generalizes to more
variables).

Finally, let f : ℝ2 → ℝ. We sayf is differentiable at(x0, y0) if the tangent plane
approximation tends to zero significantly more rapidly than∣∣(x, y) − (x0, y0)∣∣ tends to 0
as(x, y) → (x0, y0). Specifically,f is differentiable if

lim
(x,y)→(x0,y0)

f(x, y)− f(x0, y0)− ∂f
∂x
(x0, y0)(x− x0)− ∂f

∂y
(x0, y0)(y − y0)

∣∣(x, y)− (x0, y0)∣∣
= 0.

Note the above is truly the generalization of the derivativein one variable. The distance
x − x0 is replaced with∣∣(x, y) − (x0, y0)∣∣; while this is always positive, the fact that the
limit must equal zero for the function to be differentiable means we could have used∣x−x0∣
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in the denominator in the definition of the derivative of one variable. Also note that the last
two parts of the tangent plane approximation can be written as a dot product of two vectors:

∂f

∂x
(x0, y0)(x− x0) +

∂f

∂y
(x0, y0)(y − y0) =

(
∂f

∂x
(x0, y0),

∂f

∂y
(x0, y0)

)
⋅ (x− x0, y − y0).

(4) Gradient: The gradient of a functionf : ℝn → ℝ is the vector of the partial derivatives
with respect to each variable. We write

grad(f) = ∇f =

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
.

The gradient points in the direction of maximum change for the functionf .

(5) Definition of the Derivative: Several Variables, Several Outputs: Let f : ℝn → ℝm; we
may write

f(−→x ) = (f1(
−→x , . . . , fm(−→x )) .

By (Df)(−→x0) we mean the matrix whose first row is(∇f1)(−→x ), whose second row is
(∇f)(−→x ), and so on until the last row, which is(∇fm)(−→x ). In full glory, we have

(Df)(x0) =

⎛
⎜⎝

∂f1
∂x1

(−→x ) ⋅ ⋅ ⋅ ∂f1
∂xn

(−→x )
...

. . .
...

∂fm
∂x1

(−→x ) ⋅ ⋅ ⋅ ∂fm
∂xn

(−→x )

⎞
⎟⎠ .

Note(Df)(−→x ) is a matrix withm rows andn columns. We sayf is differentiable at−→a if
the tangent hyperplane approximation for each component tends to zero significantly more
rapidly than∣∣−→x −−→a ∣∣ tends to 0 as−→x → −→a . Specifically,f is differentiable if

lim−→x→−→a

f(−→x )− f(−→a )− (Df)(−→a ) ⋅ (−→x −−→a )
∣∣−→x −−→a ∣∣ =

−→
0 ,

where we regard−→x −−→a as a column vector being acted on by the matrix(Df)(−→a ).

(6) Main Theorem on Differentiation The following implications hold (note the reverse im-
plications may fail): (1) implies (2) implies (3), where

⋄ (1) The partial derivatives off are continuous.
⋄ (2) The functionf is differentiable.
⋄ (3) The partial derivatives off exist.
For counterexamples when reversing the implication, considerf(x) = x2 sin(1/x) if

x ∕= 0 and0 if x = 0, andg(x, y) = (xy)1/3.

(7) Chain Rule Let g : ℝn → ℝm andf : ℝm → ℝp be differentiable functions, and set
ℎ = f ∘ g (the composition). Then

(Dℎ)(−→x ) = (Df)(g(−→x ))(Dg)(−→x ).

Important special cases are:
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⋄ Let c : ℝ → ℝ3 andf : ℝ3 → ℝ, and setℎ(t) = f(c(t)). Then

dℎ

dt
= (∇f)(c(t)) ⋅ c′(t) =

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
+
∂f

∂z

dz

dt
.

Note that we could have written∂f/∂x for df/dx.

⋄ Let g(x1, . . . , xn) = (u1(x1, . . . , xn), . . . , um(x1, . . . , xn) and setℎ(x1, . . . , xn) =
f(g(x1, . . . , xn)), wheref : ℝm → ℝ. Then

∂ℎ

∂xi
=

∂f

∂u1

∂u1
∂xi

+
∂f

∂u2

∂u2
∂xi

+ ⋅ ⋅ ⋅+ ∂f

∂um

∂um
∂xi

.

(8) Equality of Mixed Partial Derivatives: Let f : ℝn → ℝ be a function of classC2 (which
means that all the partial derivatives of order at most 2 exist and are continuous). Then for
any two variablesxi andxj we have

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
.

(9) Tricks for Taylor Series Expansions: We give a few examples of some powerful tricks to
find Taylor series expansions. The idea is to use Taylor series expansions in one-variable.
These work when we have functions such assin(x+ y) but notsin(

√
x+ y).

⋄ cos(x+ y) = 1− (x+y)2

2!
+ (x+y)4

4!
− ⋅ ⋅ ⋅ .

⋄ cosx sin y = (1− x2

2!
+ ⋅ ⋅ ⋅ )(y − y3

3!
+ ⋅ ⋅ ⋅ ).

⋄ ex−y cos(x+ y) = (1 + (x− y) + (x−y)2

2!
+ ⋅ ⋅ ⋅ )(1− (x+y)2

2!
+ ⋅ ⋅ ⋅ ).

(10) Method of Lagrange Multipliers: Let f, g : U → ℝ, whereU is an open subset ofℝn.
Let S be the level set of valuec for the functiong, and letf ∣S be the functionf restricted to
S (in other words, we only evaluatef at−→x ∈ U). Assume(∇g)(−→x 0) ∕=

−→
0 . Thenf ∣S has

an extremum at−→x 0 if and only if there is a� such that(∇f)(−→x 0) = �(∇g)(−→x 0).

(11) [Method of Least Squares:Given a set of observations

(x1, y1), (x2, y2), . . . , (xN , yN)

and a proposed linear relationship betweenx andy, namely

y = ax+ b,

then the best fit values ofa andb (according to the Method of Least Squares) are given by
minimizing the error function given by

E(a, b) =
N∑

n=1

(yn − (axn + b))2 .
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The best fit values are

a =

∑N
n=1 1

∑N
n=1 xnyn −

∑N
n=1 xn

∑N
n=1 yn∑N

n=1 1
∑N

n=1 x
2
n −

∑N
n=1 xn

∑N
n=1 xn

b =

∑N
n=1 xn

∑N
n=1 xnyn −

∑N
n=1 x

2
n

∑N
n=1 yn∑N

n=1 xn
∑N

n=1 xn −
∑N

n=1 x
2
n

∑N
n=1 1

. (2.1)

Frequently by taking logarithms we can use this method for non-linear relations. For exam-
ple, if T = BLa, then ifT = log T , ℒ = logL andb = logB thenT = aℒ + b, a linear
relation.

(12) Metric dependence of answers:A very important fact, made clear in the previous subject,
is that depending on the metric used to evaluate / answer a problem one can reach different
conclusions. What do we ‘mean’ by best-fit line? Depending onhow we measure the data
(ranging from just summing the signed errors to absolute values to squares), we can get a
different answer. It is very important to be aware of these situations.

(13) Monte Carlo Integration: LetD be a nice region inℝn, and assume for simplicity that it
is contained in then-dimensional unit hypercube[0, 1]× [0, 1]×⋅ ⋅ ⋅× [0, 1]. Assume further
that it is easy to verify if a given point(x1, . . . , xn) is inD or not inD. DrawN points from
then-dimensional uniform distribution; in other words, each ofthen coordinates of theN
points is uniformly distributed on[0, 1]. Then asN → ∞ then-dimensional volume ofD
is well approximated by the number of points insideD divided by the total number of points.

(14) Fubini Theorem (or Fubini-Tonelli): Frequently we want to / need to justify interchanging
two integrals (or an integral and a sum). Doing such interchanges is one of the most frequent
tricks in mathematics; whenever you see a double sum, a double integral, or a sum and an
integral you should consider this. While we cannot always interchange orders, we can if the
double sum (or double integral) of the absolute value of the summand (or the integrand) is
finite. For example,

∫ 1

y=0

[∫ 1

x=0

e−xyxdx

]
dy =

∫ 1

x=0

[∫ 1

y=0

e−xyxdy

]
dx

=

∫ 1

x=0

e−xy

∣∣∣∣∣

0

1

dx

=

∫ 1

x=0

(
1− e−x

)
dx = 2− e−x. (2.2)

Note how much easier it is when we integrate with respect toy first – we bypass having to
use Integration by Parts. For completeness, we state:

Fubini’s Theorem: Assume f is continuous and
∫ b

a

∫ d

c

∣f(x, y)∣dxdy < ∞. (2.3)
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Then ∫ b

a

[∫ d

c

f(x, y)dy

]
dx =

∫ d

c

[∫ b

a

f(x, y)dx

]
dy. (2.4)

Similar statements hold if we instead have

N1∑

n=N0

∫ d

c

f(xn, y)dy,

N1∑

n=N0

M1∑

m=M0

f(xn, ym). (2.5)

(15) Whenever you have a theorem, you should always explore what happens if you remove
a condition. Frequently (though not always) the claim no longer holds; sometimes the
claim is still true but the proof is harder. Rarely, but it canhappen, removing a condition
causes you to look at a problem in a new light, and find a simplerproof. We apply this
principle to Fubini’s theorem; specifically, we remove the finiteness condition and construct
a counter-example.

For simplicity, we give a sequenceamn such that
∑

m(
∑

n am,n) ∕=
∑

n(
∑

m am,n). For
m,n ≥ 0 let

am,n =

⎧
⎨
⎩

1 if n = m

−1 if n = m+ 1

0 otherwise.

(2.6)

We can show that the two different orders of summation yield different answers; if we sum
over the columns first we get 0 for each column, and then doing the sum of the column
sums gives 0; however, if we do the row sums first, than all the row sums vanish but the first
(which is 1), and hence the sum of the row sums is 1,not 0. The reason for this difference
is that the sum of the absolute value of the terms diverges.

(16) Interchanging derivatives and sums: It is frequently useful to interchange a derivative
and an infinite sum. The first place this is met is in proving thederivative ofex is ex; using
the series expansion forex, it is trivial to find the derivativeif we can differentiate term by
term and then add.

Interchanging differentiation and integration: Let f(x, t) and ∂f(x, t)/∂x be continuous
on a rectangle [x0, x1]× [t0, t1] with [a, b] ⊂ [t0, t1]. Then

d

dx

∫ b

t=a

f(x, t)dt =

∫ b

t=a

∂f

∂x
(x, t)dt. (2.7)

Frequently one wants to interchange differentiation and summation; this leads to the
method of differentiating identities, which is extremely useful in computing moments of
probability distributions. For example, consider the identity

(p+ q)n =

n∑

k=0

(
n

k

)
pkqn−k. (2.8)



8 STEVEN J. MILLER

Applying the operatorp d
dp

to both sides we find

p ⋅ n(p+ q)n−1 =

n∑

k=0

k

(
n

k

)
pkqn−k. (2.9)

Settingq = 1− p yields the mean of a binomial random variable:

np =

n∑

k=0

k

(
n

k

)
pk(1− p)n−k. (2.10)

It is very important that initiallyp andq are distinct, free variables, and only at the end do
we setq = 1− p.

(17) Dangers when interchanging: One has to be very careful in interchanging operations.
Consider, for example, the family of probability densities1 fn(x), wherefn is a triangular
density on[1/n, 3/n] with midpoint (i.e., maximum value)n. While eachfn is continuous
(as is the limitf(x), which is identically 0), eachfn is a probability density (as each inte-
grates to 1); however, the limit density is identically 0, and thus not a density! We can easily
modify our example so that the limit is not continuous:

gn(x) =

⎧
⎨
⎩

n∣x∣ if 0 ≤ ∣x∣ ≤ 1/n

1 if 1/n ≤ ∣x∣ ≤ 1/2

n
(
1
2
+ 1

n
− ∣x∣

)
if 1/2 ≤ x ≤ 1/2 + 1/n

0 otherwise.

(2.11)

Note thatgn(0) = 0 for all n, but as we approach 0 from above or below, in the limit we get
1.

(18) Change of Variables Theorem:Let V andW be bounded open sets in ℝn. Let ℎ : V →W
be a 1-1 and onto map, given by

ℎ(u1, . . . , un) = (ℎ1(u1, . . . , un), . . . , ℎn(u1, . . . , un)) . (2.12)

Let f : W → ℝ be a continuous, bounded function. Then
∫

⋅ ⋅ ⋅
∫

W

f(x1, . . . , xn)dx1 ⋅ ⋅ ⋅ dxn

=

∫
⋅ ⋅ ⋅
∫

V

f (ℎ(u1, . . . , un)) ∣J(u1, . . . , uv)∣ du1 ⋅ ⋅ ⋅ dun, (2.13)

where J is the Jacobian

J =

∣∣∣∣∣∣∣

∂ℎ1

∂u1
⋅ ⋅ ⋅ ∂ℎ1

∂un
...

. . .
...

∂ℎn

∂u1
⋅ ⋅ ⋅ ∂ℎn

∂un

∣∣∣∣∣∣∣
. (2.14)

We used this result to simplify the algebra in many problems by passing to an easier set of
variables.

1A functionp is a probability density ifp(x) ≥ 0 andp integrates to 1.
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(19) Counting two different ways: Calculating something two different ways is one of the most
important ideas in math. A good part of combinatorics is to note that there are two ways to
compute something, one of which is easy and one of which is not. We then use our knowl-
edge of the easy calculation to deduce the hard. For example,

∑n
k=0

(
n
k

)2
=
(
2n
n

)
; the right

side is easy to compute, the left side not so clear. Why are thetwo equal? It involves finding
a story, which we leave to the reader.

(20) Memoryless process:When proving the geometric series formula by playing a basketball
game, we used the fact that after two misses it was as if we juststarted playing the game
then. This idea is used in many problems.

(21) Ratio, root, integral and comparison tests: These are used to determine if a series or
integral converges. We frequently used the geometric series formula

∑∞
n=0 x

n = 1/(1− x)
if ∣x∣ < 1.

⋄ Comparison TestLet {bn}∞n=1 be a sequence of non-negative terms (sobn ≥ 0).
Assume the series converges, and{an}∞n=1 is another sequence such that∣an∣ ≤ bn for all
n. Then the series attached to{an}∞n=1 also converges.

⋄ Ratio TestConsider a sequence{an}∞n=1 of positive terms. Let

r = lim
n→∞

an+1

an
.

If r exists andr < 1 then the series converges, while ifr > 1 then the series diverges; if
r = 1 then this test provides no information on the convergence ordivergence of the series.

⋄ Root TestConsider a sequence{an}∞n=1 of positive terms. Let

� = lim
n→∞

a1/nn ,

thenth root ofan. If � < 1 then the series converges, while if� > 1 then the series diverges;
if � = 1 then the test does not provide any information.

⋄ Integral Test Consider a sequence{an}∞n=1 of non-negative terms. Assume there is
some functionf such thatf(n) = an andf is non-increasing. Then the series

∞∑

n=1

an

converges if and only if the integral∫ ∞

1

f(x)dx

converges.
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3. DIFFERENTIAL EQUATIONS (MATH 209)

(1) The method of Divine Inspiration and Difference Equations:Difference equations, such
as the Fibonacci equationan+1 = an+1 + an, arise throughout nature. There is a rich theory
when we have linear recurrence relations. To find a solution,we ‘guess’ thatan = rn and
take linear combinations.

Specifically, letk be a fixed integer andc1, . . . , ck given real numbers. Then the general
solution of the difference equation

an+1 = c1an + c2an−1 + c3an−2 + ⋅ ⋅ ⋅+ ckan−k+1

is
an = 1r

n
1 + ⋅ ⋅ ⋅+ kr

n
k

if the characteristic polynomial

rk − c1r
k−1 − c2r

k−2 − ⋅ ⋅ ⋅ − ck = 0

hask distinct roots. Here the1, . . . , k are anyk real numbers; if initial conditions are
given, these conditions determine thesei’s. If there are repeated roots, we add terms such
asnrn, . . . , nm−1rn, wherem is the multiplicity of the rootr.

For example, consider the equationan+1 = 5an − 6an−1. In this casek = 2 and we find
the characteristic polynomial isr2−5r+6 = (r−2)(r−3), which clearly has rootsr1 = 2
andr2 = 3. Thus the general solution isan = 12

n + 23
n. If we are givena0 = 1 and

a1 = 2, this leads to the system of equations1 = 1 + 2 and2 = 1 ⋅ 2 + 2 ⋅ 3, which has
the solution1 = 1 and2 = 0.

Applications include population growth (such as the Fibonacci equation) and why double-
plus-one is a bad strategy in roulette.



TAKEAWAYS FROM UNDERGRADUATE MATH CLASSES 11

4. ANALYSIS (MATH 301)

(1) Continuity: General continuity properties, in particular some of the� − � arguments to
bound quantities, are frequently used to prove results. Often we use these to study mo-
ments or other properties of densities. Most important, however, was probably when we
can interchange operations, typically interchanging integrals, sums, or an infinite sum and
a derivative. For the derivative of the geometric series, this can be done by noting the tail is
another geometric series; in general this is proved by estimating the contribution from the
tail of the sum). See the multivariable calculus section formore comments on these subjects.

(2) Proofs by Induction: Induction is a terrific way to prove formulas for generaln if we have
a conjecture as to what the answer should be. Assume for each positive integern we have
a statementP (n) which we desire to show is true for alln. P (n) is true for all positive
integersn if the following two statements hold: (i)Basis Step:P (1) is true; (ii) Inductive
Step: wheneverP (n) is true,P (n + 1) is true. Such proofs are called proofs by induction
or induction (or inductive) proofs.

The standard examples are to show results such as
∑n

k=0 k = n(n+1)
2

. It turns out that∑n
k=0 k

m is a polynomial inn of degreem + 1 with leading coefficient1/(m + 1) (one
can see that this is reasonable by using the integral test to replace the sum with an integral);
however, the remaining coefficients of the polynomial are harder to find, and without them
it is quite hard to run the induction argument for saym = 2009.

(3) Dirichlet’s Pigeonhole principle: LetA1, A2, . . . , An be a collection of sets with the prop-
erty thatA1 ∪ ⋅ ⋅ ⋅ ∪ An has at leastn + 1 elements. Then at least one of the setsAi has at
least two elements. We frequently use the Pigeonhole principle to ensure that some event
happens.
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5. COMPLEX ANALYSIS (MATH 302)

5.1. Complex Differentiability. Similar to one-dimensional real variable calculus, everything in
complex analysis follows from the definition of the derivative. What drastically changes the subject
from a real variable is the geometry of the space. In the real line, you can approach a point essen-
tially in only two ways: from above or from below. In the complex plane, there are an infinitude
of paths, ranging from along the axes to spirals to what Cam and Kayla draw. This leads to the
definition

Complex differentiability: A function of a complex variabl e is said to be complex differen-
tiable at z if

lim
ℎ→0

f(z + ℎ)− f(z)

ℎ
exists asℎ ∕= 0 tends to 0 along any path.

Functions such as the polynomials
∑n

k=0 ckz
k are differentiable, while functions such aszk are

not (rememberz = x− iy if z = x+ iy).
If f(x+ iy) = u(x, y)+ iv(x, y), thenf is holomorphic (i.e., complex differentiable) if and only

if it satisfies theCauchy-Riemann equations:

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
.

5.2. Cauchy’s Theorem. We say a functionf has aprimitive F if F ′(z) = f(z). From the theory
of line integrals, we see that if is a simple closed curve andf has a primitive, then

∫
f(z)dz = 0.

The main result is Cauchy’s Theorem:

Cauchy’s Theorem: Let f be a holomorphic function and a simple closed curve. Then∫

f(z)dz = 0.

There are many ways to prove this. A popular one is to first prove Goursat’s Theorem: if f
is holomorphic on an open set containing a triangleT , then

∫
∂T
f(z)dz = 0 (where∂T is the

boundary of the triangle). The key step in proving this is to keep reducing the line integral into
four smaller line integrals; geometrically this is doable as we can divide a triangle easily into four
similar triangles. We then use some compactness arguments to finish the proof. From Goursat’s
Theorem, we can then prove that any holomorphic function on an open disk has a primitive on the
disk. We do this by taking polygonal paths with components parallel to thex andy-axes.

There are many consequences of Cauchy’s Theorem. The fist is to allow us to evaluate many
integrals. Another is the

Integral Representation Theorem: If f is holomorphic on an open set that contains a closed
curve, then for anyz in the set we have

f(z) =
1

2�i

∫



f(�)

� − z
dz.
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Notice that this means that if we knowf on the boundary and if we knowf is holomorphic then
there is a unique extension to the interior. This formula hasa multitude of consequences as well. In
particular, it gives us a series expansion for a holomorphicfunction, and shows that holomorphicity
implies analyticity (the converse is straightforward, as we can differentiate power series term by
term). Recall that a function isanalytic if it has a convergent series expansion.

Holomorphic equals Analytic: If a complex function is differentiable once, it is infinitely dif-
ferentiable and it equals its Taylor series. Specifically,

f(z) =

∞∑

n=0

an(z − z0)
n, an = f (n)(z0)/n!

where

f (n)(z) =
n!

2�i

∫



f(�)

(� − z)n+1
dz,

where as always is a simple closed curve. The proof follows by using the geometric series formula
to expand the denominator in the integral representation; specifically

� − z = (� − z0)− (z − z0) = (� − z0) ⋅
(
1− z − z0

� − z0

)
;

for z close toz0, the fraction above is less than one and we may expand the reciprocal of the above
with the geometric series formula; note the extra factor of� − z0 in front is what is responsible for
the exponent beingn+ 1 and notn.

This is remarkably different than real analysis (remember the functionf(x) = exp(−1/x2) for
x ∕= 0 and0 for x = 0; this function is infinitely differentiable, but only equals its Taylor series
at x = 0 (which is not impressive, as by definition all functions equal their Taylor series at the
expansion point!).

Another consequence are theCauchy Inequalities, which state that iff is holomorphic on a set
containing a circle with boundaryC centered atz0 with radiusR then

∣f (n)(z0)∣ ≤ n!∣∣f ∣∣C
Rn

,

where∣∣f ∣∣C denotes the largest value off onC.

From the Cauchy Inequalities we immediately obtainLiouville’s Theorem (also known as the
first big theorem without Cauchy’s name in it): iff is entire (i.e., holomorphic on all ofℂ) and
bounded thenf is entire. The proof follows by using the Cauchy Inequalities on larger and larger
circles; asf is bounded the numerators are uniformly bounded while the denominators tend to zero
withR. From Liouville’s Theorem we obtain theFundamental Theorem of Algebra, which states
that any degreen polynomial with complex coefficients has exactlyn roots.

We end with two other important concepts.

Analytic continuation: Given a functionf defined in some subset of the complex plane, its
analytic continuation is a new function which agrees with the old in the original region, but makes
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sense elsewhere. The standard example is the geometric series formula:
∑∞

n=0 x
n = 1/(1 − x);

the right hand side makes sense for all values ofx ∕= 1, while the left hand side is only defined if
∣x∣ < 1. This leads to the interpretation that1 + 2 + 4 + 8 + 16 + ⋅ ⋅ ⋅ = −1!

Accumulation points: Let f be a complex differentiable function defined on an open setU ;
assumef(zn) = 0 for some sequence of points{zn}∞n=1 that has an accumulation point inU (i.e.,
there is somez∗ such that a subsequence of thezn’s converge toz∗). Thenf is identically zero!
Again, this is very different than real analysis: the function f(x) = x3 sin(1/x) for x ∕= 0 and0
for x = 0 is zero wheneverx = 1/n�, and is zero atx = 0; however, clearly this function is not
identically zero even near the origin (just considerx = 2/n� for n odd). In probability, this result is
used to study the moment problem, namely, how many moments are needed to uniquely determine
a probability density. The proof involves the equivalence between holomorphicity and analyticity.
We Taylor expand our function about the accumulation point,and note that all the derivatives vanish
there (some work is required to show that).

5.3. The Residue Formula. Perhaps the most important result in complex analysis (froman ap-
plications standpoint, though this arises in numerous theoretical investigations as well) is

The Cauchy Residue Formula:Supposef is holomorphic in an open set containing a simple
closed curve except for finitely many poles (atz0, . . . , zn) with residuesReszj(f). Then

1

2�i

∫



f(z)dz =

n∑

j=1

Reszj (f).

One proves this in a similar manner to extensions of Green’s theorem in the plane, taking contours
where we approach one of the poles, circle around it, and thenretrace our steps back to the main
curve. The point is to convert the integral over to n integrals over circles centered at the poles.

The residue off at z0 is the negative first coefficient in its Laurent expansion atz0 (the Laurent
expansion is similar to the Taylor expansion, except now we allow z to be raised to negative integer
powers as well). A useful way to compute residues is the following:

Computing Residues:Assumef(z) = g(z)/ℎ(z) whereg andℎ are holomorphic andℎ has a
simple zero atz0 (i.e., the zero has multiplicity one). Then the residue off at z0 is g(z0)/ℎ′(z0).

We can use the residue theorem to evaluate many integrals, especially real integrals. We com-
plete the contours, carefully choosing our completion to exploit the decay in the function. For some
examples, see §5.6.

We list a few applications of the Residue Theorem:

Argument Principle: If f is meromorphic (holomorphic except at finitely many places where it
has poles) on an open set containing some simple closed curve then

1

2�i

∫



f ′(z)

f(z)
dz
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equals the number of zeros off inside minus the number of poles inside. The formula can be
generalized to include a factorg(z) in the integrand, which results in the zeros and poles receiving
different weights which are a function ofg at these points. This weighting is quite useful in number
theory.

Rouche’s Theorem:If f andg are holomorphic on an open set containing a simple closed curve
 and∣f(z)∣ > ∣g(z)∣ for all z on thenf andf + g have the same number of zeros inside. The
idea is to use the argument principle, and note the integral of ℎ′(z)/ℎ(z) is a continuous and integer
valued. If we take the familyℎt(z) = f(z) + tg(z), we see that the value att = 0 equals the value
at t = 1.

Rouche’s theorem provides a nice way to reach several usefulresults. We say a map isopen if
it maps open sets to open sets. Note many simple real valued functions are not open; for example,
f(x) = x2 is not open as it maps(−1, 1) to [0, 1). We have

Open Mapping Theorem: If f is holomorphic and non-constant in a regionΩ, thenf is open.

We may also prove the Open Mapping Theorem by noting that a holomorphic function is analytic,
and then analyzing the series expansion. This is more work ifyou only want the Open Mapping
Theorem, but this perspective is useful for other problems,as it gives a better sense of what the map
is going. This point of view can surface in studying the Riemann Mapping Theorem.

Maximum Modulus Principle: If f is non-constant and holomorphic on an open set, thenf
cannot attain its maximum in the open set (if we assumef is continuous on the boundary of our
open set, thenf attains its maximum on the boundary). The Open Mapping Theorem is the key
ingredient in the proof; asf is open, if it attained a maximum at an interior pointz0 then the image
of a neighborhood of that point includes a ball aboutf(z0), and hence includes a point with larger
absolute value.

Finally, we note that the complex logarithm exists, though it does not have all the properties of
the real logarithm. It can be defined on any simply connected set that is not all ofℂ.

5.4. Weierstrass Products. It is convenient to represent a function as a product. This isespecially
true if we are going to consider its logarithmic derivative,f ′(z)/f(z) = d

dz
log f(z) (which the

argument principle tells us is a natural item to study). An infnite product
∏
(1 + an) converges if∑

∣an∣ <∞ (it may of course converge even if this sum diverges).

LetE0(z) = 1 − z andEk(z) = (1− z) exp(z + z2/2 + ⋅ ⋅ ⋅+ zk/k!) for k ≥ 1. Writing 1 − z
asexp(log(1 − z)), we see the exponential factor is deliberately chosen to cancel the firstk terms
of log(1− z). These are called thecanonical factors.

Weierstrass Products: Given any sequence{an} of complex numbers with∣an∣ → ∞ as
n → ∞, there is an entire functionf that vanishes at eachan and nowhere else. Ifg also only
vanishes at these points, then there is an entireℎ(z) such thatf(z) = g(z) exp(ℎ(z)).
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The key ingredient in the proof is to use these canonical factors to make sure our product con-
verges. Specifically, if we want to havem zeros at the origin then we look atf(z) = zm

∏∞
n=1En(z/an).

This is wasteful; note the degree of the canonical factor is growing. In many instances we can al-
ways taken = 1 or n = 2.

5.5. The Riemann Mapping Theorem. Undoubtable one of the gems of the subject is the Rie-
mann Mapping Theorem. The proof is quite involved, and requires numerous concepts from analy-
sis. The main application of this beautiful result is that wecan reduce the analysis of many problems
to the study of an equivalent problem in the unit disk. This isa lot like the change of base formulas
for logarithms:logb x = logc x/ logc b, which implies that if we know logarithms in one base we
know them in any base.

We say a mapf : U → V is conformal if f is bijective and holomorphic. If that is the case, we
sayU andV areconformally equivalent; one can show this is in fact an equivalence relation (the
hard part is showing that the inverse off is holomorphic, but we can do this through the chain rule).

Below are some useful facts. RememberD is the unit disk.

(1) The Schwarz lemma: iff : D → D is holomorphic andf(0) = 0 then (i)∣f(z)∣ ≤ ∣z∣ for all
z ∈ D; (ii) If ∣f(z0)∣ = ∣z0∣ for somez0 ∈ D thenf is a rotation (i.e.,f(z) = ei�z for some
� ∈ ℝ; (iii) ∣f ′(0)∣ ≤ 1 and if it equals 1 thenf is a rotation. The proof involves looking
at f as a power series (holomorphic implies analytic) and using the maximum modulus
principle.

(2) Automorphisms of the unit disk: Letting �(z) = (�−z)/(1−�z) for � ∈ ℂ with ∣�∣ < 1,
we find that iff is an automorphism ofD then there is a� ∈ ℝ and an� with absolute value
less than 1 such thatf(z) = ei� �(z). The proof uses the Schwarz lemma repeatedly. From
this we can enumerate all automorphisms of any set conformally equivalent toD.

(3) If Ω is an open subset ofℂ andℱ is a family of holomorphic functions, then the family is
said to benormal onΩ if every sequence inℱ has a subsequence that converges uniformly
on every compact subset ofΩ (note the limit function need not be inℱ ). The family is said
to beuniformly bounded on compact subsets ofΩ if for any compactK ⊂ Ω there is a
constantBK > 0 such that for anyf in the family we have∣f(z)∣ ≤ BK for all z ∈ K. The
family is equicontinuouson a compact setK if given any� > 0 there is a� > 0 such that
for anyf in the family and anyz, w ∈ K with ∣z − w∣ < � then∣f(z)− f(w)∣ < �.

The main result we need from all of this is

Montel’s Theorem: Let ℱ be a family of holomorphic functions onΩ. Assume the family is
uniformly bounded on compact subsets ofΩ. Then (1) The family is equicontinuous on compact
subsets ofΩ; (2) the family is normal.

The last part of this theorem is often called the Arzela-Ascoli Theorem. The proof of (1) involves
the Cauchy integral formula, which shows why a similar statement does not hold in the real case
(as we do not have an analogue of this integral representation). The second part requires us to find a
countable, dense subset ofΩ, which is possible by looking at thosez = x+ iy in Ω with x, y ∈ ℚ.
This part does not involve complex analysis, and the corresponding result holds in the real case.
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Riemann Mapping Theorem: Any open, proper (i.e., not all ofℂ) subsetΩ of ℂ that is simply
connected is conformally equivalent to the unit diskD.

There are three main steps to the proof. (1) We first show thatΩ is conformally equivalent to
a subset ofD. If Ω misses an entire ball, we simply invert about that ball and rescale. If not, we
use the complex logarithm to first mapΩ to a set that misses an entire ball and then invert. (2) We
consider the family of holomorphic injective maps fromΩ → D with f(0) = 0 (recall now we are
able to assumeΩ ⊂ D). We use Montel’s theorem, and find a function in the family whose absolute
value of its derivative at 0 is equal to the supremum of the absolute values of the derivatives at the
origin of all holomorphic functions in our family. (3) We then show that the function found in (2) is
surjective, completing the proof; if it weren’t surjective, we explicitly show how to construct a new
function that has larger absolute value of its derivative atthe origin.

It is a natural question to ask when one can extend the map to the boundary; this can be done
in some cases. In fact, if our region is a nice polygon, we can write down explicitly the conformal
equivalence.

Note how amazing this result is – we have the existence of an infinitely differentiable map from
the unit square to the unit disk (as well as more complicated regions!).

5.6. Examples of Contour Integrals. The following are the solutions to some contour integrals
from the midterm, and highlight many of the techniques.

∙ (a: 20 points) ∫ ∞

−∞

x2

x4 + 1
dx.

∙ (b: 20 points) ∮



exp(−z2)
z2

dz

where is the diamond given by∣x∣+ ∣y∣ = 2010.

∙ (c: 20 points) ∫ ∞

−∞

cos x

ex + e−x
dx.

∙ (d: 20 points) ∫ 2�

0

1

a + sin �
d�

wherea > 1. Hint: on the unit circle, e−i� = 1/ei� = 1/z. Try writing sin � as g(z, 1/z)
for some function g.

(a) Let 1 be the part of the real line from−R to R and2 be a counter-clockwise oriented
semicircle of radiusR fromR to −R. Two poles lie in the region enclosed by these paths:
z = e�i/4 ande3�i/4. The residues are

lim
z→e�i/4

(z − e�i/4z2)

z4 + 1
=

e�i/2

(e�i/4 − e3�i/4)(e�i/4 − e5�i/4)(e�i/4 − e7�i/4)

=

√
2

8
−

√
2

8
i
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and

lim
z→e3�i/4

(z − e3�i/4z2)

z4 + 1
=

e3�i/2

(e3�i/4 − e�i/4)(e3�i/4 − e5�i/4)(e3�i/4 − e7�i/4)

= −
√
2

8
−

√
2

8
i

So ∫

1

z2

z4 + 1
dz +

∫

2

z2

z4 + 1
dz = 2�i(−

√
2

4
i) =

�
√
2

2

Now we can calculate∣∣∣∣
∫

2

z2

z4 + 1
dz

∣∣∣∣ ≤ �R ⋅ R2

R4 − 1
=

�R3

R4 − 1

which clearly goes to zero asR goes to infinity. So we then have
∫ ∞

−∞

z2

z4 + 1
dz =

�
√
2

2

by taking the limit of1 asR → ∞.

(b) Since the curve is already closed, we need only find the resdiues. There is clearly only one
pole, a pole of order 2 atz = 0. The residue atz = 0 is 0. One can see this by noting
that the Taylor series expansion ofexp(−z2)/z2 contains only even powers ofz; hence the
coefficient of1/z is 0. Since the integral is2�i times the sum of the residues, the integral
itself must just be 0.

(c) This problem is a bit tricky. The problem is the numeratoris cos z = (eiz+e−iz)/2 while the
denominator isez+e−z. If we takez = x+ ix with x→ ∞, then our function is essentially
equal to 1/2, and thus it isnot decaying to infinity! This tells us that a semi-circular contour
is probably not goign to be a good idea. For problems like this, when you aren’t given the
contour, it’s best to try and get a feel for the size of the function in different places. Here
we see

eiz + e−iz

ez + e−z
=

eixe−y + e−ixey

exeiy + e−xe−iy
,

and then takingx = y shows that this ratio is essentially 1/2 forx large.
What contour should we choose? Seeing exponential functions like these, a rectangular

one is a natural guess. Why? We have periodicity in the exponential functions, and there
is thus a chance of the ‘top’ and ‘bottom’ being simply multiples of each other. For this
one, we take a rectangle with vertices−R,R,R + i� and−R + i�. It’s not too bad to
show that the integral over the two vertical sides tends to zero asR → ∞, and then a lit-
tle algebra relates the top contribution to the bottom. All that remains is to find the poles
(which probably should have been done earlier). We needez + e−z = 0, or e2z = −1. As
ei� = −1 for � = �± 2�n, we see the poles are located atz = �/2± �n, which means that
there is only one pole inside the region. After doing all the algebra, one finds the answer is
�/(e�/2 + e−�/2).
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(d) If z is a point on the unit circle, say,z = ei�, thene−i� = 1/z. Thensin � = (z − 1/z)/2i
(thei in the denominator is very important – you will get an answer that doesn’t make sense
if you forget it – more on that observation later). Further, sincez = ei� we have

dz = iei�d� = izd�

or equivalently

d� = −id�
z
.

Therefore∫ 2�

0

1

a+ sin �
d� =

∫



1

a + (z − 1/z)/2i
⋅ − i

z
dz =

∫



2

z2 + 2iaz − 1
dz

where is the unit circle centered at 0. The integrand has poles at−ia ± i
√
a2 − 1. The

only one inside the unit circle, however, is−ia + i
√
a2 − 1 (because∣a∣ > 1), which gives

the residue as
2

(−ia + i
√
a2 − 1)− (−ia− i

√
a2 − 1)

=
1

i
√
a2 − 1

So the integral is just2�i times the above; that is,
∫ 2�

0

1

a + sin �
d� =

2�√
a2 − 1

.

Note that the answer has a very good property – it is undefined whena2 ≤ 1. This makes
sense, as our original integral is only well-defined fora2 > 1, because for smallera2 the
denominator can vanish. It is very important to be able to glance at a solution and test for
reasonableness.

Another way to do this problem is to use the geometric series expansion, assuming you
know the integral ofsin x to any integer power. We have

1

a + sin �
=

1

a

1

1−
(
− sin �

a

) =
1

a

(
1− sin �

a
+

sin2 �

a2
− ⋅ ⋅ ⋅

)
.

Of course, even after doing the integral ofsin2k � we’re not done – we then have to recog-
nize the Taylor series expansion of2�(a2−1)−1/2, a highly non-trivial observation to make.
That said, this does show that, in principle, this integralcould be done without resorting to
complex analysis (and gives an appreciation of the power of complex analysis!).

Let’s spend a little more time thinking about this problem. We can ‘see’ many features
of the solution. Asa → ∞, the denominator is essentiallya, and thus the integral tends to
2�/a asa → ∞. We know the integral makes sense for∣a∣ > 1 and not for∣a∣ ≤ 1; the
denominator is zero whena = ±1. Thus it is reasonable to guess that the denominator of
the integral looks like

√
a2 − 1. Why? This is bad for∣a∣ ≤ 1, and tends toa (if we take

the appropriate square-root) fora large. This is not aproof, but it suggests that the answer
should be something like2�/

√
a2 − 1.
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6. FOURIER ANALYSIS (MATH 3XX )

(1) Integral transforms: If K(s, t) andg(t) are nice functions, we define the integral trans-
form of g with kernelK to be

∫∞
−∞ g(t)K(s, t)dt. What this does is, given a function as

input, generates a new function. Two particularly useful transforms are the Fourier trans-
form (f̂(y) =

∫∞
−∞ f(x)e−2�ixydx) and the Laplace transform ((ℒf)(s) =

∫∞
0
f(t)e−stdt).

Depending on the problem, it may be worthwhile to take a transform of both sides, as often
the transformed quantity is easier to analyze. For example,if X andY are independent
random variables with densitiesfX andfY , then the density of their sum is the convolution

fX+Y (t) = (fX ∗ fY )(t) =

∫ ∞

−∞
fX(u)fY (t− u)du.

As the Fourier transform of a convolution is the pointwise product of the Fourier transforms,
we have

f̂X+Y (t) = f̂X(t) ⋅ f̂Y (t);
thus the convolution integral has been replaced with standard multiplication (the integration
has not vanished – we must take the Fourier transforms offX andfY , and then we must take
the inverse Fourier transform to recoverfX+Y ; however, this is still often progress). There
are many other nice properties of the Fourier transform. Forexample, letp be a probability
density. Then

p̂(y) =

∫ ∞

−∞
p(x)e−2�ixydx.

Taking the derivative yields

p̂′(y) =

∫ ∞

−∞
p(x) ⋅ (−2�ix)e−2�ixydx,

and then settingy = 0 yields

p̂′(0) = −2�i

∫ ∞

−∞
xp(x)dx = −2�iE[X ].

We note two important items: the Fourier transform of−2�ix times the functionp is the
derivative of the Fourier transform ofp, and the derivative of the Fourier transform at 0 is a
simple multiple of the mean (and a generalization holds for higher moments).

(2) Complex differentiability: A function of a complex variable is said to be complex differ-
entiable atz if

lim
ℎ→0

f(z + ℎ)− f(z)

ℎ

exists asℎ ∕= 0 tends to 0 along any path. Functions such as the polynomials
∑n

k=0 ckz
k

are differentiable, while functions such aszk are not (rememberz = x− iy if z = x+ iy).
If a complex function is differentiable once, it is infinitely differentiable and it equals
its Taylor series; this is remarkably different than real analysis (remember the function
f(x) = exp(−1/x2) for x ∕= 0 and0 for x = 0; this function is infinitely differentiable, but
only equals its Taylor series atx = 0 (which is not impressive, as by definition all functions
equal their Taylor series at the expansion point!).
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(3) Analytic continuation: Given a functionf defined in some subset of the complex plane, its
analytic continuation is a new function which agrees with the old in the original region, but
makes sense elsewhere. The standard example is the geometric series formula:

∑∞
n=0 x

n =
1/(1−x); the right hand side makes sense for all values ofx ∕= 1, while the left hand side is
only defined if∣x∣ < 1. This leads to the interpretation that1+ 2+ 4+ 8+ 16+ ⋅ ⋅ ⋅ = −1!

(4) Accumulation points: Let f be a complex differentiable function defined on an open set
U ; assumef(zn) = 0 for some sequence of points{zn}∞n=1 that has an accumulation point
in U (i.e., there is somez∗ such that a subsequence of thezn’s converge toz∗). Then a
beautiful result from complex analysis says thatf is identically zero! Again, this is very
different than real analysis: the functionf(x) = x3 sin(1/x) for x ∕= 0 and0 for x = 0
is zero wheneverx = 1/n�, and is zero atx = 0; however, clearly this function is not
identically zero even near the origin (just considerx = 2/n� for n odd). In probability,
this result is used to study the moment problem, namely, how many moments are needed to
uniquely determine a probability density.

(5) Poisson summation:for nice functions,
∑
f(n) =

∑
f̂(n). Often this allows us to re-

place a long sum of slowly decaying terms with a short sum of rapidly decaying terms. We
used this in obtaining very good estimates on the probability of being far from the mean for
normal random variables, as well as proving the functional equation of the Riemann zeta
function.

(6) A nice function can be uniformly approximated by a trigonometric polynomial (Fejer’s
theorem). One great use of this is innk� mod 1, as trig functions are particularly nice to
work with.
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7. PROBABLITY THEORY (MATH 341)

7.1. Combinatorics.

(1) Combinatorics: There are several items to remember for combinatorial problems. The first
is to be careful and avoid double counting. The second is thatfrequently a difficult sum
can be interpreted two different ways; one of the interpretations is what we want, while the
other is something we can do. We have seen many examples of this. One is that

n∑

k=0

(
n

k

)2

=
n∑

k=0

(
n

k

)(
n

n− k

)

is the middle coefficient of(x+ y)2n, and thus equals
(
2n
n

)
.

(2) ‘Auxiliary lines’: In geometry, one frequently encounters proofs where the authors add an
auxiliary line not originally in the picture; once the line is added things are clear, but it is
often a bit of a mystery as to how someone would think of addinga line in that place. In
combinatorics we have an analogue of this. Consider the classic cookie problem: we wish
to divide 10 identical cookies among 5 distinct people. One simple way to do this is to
imagine we have 14 (14 = 10 + 5 − 1) cookies, and eat 4 of them. This partitions the
remaining cookies into 5 sets, with the first set going to the first person and so on.

For example, if we have10 cookies and5 people, say we choose cookies3, 4, 7 and13
of the10 + 5− 1 cookies:

⊙ ⊙ ⊗ ⊗ ⊙ ⊙ ⊗ ⊙ ⊙ ⊙ ⊙ ⊙ ⊗ ⊙

This corresponds to person1 receiving two cookies, person2 receiving zero, person3 re-
ceiving two, person4 receiving five and person5 receiving one cookie.

This implies that the answer to our problem is
(
10+5−1
5−1

)
, or in general

(
C+P−1
P−1

)
.

(3) Find an interpretation: Consider the following sum:
∑C

c=0

(
c+P−1
P−1

)
. By the arguments

above, we are summing the number of ways of dividingc cookies amongP people for
c ∈ {0, . . . , C} (or we divideC cookies amongP people, but we do not assume each
cookie is given). A nice way to solve this is to imagine that there is aP + 1st person who
receivesC − c cookies, in which case this sum is now the same as counting thenumber of
ways of dividingC cookies amongP + 1 people where each cookie must be assigned to
a person, or

(
C+P
P

)
. (See also the ‘tell a story’ entry in §7.2 and the ‘convolution’ entry in

§7.3.)

(4) Inclusion - Exclusion Principle: SupposeA1, A2, . . . , An is a collection of sets. Then the
Inclusion-Exclusion Principle asserts that

∣∣∣∣∣
n∪

i=1

Ai

∣∣∣∣∣ =
∑

i

∣Ai∣ −
∑

i,j

∣Ai ∩Aj ∣+
∑

i,j,k

∣Ai ∩Aj ∩Ak∣ − ⋅ ⋅ ⋅ .

This has many uses for counting probabilities. We used it to determine the probability of a
generic integer is square-free, as well as the probability arandom permutation of{1, . . . , n}
returns at least one element to its initial location.
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(5) Binomial Theorem: We have

(x+ y)n =
n∑

k=0

(
n

k

)
xkyn−k =

n∑

k=0

(
n

k

)
xn−kyk;

in probability we usually takex = p andy = 1 − p. The coefficients
(
n
k

)
= n!

k!(n−k)!
have

the interpretation as counting the number of ways of choosing k objects fromn when order
does not matter. A better definition of this coefficient is

(
n

k

)
=

n(n− 1) ⋅ ⋅ ⋅ (n− (k − 1))

k(k − 1) ⋅ ⋅ ⋅1 .

The reason this definition is superior is that
(
3
5

)
makes sense with this definition, and is just

zero. One can easily show
(
n
k

)
= 0 wheneverk > n, which makes sense with our combina-

torial interpretation: there is no way to choosek objects fromn whenn < k, regardless of
whether or not order matters.

7.2. General Techniques of Probability.

(1) Differentiating Identities: Equalities are the bread and butter of mathematics; differenti-
ating identities allows us to generate infinitely many more from one, which is a very good
deal! For example, consider the identity

(p+ q)n =
n∑

k=0

(
n

k

)
pkqn−k. (7.1)

Applying the operatorp d
dp

to both sides we find

p ⋅ n(p+ q)n−1 =
n∑

k=0

k

(
n

k

)
pkqn−k. (7.2)

Settingq = 1− p yields the mean of a binomial random variable:

np =
n∑

k=0

k

(
n

k

)
pk(1− p)n−k. (7.3)

It is very important that initiallyp andq are distinct, free variables, and only at the end do
we setq = 1− p. Another example is differentiating

∑∞
n=0 x

n = 1/(1−x) by applying the
operatorx d

dx
gives

∑∞
n=0 nx

n = x/(1− x)2. While we can prove the2mth moment of the
standard normal is(2m−1)!! by induction, we can also do this with differentiating identities.

(2) Law of Total Probability: This is perhaps one of the most useful observations:Prob(Ac) =
1 − Prob(A), whereAc is the complementary event. It is frequently easier to compute the
probability that something does not happen than the probability it does. Standard examples
include hands of bridge or other card games.

(3) Fundamental Theorem of Calculus (cumulative distributionfunctions and densities):
One of the most important uses of the Fundament Theorem of Calculus is the relationship
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between the cumulative distribution functionFX of a random variableX and its densityfX .
We have

FX(x) = Prob(X ≤ x) =

∫ x

−∞
fX(t)dt.

In particular, the Fundamental Theorem of Calculus impliesthatF ′
X(x) = fX(x). This

means that if we know the cumulative distribution function,we can essentially deduce the
density. For example, letX have the standard exponential density (sofX(x) = e−x for
x ≥ 0 and 0 otherwise) and setY = X2. Then fory ≥ 0 we have

FY (y) = Prob(Y ≤ y) = Prob(X2 ≤ y) = Prob(X ≤ √
y) = FX(

√
y).

We now differentiate, using the Fundamental Theorem of Calculus and the Chain Rule, and
find that fory ≥ 0

fY (y) = F ′
X(

√
y) ⋅ d

dy
(
√
y) = fx(

√
y) ⋅ 1

2
√
y

=
e−

√
y

2
√
y
.

(4) Binary (or indicator) random variables: For many problems, it is convenient to define a
random variable to be 1 if the event of interest happens and 0 otherwise. This frequently
allows us to reduce a complicated problem to many simpler problems. For example, con-
sider a binomial process with parametersn andp. We may view this as flipping a coin
with probability p of heads a total ofn times, and recording the number of heads. We
may letXi = 1 if the ith toss is heads and 0 otherwise; then the total number of heads is
X = X1 + ⋅ ⋅ ⋅+Xn. In other words, we have represented a binomial random variable with
parametersn andp as a sum ofn independent Bernoulli random variables. This facilitates
calculating quantities such as the mean or variance, as we now haveE[X ] = nE[Xi] = np
andVar(X) = nVar(Xi) = np(1 − p). Explicitly, to compute the mean we need to eval-
uateE[Xi] = 1 ⋅ p + 0 ⋅ (1 − p) and then multiply byn; this is significantly easier than
directly evaluating the mean of the binomial random variable, which requires us to deter-
mine

∑n
k=0 k ⋅

(
n
k

)
pk(1− p)n−k.

(5) Linearity of Expectation: One of the worst complications in probability is that random
variables might not be independent. This greatly complicates the analysis in a variety of
cases; however, if all we care about is the expected value, these difficulties can vanish! The
reason is that the expected values of a sum is the sum of the expected values; explicitly, if
X = X1 + ⋅ ⋅ ⋅ + Xn thenE[X ] = E[X1] + ⋅ ⋅ ⋅ + E[Xn]. One great example of this was
in the coupon or prize problem. Imagine we havec different prizes, and each day we are
randomly given one and only of thec prizes. We assume the choice of prize is independent
of what we have, with each prize being chosen with probability 1/c. How long will it take
to have one of each prize? If we letXi denote the random variable which is how long we
must wait, giveni − 1 prizes, until we obtain the next new prize, thenXi is a geometric
random variable with parameterpi = 1 − i−1

c
and expected value1

pi
= c

c−(i−1)
. Thus the

expected number of days we must wait until we have one of each prize is simply

E[X ] =

c−1∑

i=1

E[Xi] =

c−1∑

i=1

c

c− (i− 1)
= c

c∑

i=1

1

i
= cHc,
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whereHc = 1/1+ 1/2+ ⋅ ⋅ ⋅+1/c is thecth harmonic number (andHc ≈ log c for c large).
Note we do not need to consider elaborate combinations or howthe prizes are awarded. Of
course, if we want to compute the variance or the median, it’sa different story and we can’t
just use linearity of expectation.

(6) Bring it Over: We have seen two different applications of this method. One is in evaluating
integrals. LetI be a complicated integral. What often happens is that, aftersome number of
integration by parts, we obtain an expression of the formI = a+bI; so long asb ∕= 1 we can
rewrite this as(1− b)I = a and then solve forI (I = a

1−b
). This frequently occurs for inte-

grals involving sines and cosines, as two derivatives (or integrals) basically returns us to our
starting point. We also saw applications of this in memoryless games, to be described below.

(7) Memoryless games / processes:There are many situations where to analyze future be-
havior, we do not need to know how we got to a given state or configuration, but rather
just what the current game state is. A terrific example is playing basketball, with the first
person to make a basket winning. SayA shoots first and always gets a basket with proba-
bility p, andB shoots second and always makes a basket with probabilityq. A andB keep
shooting,A thenB thenA thenB and so on, until someone makes a basket. What is the
probabilityA wins? The long was is to note that the probabilityA wins on hernth shot is
((1− p)(1− q))n−1 p, and thus

Prob(A wins) =
∞∑

n=0

((1− p)(1− q))n−1 p;

while we can evaluate this with the geometric series, there is an easier way. How canA
win? She can win by making her first basket, which happens withprobability p. If she
misses, then to win she needsB to miss as well. At this point, it isA’s turn to shoot again,
and it is as if we’ve just started the game. It does not matter that both have missed! Thus

Prob(A wins) = p+ (1− p)(1− q)Prob(A wins).

Note this is exactly the set-up for using ‘Bring it over’, andwe find

Prob(A wins) =
p

1− (1− p)(1− q)
;

in fact, we can use this to provide a proof of the geometric series formula! The key idea
here is that once both miss, it is as if we’ve just started the game. This is a very fruitful way
of looking at many problems.

(8) Standardization: Given a random variableX with finite mean and variance, it is almost al-
ways a good idea to consider the standardized random variableY = (X−E[X ])/StDev(X),
especially ifX is a sum of independent random variables. The reason is thatY now has
mean 0 and variance 1, and this sets us up to compare quantities on the same scale. Equiv-
alently, when we discuss the Central Limit Theorem everything will converge to the same
distribution, a standard normal. We thus will only need to tabulate the probabilities for one
normal, and not a plethora or even an infinitude. The situation is similar to logarithm tables.
We only need to know logarithms in one base to know them in all,as the Change of Base
formula giveslogc x = logb x/ logb c (and thus if we know logarithms in baseb, we know
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then in basec).

(9) Tell a story: One of our exam questions was whether or notf(n) =
(
n+k−1

n

)
(1− p)npk for

n ∈ {0, 1, 2, . . .}, p ∈ (0, 1) is a probability mass function. One way to approach a problem
like this is to try and tell a story. How should we interpret the factors? Well, let’s makep the
probability of getting a head when we toss a coin, or we could let it denote the probability
of a success. Then(1 − p)npk is the probability of a string with exactlyn failures andk
successes. There are

(
n
k

)
ways to choose whichn of n+k places to be the failures; however,

we have
(
n+k−1

n

)
. What’s going on? The difference is that we are not considering all possi-

ble strings, but only strings where thelast event is a success. Thus we must have exactlyn
failures (or exactlyk−1 successes) in the firstn+k−1 tosses followed by a success on trial
n+k. By finding a story like this, we know it is a probability mass function; it is possible to
directly sum this, but that is significantly harder. (See also the ‘find an interpretation’ entry
in §7.1 and the ‘convolution’ entry in §7.3.)

(10) Probabilistic Models: We can often gain intuition about complex but deterministicphe-
nomena by employing a random model. For example, the Prime Number Theorem tells us
that there are aboutx/ log x primes at mostx, leading to the estimation that anyn is prime
with probability about1/ logn (this is known as the Cramer model). Using this, we can
estimate various number theoretic quantities. For example, letXn be a random binary indi-
cator variable which is 1 with probability1

logn
and0 with probability1− 1

logn
. If we want to

estimate how many numbers up tox start a twin prime pair (i.e.,n andn+2 are both prime)
then the answer would be given by the random variableX = X2X4+X3X5+⋅ ⋅ ⋅+Xn−2Xn.
As everything is independent andE[Xk] =

1
log k

, we have

E[X ] =

n−2∑

k=2

E[Xk]E[Xk+2] =

n−2∑

k=2

1

log(k) log(k + 2)
≈
∫ n−2

2

dt

log2 t
≈ x

log2 x
.

The actual (conjectured!) answer is aboutC2x/ log
2 x, where

C2 =
∏

p≥3
p prime

p(p− 2)

(p− 1)2
≈ .66016.

What’s important is to note that the simple heuristicdid capture the correctx dependence,
namely a constant timesx/ log2 x. Of course, one must be very careful about how far one
pushes and trusts these models. For example, it would predict there are aboutC3x/ log

3 x
prime triples(n, n + 2, n + 4) up to x for some non-zeroC3, whereas in actuality there
is only the triple(3, 5, 7)! The problem is this model misses arithmetic, and in any three
consecutive odd numbers exactly one of them is divisible by 3.

(11) Simplifying sums: Often we encounter a sum which is related to a standard sum; this
is particularly true in trying to evaluate moment generation functions. Some of the more



TAKEAWAYS FROM UNDERGRADUATE MATH CLASSES 27

common (and important) identities are

ex = 1 + x+
x2

2!
+
x3

3!
+ ⋅ ⋅ ⋅ =

∞∑

n=0

xn

n!

1

1− x
= 1 + x+ x2 + x3 + ⋅ ⋅ ⋅ =

∞∑

n=0

xn

1

(1− x)2
= 1 + 2x+ 3x3 + 4x3 =

∞∑

n=0

(
n

1

)
xn−1

1

(1− x)k
=

∞∑

n=0

(
n

k

)
xn−k

(x+ y)n = xn + nxn−1y +
n(n− 1)

2
xn−2y2

=
n∑

k=0

(
n

k

)
xkyn−k =

n∑

k=0

(
n

k

)
xn−kyk.

The goal is to ‘see’ a complicated expression is one of the above (for a special choice
of x). For example, letX be a Poisson with parameter�; thusfX(n) = x�ne−n/n! if
n ∈ {0, 1, 2, . . . } and0 otherwise. Then

MX(t) = E[etX ] =
∞∑

n=0

etn ⋅ �
ne−�

n!
.

Fortunately, this looks like one of the expressions above, namely the one forex. Rearranging
a bit gives

MX(t) = e−�
∞∑

n=0

(�et)n

n!
= e−� ⋅ exp

(
�et
)
= exp

(
�et − �

)
.

7.3. Moments.

(1) Convolution: Let X andY be independent random variables with densitiesfX andfY .
Then the density ofX + Y is

fX+Y (u) = (fX ∗ fY )(u) :=

∫ ∞

−∞
fX(u)fY (t− u)du;

we call fX ∗ fY the convolution ofX andY . While we can prove by brute force that
fX ∗ fY = fY ∗ fX , a faster interpretation is obtained by noting that since addition is
commutative,X + Y = Y + X and hencefX+Y = fY+X , which implies convolution is
commutative. Convolutions give us a handle on the density for sums of independent random
variables, and is a key ingredient in the proof of the CentralLimit Theorem.

(2) Generating Functions:Given a sequence{an}∞n=0, we define its generating function by

Ga(s) =
∞∑

n=0

ans
n
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for all s where the sum converges. For discrete random variables thattake on values at the
non-negative integers, an excellent choice is to takean = Prob(X = n), and the result
is called the generating function of the random variableX. Using convolutions, we find
that if X1 andX2 be independent discrete random variables taking on non-negative inte-
ger values, with corresponding probability generating functionsGX1(s) andGX2(s), then
GX1+X2(s) = GX1(s)GX2(s).

(3) Moment Generating Functions: For many probability problems, the moment generating
functionMX(t) is more convenient to study than the generating function. Itis defined by
MX(t) = E[etX ], which implies (if everything converges!) that

MX(t) = 1 + �′
1t+

�′
2t

2

2!
+
�′
3t

3

3!
+ ⋅ ⋅ ⋅ ,

where�′
k = dkMX(t)/dt

k
∣∣∣
t=0

is the kth moment ofX. Key properties of the moment

generating function are: (i) Let� and� be constants. Then

M�X+�(t) = e�tMX(�t).

(ii) if X1, . . . , XN are independent random variables with moment generating functions
MXi

(t) which converge for∣t∣ < �, then

MX1+⋅⋅⋅+XN
(t) =MX1(t)MX2(t) ⋅ ⋅ ⋅MXN

(t).

If the random variables all have the same moment generating functionMX(t), then the
right hand side becomesMX(t)

N . Unfortunately the moment generating function does not
always exist in a neighborhood of the origin (this can be seenby considering the Cauchy
distribution); this is rectified by studying the characteristic function,E[eitX ], which is es-
sentially the Fourier transform of the density (that isE[e−2�itX ]).

(4) Moment Problem: When does a sequence of moments uniquely determine a probability
density? If our distribution is discrete and takes on only finitely many (for definiteness,
sayN) values, then only finitely many moments are needed. If the density is continuous,
however, infinitely many might not be enough. Consider

f1(x) =
1√
2�x2

e−(log2 x)/2

f2(x) = f1(x) [1 + sin(2� log x)] .

These two densities have the same integral moments (theirkth moments areek
2/2 for k a non-

negative integer); while they also have the same half-integral moments, all other moments
differ (thus there is no sequence of moments where they agreewhich has an accumulation
point; see §6). Thus it is possible for two densities to have the same integral moments but
differ.

7.4. Approximations and Estimations.
(1) Cauchy-Schwarz inequality:For complex-valued functionsf andg,

∫ 1

0

∣f(x)g(x)∣dx ≤
(∫ 1

0

∣f(x)∣2dx
) 1

2

⋅
(∫ 1

0

∣g(x)∣2dx
) 1

2

.
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One of my favorite applications of this was proving the absolute value of the covariance of
X andY is at most the product of the square-roots of the variances. The key step in the
proof was writing the joint densityfX,Y (x, y) as

√
fX,Y (x, y) ⋅

√
fX,Y (x, y) and putting one

factor with ∣x − �X ∣ and one with∣y − �Y ∣. The reason we do this is we cannot directly
integratex2 or ∣x − �X ∣2; we need to hit it with a probability density in order to have a
chance of getting a finite value. This explains why we write the density as a product of its
square root with its square root; it allows us to use Cauchy-Schwarz.

(2) Stirling’s Formula: Almost any combinatorial problem involves factorials, either directly
or through binomial coefficients. It is essential to be able to estimaten! for largen. Stirling’s
formula says

n! = nne−n
√
2�n

(
1 +

1

12n
+

1

288n2
− 139

51840n3
+ ⋅ ⋅ ⋅

)
;

thus forn large,n! ≈ (n/e)2
√
2�n. There are many ways to prove this, the most common

being complex analysis or stationary phase. We can get a ballpark estimate by ‘summify-
ing’. We haven! = exp(logn!), and

log n! =
n∑

k=1

log k ≈
∫ n

1

log tdt.

As the anti-derivative oflog t is t log t, we find log n! ≈ n logn − n, son! ≈ en logn−n =
nne−n, which is off by a factor of

√
2�n (while this is a large number, it is small relative

to nne−e. If we wanted, using the integral test and a better job of estimate upper and lower
sums (the Euler-Maclaurin formula), we could get a better approximation forn!.

(3) Chebyshev’s Theorem: Chebyshev’s theorem (or inequality) is a mixed blessing; itis
terrific in the sense that it works for any density that has finite mean and variance; however,
in many applications its estimates are far from the truth. The reason is that it works forall
such densities, and thus cannot exploit any specific properties of the density to get decay.
(This is similar to the difference between using Divide and Conquer or Newton’s Method
to find a zero of a function; Newton’s method is magnitudes faster because it assumes more
about the function, namely differentiability, and thus it exploits that to get better estimates.)
Chebyshev’s theorem states

Prob(∣X − �∣ ≥ k�) ≤ 1

k2
.

Note the event∣X − �∣ ≥ k� is a very natural event to consider: we are seeing how far
X is from its expected value, and measuring this difference interms of the natural units,
the standard deviation. The assumptions for Chebyshev’s theorem are a little weaker than
those for the Central Limit Theorem, and there are situations where crude bounds suffice
(for example, some of the problems we studied in additive number theory).

(4) The Central Limit Theorem: The Central Limit Theorem (CLT) states that ifX1, . . . , Xn

are independent, identically distributed random variables with mean� and variance�2, then
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in many instances we have

Zn :=
X1 + ⋅ ⋅ ⋅+Xn − n�

�
√
n

=
X1+⋅⋅⋅+Xn

n
− �

�/
√
n

converges to having the standard normal distribution asn → ∞. If the moment gener-
ating function exists in a neighborhood containing the origin, that suffices for the CLT
to hold (though with additional work we the conclusion holdsunder weaker assumptions
about theXi’s). In practice one often uses the normal approximation once n ≥ 30. One
application is to use the CLT to estimate sums of random variables. Another is for hy-
pothesis testing; there key thresholds are that ifZ has the standard normal distribution, the
Prob(∣Z∣ ≤ 1) ≈ 68.3%, Prob(∣Z∣ ≤ 1.96) ≈ 95.0% andProb(∣Z∣ ≤ 2.575) ≈ 99.0%.

(5) Taylor Series: See the section from Calculus I and II. For us, particularly important Taylor
series are

log(1 + x) = x− x2

2
+
x3

3
− x4

4
+ ⋅ ⋅ ⋅

log(1− x) = −
(
x+

x2

2
+
x3

3
+
x4

4
+ ⋅ ⋅ ⋅

)

ex = 1 + x+
x2

2!
+
x3

3!
+ ⋅ ⋅ ⋅ = lim

n→∞

(
1 +

x

n

)n

e−x = 1− x+
x2

2!
− x3

3!
+ ⋅ ⋅ ⋅ = lim

n→∞

(
1− x

n

)n

1

1− x
= 1 + x+ x2 + x3 + ⋅ ⋅ ⋅ .

7.5. Applications.
(1) Benford’s Law:
(2) Additive Number Theory:
(3) Economics:
(4) Gambling:
(5) Sabermetrics:
(6) Monte Carlo Integration:
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8. NUMBER THEORY (MATH 308 AND 406)

(1) Elementary functions: ei� = cos(�) + i sin(�), �(q) is the number of positive integers at
mostq that are relatively prime toq, ....

(2) The Prime Number Theorem or the Siegel-Walfisz Theorem:we used these frequently
in analyzing prime sums as these yield unconditional estimates.

(3) Partial summation: allows us to pass from one known sum to another. For example, know-
ing
∑

p≤x log p ∼ x we can then evaluate
∑

p≤x 1.

(4) Dirichlet’s Pidgeonhole principle: this was very useful in studyingnk� mod 1, and gave
us very good rational approximations to irrationals.

(5) Unique factorization of the integers: this was crucial in proving�(s) =
∑

1/ns also
equals

∏
p(1− p−1)−1; as we knwo where the integers are, the hope is that we can use this

knowledge to deduce information about the primes.
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9. GENERAL TECHNIQUES (FOR MANY CLASSES)

These are techniques that appear in several different classes I’ve taught, over and over. The
notes below are written from the point of view of a student whohas taken these classes, and
thus some of the passages below may be hard to follow / may refer to advanced material.

(1) Being algebraically lazy: Another common theme is that we try to do as little work as
possible to get as good of an estimate as needed. For example,we computed the mo-
ment generating function of the standard normal by completing the square, and found
MX(t) = E[etX ] = et

2/2. Later we needed to Fourier transform of the standard normal;
while we could attack the integral which arises, it is far easier to note the Fourier transform
at y is the same as the moment generating function at−2�iy. While we need to use some
results from complex analysis to justify this argument, we now get the Fourier transform.

(2) Problem formulation and blinders: We’ve also seen on a few problems how the way the
problem is formulated can influence how one attempts to solveit. For example, recall the
functionx3 sin(1/x). The oscillation is bounded by two cubics; however, if we just look
at the part above thex-axis, the plot looks like a parabola. It is thus a good idea, if you’re
stuck, to try and think of alternative ways of looking at a problem. Other examples include
the graph coloring problem from the HW (vertices are 2 through N and are connected if
they share a divisor; the HW problem was to show the coloring number is at least 13, which
can be done by looking at powers of 2, but it’s actually at least 5000, from looking at even
numbers) and the following (for eachn > 1 finding anm > 1 such thatnm only has 0s and
1s base 10; one proof is similar to the pidgeonhole problem ofa subset of{a1, . . . , an} has
a sum divisible byn). It is amazing how often one can get trapped at looking at a problem
in a certain way; this is something to be aware of.

(3) Choosing approaches.Certain functions become natural choices in studying certain prob-
lems. For example, fornk� mod 1 we use the exponential function. The reason this is
so useful is thatexp(2�ink�) = exp(2�i(nk� mod 1)). Thus we may drop the difficult
modulo 1 condition and sum more easily. Depending on the problem, different functions
and expansions will be more useful than others. The ease at which the exponential function
handles the modulo 1 condition suggests the usefulness of applying Fourier analysis.

(4) Adding zero / multiplying by one: This is perhapsthe most important technique to learn,
though it is one of the hardest to master. The difficult part ofthese methods is figuring out
how to ‘do nothing’ in an intelligent way. The first example you might remember is proving
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the product rule from calculus. LetA(x) = f(x)g(x). Then

A′(x) = lim
ℎ→0

A(x+ ℎ)−A(x)

ℎ

= lim
ℎ→0

f(x+ ℎ)g(x+ ℎ)− f(x)g(x)

ℎ

= lim
ℎ→0

f(x+ ℎ)g(x+ ℎ)-f(x)g(x+h) + f(x)g(x+h)− f(x)g(x)

ℎ

= lim
ℎ→0

[
f(x+ ℎ)g(x+ ℎ)− f(x)g(x+ ℎ)

ℎ
+
f(x)g(x+ ℎ)− f(x)g(x)

ℎ

]

= lim
ℎ→0

f(x+ ℎ)− f(x)

ℎ
g(x+ ℎ) + lim

ℎ→0
f(x)

g(x+ ℎ)− g(x)

ℎ

= lim
ℎ→0

f(x+ ℎ)− f(x)

ℎ
lim
ℎ→0

g(x+ ℎ) + f(x) lim
ℎ→0

g(x+ ℎ)− g(x)

ℎ
= f ′(x)g(x) + f(x)g′(x).

My favorite example was probably in proving the multinomialdistribution is a density.

(5) Summifying or summification: We frequently replace
∏
an with exp (log

∏
an), as this

converts the product to a sum, and we have a much better understanding of sums. Proba-
bly the most important use was in proving the Central Limit Theorem, where we replaced
studying

∏
iMXi

(t) with studying
∑

i logMXi
(t). We also used it to obtain an approx-

imation for Stirling’s formula, replacingn! with
∑

ℓ≤n log ℓ (which we evaluated by us-
ing the integral test). We used this to provide a good lower bound for the singular series

S(N) =
∏

p∣N

(
1− 1

(p−1)2

)
in the Circle Method (writing odd numbers as the sum of three

primes). We also used it to get a good lower bound for�(q), which allowed us to see that
q/ log log q ≪ �(q) ≪ q − 1.

(6) L2-norms: in the Circle Method we had the generating functionFN (x) =
∑

p≤N log p ⋅
exp(2�ipx). We are able to get a very good bound for

∫ 1

0
∣FN(x)∣2dx as ∣FN(x)∣2 =

FN (x)FN(−x), and the only terms that survive the integration are when we have reinforce-
ment. More generally, it is often easy (or at least easier) toget reasonable estimates for
quantities such as

∫
∣F (x)∣2kdx.

(7) Removing conditions: Whenever you have a theorem, you should always explore what
happens if you remove a condition. Frequently (though not always) the claim no longer
holds; sometimes the claim is still true but the proof is harder. Rarely, but it can happen,
removing a condition causes you to look at a problem in a new light, and find a simpler
proof.

(8) Efficient algebra: It is frequently worthwhile to think about whether or not we can ap-
proach a tedious algebra problem another way. Some examplesfrom previous courses: to
computeAn for n large, diagonalizeA if possible, sayA = SΛS−1 with Λ the diagonal
matrix of eigenvalues. ThenAn = SΛnS−1, andΛn is readily computed. Another example
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is telescoping series,(a1−a0)+(a2−a1) + ⋅ ⋅ ⋅+ (an−an−1) = an−a0; this is a key ingre-
dient in many proofs of the Fundamental Theorem of Calculus.Frequently in probability
we combine these approaches with recognizing and exploiting an identity; for example, if
we had to evaluate

(
n
2

)
22 +

(
n
3

)
23 + ⋅ ⋅ ⋅ +

(
n
n

)
2n, we might notice that this is almost the

binomial expansion of(1 + 2)n; it would be, but we’re missing the first two terms. The
solution is to add zero by adding and subtracting those terms, which gives
(
n

2

)
22 +

(
n

3

)
23 + ⋅ ⋅ ⋅+

(
n

n

)
2n =

(
n∑

k=0

(
n

k

)
1n−k2k

)
−
((

n

0

)
+

(
n

1

)
2

)

= (1 + 2)n − (n+ n(n− 1)) = 3n − n2;

note we included the factor1n−k to make this match the standard binomial theorem expan-
sion.

(9) Illuminating algebra: It is very easy to obtain complicated expressions involvingthe pa-
rameters of interest; while the answer is correct, the final product is not illuminating. It is
worthwhile to see if the answer can be simplified. For example, consider the sabermetrics
(baseball math) problem where we had TeamX scores runs from a geometric distribution
with parameterp (in this case,Prob(X = m) = (1 − p)pm for m ∈ {0, 1, 2, . . .} and
allows runs to TeamY with a geometric distribution with parameterq; we assume the two
random variables are independent. The mean number of runs TeamX scores is denoted
RS, and equalsRS = p

1−p
which impliesp = RS

RS+1
; we letRA denote the runs allowed, and

RA = q
1−q

which impliesq = RA
AS+1

. After some algebra we found the probability TeamX
wins is

p(1− q)

p(1− q) + q(1− p)
.

No one, however, things in terms of the decay probability from scoringm to scoringm+ 1
runs; we want a formula in terms of runs scored RS and runs allowed RA. Substituting for
p andq yields (

1− RA
1+RA

)
RS

(1 + RS)

(
(1− RA

1+RA)RS

1+RS +
RA(1− RS

1+RS)
1+RA

) ,

a most unilluminating formula! With some work, we can simplify this to the nice answer
we’ll describe below; however, what is important about thisproblem (for us – major league
baseball would beg to differ!) is not the result, but how to reach it efficiently. We know
that p

1−p
is a nice expression, namely RS, and similarly forq

1−q
. Thus we should take our

expression and multiply by 1 in the form(1/(1− p)(1− q))
/
(1/(1− p)(1− q)). Doing

so yields

p(1− q)

p(1− q) + q(1− p)
⋅

1
(1−p)(1−q)

1
(1−p)(1−q)

=

p
1−p

p
1−p

+ q
1−q

=
RS

RS + RA
.

Note we obtain a very nice formula very quickly.
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FIGURE 1. Histogram plot of number of shots to make 341 baskets givena 40%
chance of making a shot. The data was obtained by playing the game 10,000 times
and recording how long it took. The sample mean is 852.058 (which is quite close
to the predicted 852.5), the sample standard deviation is 35.8092 (quite close to the
predicted 35.7596), and 67.4% of the time the number of shotswas within 35 of
852.5 (quite close to our prediction).

(10) Numerical exploration: When given a problem, one can frequently build intuition by run-
ning numerical experiments. For example, one of our problems concerned a person who
made 40% of all their shots. We wanted to know the probabilitythat the number of shots
required to make 341 baskets was within 35 of the mean number of shots required. We
came up with an answer by seeing that this was equivalent to the sum of 341 independent
geometric random variables with parameterp = .4, and thus the Central Limit Theorem is
applicable to estimate the probability.

To test our predictions, consider the person shooting untilthey get 341 baskets a stagger-
ing 10,000 times (see Figure 1). Note the numerical data is quite close to theory. If you can
program in some environment, you can quickly gather numerical data to help elucidate the
answer. The Mathematica code for this problem is:

tester[num]:=Module[{},
count= {};
prob= 0;
mean= 852.5;
For[n = 1, n ≤ num, n++,
{
numfound= 0;
counter= 0;
While[numfound< 341,
{
counter= counter+ 1;
If [Random[] ≤ .4, numfound= numfound+ 1];
}];
count= AppendTo[count, counter];
If [Abs[counter− mean] ≤ 35, prob= prob+ 1];
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}];
Print[Histogram[count, {750, 950, 10},Probability]];
Print[prob100.0/num];
];

Of course, sometimes we are fortunate enough that, instead of settling for numerical
answers, programs like Mathematica can find the exact answer. For example, consider the
following difference equation, which arises in a problem related to a random walk with
boundaries:

Ti+1 =
1

p
Ti −

1− p

p
Ti−1 −

1

p
.

Typing

Simplify[RSolve[{T[i] == p (T[i + 1] + 1) + (1 - p) (T[i - 1] + 1), T[0] == 0, T[M] == 0},
T[i], i]]

into Mathematica yields

Ti =

i+M

((
1−p
p

)i
− 1

)
− i
(

1−p
p

)M

((
1−p
p

)M
− 1

)
(2p− 1)

.

(11) Test functions: You should always consider testing the limits of a theorem, conjecture or
intuition. Does it hold for the standard normal? For the Cauchy? How important is the
finiteness of moments? Usually a result is false if you removea condition; however, when
you are trying to figure out what the conditions should be in a theorem, you’re in a different
mindset. In this case, it is worthwhile to play with various functions and see what happens.

(12) Check for reasonableness:Whenever we have a formula, it is a very good idea to check
special cases to see if it is reasonable. For example, consider the sabermetrics formula from
the previous point: if a team scores on average RS runs per game and allows on average RA
per game (with RS and RA independent geometric random variables with respective means
RS and RA), then its probability of winning isRS/(RS+RA). Is this formula reasonable?
There are many checks we can do. The first is that we always get anumber between 0 and 1
(which is a must for a probability!). Further, if RS is zero orif RA tends to infinity than we
have no chance of winning, exactly as we would expect. If we score on average more runs
than we allow, our winning percentage is greater than 50%, while if we score and allow the
same number on average than the winning percentage is 50%, again quite reasonable.

For another example, imagine we flip a fair coin with probability p of heads and1 − p
of tailsn times, and we ask how many runs (alterations between heads and tails) there are;
for example, if the outcome were HHTTHTHTTTTTHTHHHH then there were 18 tosses,
9 heads and 9 tails and 9 runs, the shortest being a run of length 1 and the longest being
a run of length 5. The expected number of runs is1 + (n − 1)2p(1 − p). Is this formula
reasonable? Note that ifp = 0 or p = 1 then because of the factorp(1 − p) the expected
number of runs is 1; we should be shocked if this is not the case, as if the coin always lands
on heads, how could there ever be an alteration? A little calculus shows that the maximum
expected value is whenp = 1/2, which also seems reasonable. Finally, in the special case
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p = 1/2 the expected number is essentiallyn/2; there aren tosses and each toss has a 50%
chance of being different than the previous (and thus starting a run), so again our answer
makes sense.

(13) Check all conditions: Whenever you want to use a theorem, make sure all the conditions
are satisfied. For example, if you are summing the geometric series1 + x+ x2 + x3 + ⋅ ⋅ ⋅
then you better have∣x∣ < 1. If you are asked whether or not something is a probability
distribution, it must satisfy both requirements (non-negative and sums to 1; it is not enough
to just sum to one). If you want something to be a group, it mustsatisfy all four properties
(closure, identity, associativity, inverse). Frequentlysome but not all of the conditions are
met.
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