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ABSTRACT. Below we summarize some items to take away from variousngnadéuate classes. In
particular, what are one time tricks and methods, and wieagianeral techniques to solve a variety
of problems, as well as what have we used from various cla€s@aments and additions welcome!
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1. CaLcuLus | AND Il (M ATH 103 AND 104)

We used a variety of results and techniques from 103 and 104:

(1) Standard integration theory: For us, the most important technique is integration by parts
one of many places it is used is in computing the moments oGtnessian. Integration by
parts is a very powerful technique, and is frequently useldil&\most of the time it is clear
how to choose the functionsanddv, sometimes we need to be a bit clever. For example,
consider the second moment of the standard norfaall /2 [*°_z? exp(—2?/2)dz. The
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natural choices are to take= z? or u = exp(—x?/2), but neither of these work as they
lead to choices fodv that do not have a closed form integral. What we need to ddlits sp
the two ‘natural’ functions up, and let= x anddv = exp(—2?/2)xdxz. The reason is that
while there is no closed form expression for the anti-deirresof the standard normal, once
we haverdx instead ofix then we can obtain nice integrals. One final remark on integra
by parts: itis a key ingredient in the ‘Bring it over’ methaah(ich will be discussed below).

(2) Definition of the derivative: Recall

[zt h) — f(x)
/ —

In upper level classes, the definition of the derivative igipalarly useful when there is a
split in the definition of a function. For example, consider

~Jexp(=1/z?) ifx#0
f(x)_{o if & =0,

This function has all derivatives zeroat= 0, but is non-zero for: # 0. Thus the Taylor
series (see below) does not converge in a neighborhood dfveoength containing the
origin. This function shows how different real analysisngm complex analysis. Explic-
itly, here we have an infinitely differentiable function whiis not equal to its Taylor series
in a neighborhood of = 0; if a complex function is differentiable once it is infiniyedlif-
ferentiable and it equals its derivative in a neighborhobithat point.

(3) Taylor series: Taylor expansions are very useful, allowing us to replacepacated func-
tions (locally) by simpler ones. The moment generating fiemcof a random variable is a
Taylor series whose coefficients are the moments of thalaisiton. Another instance is in
proving the Central Limit Theorem from probabilityaylor's Theorem: If f is differen-
tiableat least n + 1 timeson [a, b], thenfor all = € [a, b), f(z) = 337y Lo (& — a)* plus
an error that isat most max,<.<, | f™*9(c)| - |z — a|**.

(4) LUHopital's Rule: This is one of the most useful ways to compare growth ratesfefent
functions. It works for ratios of differentiable functiossich that either both tend to zero
or both tend tatoo. We used this in class to see thatpass oo, (logz)? < 28 < e* for
any A, B > 0. (Recall f(z) < g(x) means there is som& such that for allz sufficiently
large,| f(x)] < Cg(z).) We also used L'Hopital to take the derivatives of the tiesbme
function h(z) = exp(—1/2?) for z # 0 and0 otherwise (this function is the key to why
real analysis is so much harder than complex analysis). Welsa use L’'Hopital’s Rule to
determine whether or not certain sequences converge.
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2. MULTIVARIABLE CaLcuLus (MATH 105/106)

(1) Dot product, Cross product: If U = (U1, ..., 0p) and @ = (wy,...,w,) then the dot
product is?7 - @ = vyw; + - - - + vaw,, and the anglé between the two vectors is given

by =T If n = 3, then the cross product is defined by
- = -
T J  k
U1 Uy Vs = (Uzw?, — U3Ws3, V3W1 — V1W3, V1W2 — U2w1)-

wp Wy W3
The cross product gives the area of the parallelogram gesteby v and w.
(2) Definition of the Derivative: One Variable: Let f : R — R be a function. We say is
differentiable atz,, and denote this by’(x() or df /dz, if the following limit exists:

h
We may also write this limit by

f(xo) = lim f(zo+h) — f(xo)

T—xT0 h

Y

or as
lim f(xo+h) — f(xo) — f'(x0)h

T—rT0 h

= 0.

(3) Definition of the Derivative: Several Variables, One Output Let f : R* — R be a
function ofn variablest,, . . ., z,,. We say the partial derivative with respectitoexists at
the pointa = (a4, ..., a,) if

— =N =
hmf(a_'_hel) f(a)
h—0 h

exists, where
— —
a+hd; = (ay,...,aqi—1,6; +h,aiq,. .. a,).

Let f : R? — R. The tangent plane approximationtat (o, yo) is given by

= Flao o) + S o) = 20) + 5,10 = o),

provided of course the two partial derivatives exist (and ttaturally generalizes to more
variables).

Finally, let f : R? — R. We sayf is differentiable at(x,,) if the tangent plane
approximation tends to zero significantly more rapidly thidn, y) — (zo, yo)|| tends to O
as(x,y) — (xo,v0). Specifically,f is differentiable if

lim f(xu y) - f(x(]a yO) - g_f;(x()u y())(x - CC(]) - g_g(x()?y(])(y - ?JO)
1
(#:9)— (70,0) (2, y) = (o0, o)

Note the above is truly the generalization of the derivaitivene variable. The distance

x — xg is replaced with|(x, y) — (xo, y0)||; while this is always positive, the fact that the
limit must equal zero for the function to be differentiableans we could have used— x|

= 0.
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in the denominator in the definition of the derivative of omgiable. Also note that the last
two parts of the tangent plane approximation can be writses @ot product of two vectors:

g—i(%, Yo)(z — x0) + %(%, Yo)(y — vo) = (g—i(%;yo)? %(%;yo)) (T — 20,y — o)

(4) Gradient: The gradient of a functiorf : R" — R is the vector of the partial derivatives
with respect to each variable. We write

grad(f) = Vf = (af of )

Ox," " Oxy,

The gradient points in the direction of maximum change ferftinctionf.

(5) Definition of the Derivative: Several Variables, Several Otputs: Let f : R” — R™; we
may write

f(@) = (A(T .., fn(T)).
y (D f)( %) we mean the matrix whose first row (yf )(7'), whose second row is
( f)( ), and so on until the last row, which (& f,,,)(Z). In full glory, we have
Oh(zy ... 44 (7)

ox1 0zn

(Df)(xo) = S
Ofm (1) ... 8f_m(7)

ox1 Oxn

Note (D f)() is a matrix with/n rows andn columns. We say is differentiable afa if
the tangent hyperplane approximation for each componadst® zero significantly more
rapidly than|| 2" — || tends to 0 as&’ — @ . Specifically,f is differentiable if

f(@) = (@) = (DA(@) (¥ =) _ 3

lim -
Tod |7 — | ’

where we regard — @ as a column vector being acted on by the matf ) ().

(6) Main Theorem on Differentiation The following implications hold (note the reverse im-
plications may fail): (1) implies (2) implies (3), where
© (1) The partial derivatives of are continuous.
¢ (2) The functionf is differentiable.
¢ (3) The partial derivatives of exist.
For counterexamples when reversing the implication, aersi(z) = 22 sin(1/z) if
r#0and0if x = 0, andg(xz, y) = (zy)/>.

(7) Chain Rule Letg : R* — R™ and f : R™ — RP be differentiable functions, and set
h = f o g (the composition). Then
(DR)(T) = (Df)(9(T))(Dg)(T).

Important special cases are:
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olLetc:R — R3*andf : R®* — R, and seti(t) = f(c(t)). Then

dh , ofde Ofdy 0Ofdz
o~ VW) <) = 5o+ o m Y arar

Note that we could have writtenf / 0z for df /dzx.

oLetg(zy,...,zn) = (ui(xy, ..., x0), .. Um(z1, ..., 2,) and seth(zy,...,z,) =
f(g(xy,...,x,)), wheref : R™ — R. Then
oh  Of 0w N Of Ousy _ 8f O,
Or;  Ouy 0r;  Ous Ox; 8um ox;

(8) Equality of Mixed Partial Derivatives: Let f : R” — R be a function of clas€? (which
means that all the partial derivatives of order at most 2texid are continuous). Then for
any two variables; andz; we have

orf 0*f
Oxzﬁxj n 0:):j8xz

(9) Tricks for Taylor Series Expansions: We give a few examples of some powerful tricks to
find Taylor series expansions. The idea is to use Taylorsenpansions in one-variable.

These work when we have functions suchia$z + y) but notsin(\/z + y).
z+y)? 2+y)4
ocos(x+y):1_%+ ( Z'y) .
<>Cos:)ssiny:(1—§jL )(y_§+

)-
oemVeos(z+y) = (1+ (z—y)+ S5 4. )1 = &2 4o,

(10) Method of Lagrange Multipliers: Let f,g : U — R, whereU is an open subset @&".
Let S be the level set of valuefor the functiong, and letf|s be the functlor]f restricted to

S (in other words, we only evaluaeat 7 € U). Assume(Vg)(Zo) # 0. Thenf|s has
an extremum at’, if and only if there is a\ such thal(V f)(20) = AM(Vg) (o).

(11) [Method of Least Squares:Given a set of observations
(1, 01)s (2,92), -, (TN, YN)
and a proposed linear relationship betweeandy, namely
y = ax + b,

then the best fit values af andb (according to the Method of Least Squares) are given by
minimizing the error function given by

E(a,b) = Y (yn — (az, +1))*.
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The best fit values are
N N N N
Zn:l 1 Zn:l TnlYn — Zn:l Tn Zn:l Yn
N N N N
Zn:l 1 En:l x% - En:l Tn En:l Tn

Qa =

N N N N
b Zn:l In Zn:l TnYn — Zn:l x?L n=1 Yn ) (21)
Zivzl Tn Zivzl Tn — ZnNzl ;, nNzl 1
Frequently by taking logarithms we can use this method forliveear relations. For exam-
ple, if ' = BL*, then if T = logT, £ = log L andb = log B thenT = aL + b, a linear
relation.

(12) Metric dependence of answersA very important fact, made clear in the previous subject,
is that depending on the metric used to evaluate / answertdgmnoone can reach different
conclusions. What do we ‘mean’ by best-fit line? Dependindpow we measure the data
(ranging from just summing the signed errors to absolutaesto squares), we can get a
different answer. It is very important to be aware of thetgasions.

(13) Monte Carlo Integration: Let D be a nice region ifR", and assume for simplicity that it
is contained in the-dimensional unit hyperculje, 1] x [0, 1] x - - - x [0, 1]. Assume further
that it is easy to verify if a given poirity, ..., x,) isin D ornotinD. Draw N points from
the n-dimensional uniform distribution; in other words, eacltlod . coordinates of thév
points is uniformly distributed of0, 1]. Then asV — oo the n-dimensional volume oD
is well approximated by the number of points insidelivided by the total number of points.

(14) Fubini Theorem (or Fubini-Tonelli): Frequently we want to / need to justify interchanging
two integrals (or an integral and a sum). Doing such intargea is one of the most frequent
tricks in mathematics; whenever you see a double sum, a eantgigral, or a sum and an
integral you should consider this. While we cannot alwaysrchange orders, we can if the
double sum (or double integral) of the absolute value of tirereand (or the integrand) is
finite. For example,

1 1 1 1
/ [/ e_ryxdx} dy = / [/ e_wyxdy} dx
y=0 =0 =0 y=0
) 0
= / 6—1’y
=0

1
1
= / (1 — e_x) dv = 2—e™". (2.2)
=0
Note how much easier it is when we integrate with respegtficst — we bypass having to
use Integration by Parts. For completeness, we state:

dx

Fubini’'s Theorem: Assume f is continuous and

/ b / | drdy < oo (2.3)
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/ab Mdﬂx’y)dy} do = /Cd Uabf(:c,y)dx} dy. (2.4)

Smilar statements hold if we instead have

Then

Ny d N1 My
S [ fawnds Y fenm) @5
n=No v ¢ n=Ng m=Mj

(15) Whenever you have a theorem, you should always explore wregigens if you remove
a condition. Frequently (though not always) the claim no Iger holds; sometimes the
claim is still true but the proof is harder. Rarely, but it cahappen, removing a condition
causes you to look at a problem in a new light, and find a simppgpof. We apply this
principle to Fubini’'s theorem; specifically, we remove thmténess condition and construct
a counter-example.

For simplicity, we give a sequeneg,, suchthady (> amn) # D, (O, Gmn). FOr
m,n >0 let

1 ifn=m
U = §—1 fn=m+1 (2.6)
0 otherwise.

We can show that the two different orders of summation yiéfemknt answers; if we sum

over the columns first we get O for each column, and then ddiegsum of the column

sums gives 0; however, if we do the row sums first, than alldlesums vanish but the first
(which is 1), and hence the sum of the row sums isdt,0. The reason for this difference
is that the sum of the absolute value of the terms diverges.

(16) Interchanging derivatives and sums: It is frequently useful to interchange a derivative
and an infinite sum. The first place this is met is in provingdbavative ofe” is e*; using
the series expansion fef, it is trivial to find the derivativef we can differentiate term by
term and then add.

Interchanging differentiation and integration: Let f(z,¢) anddf(x,t)/0x be continuous
on arectangle [zg, 1] X [to, t1] With [a, b] C [to, t1]. Then

d b b 8f
%/t;a f(l’,t)dt = )

7 (@, 1)t 2.7)

=a

Frequently one wants to interchange differentiation anghreation; this leads to the
method of differentiating identities, which is extremelgeful in computing moments of
probability distributions. For example, consider the iitgn

p+q" = <Z)pkq""“- (2.8)

k=0
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Applying the operatopdi to both sides we find

n(p+q)" Zk< ) (2.9)

Settingg = 1 — p yields the mean of a binomial random variable:

np = Z k(Z)pk(l —p)" . (2.10)
k=0

It is very important that initiallyp andq are distinct, free variables, and only at the end do
we setg =1 — p.

(17) Dangers when interchanging: One has to be very careful in interchanging operations.
Consider, for example, the family of probability densitigs(z), wheref, is a triangular
density on[1/n, 3/n| with midpoint (i.e., maximum value). While eachf,, is continuous
(as is the limitf (z), which is identically 0), eaclf,, is a probability density (as each inte-
grates to 1); however, the limit density is identically Ogdhus not a density! We can easily
modify our example so that the limit is not continuous:

n|z| if 0<|z| <1/n
1 if 1/n<lz|<1/2
g() =< Tl <ol <1/ 2.11)
n(A+1—]z) if1/2<z<1/2+1/n
0 otherwise.

Note thatg, (0) = 0 for all n, but as we approach 0 from above or below, in the limit we get
1.

(18) Change of Variables Theorem:Let V and 1/ be bounded open setsinR™. Leth : V' — W
be a 1-1 and onto map, given by

h(uy, ... un) = (hi(ug, ..o up), ooy b (ug, .o uy)) . (2.12)
Let f : W — R bea continuous, bounded function. Then

/ /fxl,..., Yda: - - - dz,,

= /---/Vf(h(ul,...,un))|J(u1,...,uv)|du1---dun, (2.13)

where J isthe Jacobian

oh ., O
ouq Oun
Ohn .. Ohy
oul Oun
We used this result to simplify the algebra in many problegnpdssing to an easier set of

variables.

A functionpis a probability density ip(x) > 0 andp integrates to 1.
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(19) Counting two different ways: Calculating something two different ways is one of the most
important ideas in math. A good part of combinatorics is ttertbat there are two ways to
compute something, one of which is easy and one of which isWetthen use our knowl-

edge of the easy calculation to deduce the hard. For exajjle, (2)2 = (2;); the right
side is easy to compute, the left side not so clear. Why arevhiequal? It involves finding
a story, which we leave to the reader.

(20) Memoryless processWhen proving the geometric series formula by playing a bésile
game, we used the fact that after two misses it was as if wesjagied playing the game
then. This idea is used in many problems.

(21) Ratio, root, integral and comparison tests: These are used to determine if a series or
integral converges. We frequently used the geometrics@arenula) "~ 2" = 1/(1 — z)
if |z < 1.
o Comparison TestlLet {b,}:°, be a sequence of non-negative terms{so> 0).
Assume the series converges, duag}>° , is another sequence such thaf| < b, for all
n. Then the series attached{e, }°° , also converges.
o Ratio TestConsider a sequende,, }>° , of positive terms. Let

. Ap+41
r = lim .
n—o0 CLn

If » exists and- < 1 then the series converges, while-it> 1 then the series diverges; if

r = 1 then this test provides no information on the convergenabvergence of the series.
o Root TestConsider a sequende,, }>° , of positive terms. Let

1/n

p = lim a,
n— o0

then!" root of a,,. If p < 1 then the series converges, whilgif- 1 then the series diverges;
if p = 1 then the test does not provide any information.

¢ Integral Test Consider a sequende,, }°° , of non-negative terms. Assume there is
some functionf such thatf(n) = a,, andf is non-increasing. Then the series

00
> an
n=1

converges if and only if the integral

/1 " f@)de

converges.
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3. DIFFERENTIAL EQUATIONS (MATH 209)

(1) The method of Divine Inspiration and Difference Equations: Difference equations, such
as the Fibonacci equatiaty,; = a,,.1 + a,, arise throughout nature. There is a rich theory
when we have linear recurrence relations. To find a solutien'guess’ that,, = »" and
take linear combinations.

Specifically, letk be a fixed integer and,, . . ., ¢, given real numbers. Then the general
solution of the difference equation

Qpt1 = Clp + C20p—1 + C3Ap—2 + -+ + CrQp_k+1
is
an = Nrp
if the characteristic polynomial

rF—erF T et g = 0

hask distinct roots. Here thes, ..., v, are anyk real numbers; if initial conditions are
given, these conditions determine thegs. If there are repeated roots, we add terms such
asnr”, ..., n™ ", wherem is the multiplicity of the root-.

For example, consider the equatien ; = 5a,, — 6a,,_;. In this case: = 2 and we find
the characteristic polynomial i€ — 51+ 6 = (r —2)(r — 3), which clearly has roots, = 2
andr, = 3. Thus the general solution is, = 72" + ~»3". If we are givenay, = 1 and
a, = 2, this leads to the system of equatidns: ~; + v, and2 = v, - 2 + 75 - 3, which has
the solutiomy; = 1 andv, = 0.

Applications include population growth (such as the Filmmnaquation) and why double-
plus-one is a bad strategy in roulette.
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4. ANALYSIS (MATH 301)

(1) Continuity: General continuity properties, in particular some of ¢the 6 arguments to
bound quantities, are frequently used to prove resultserOfte use these to study mo-
ments or other properties of densities. Most important, évar, was probably when we
can interchange operations, typically interchanginggraks, sums, or an infinite sum and
a derivative. For the derivative of the geometric series,¢an be done by noting the tail is
another geometric series; in general this is proved by asing the contribution from the
tail of the sum). See the multivariable calculus sectiomiore comments on these subjects.

(2) Proofs by Induction: Induction is a terrific way to prove formulas for generaf we have
a conjecture as to what the answer should be. Assume for eadlivp integem we have
a statemenf(n) which we desire to show is true for all P(n) is true for all positive
integersn if the following two statements hold: (Basis Step: P(1) is true; (ii) Inductive
Step wheneverP(n) is true, P(n + 1) is true. Such proofs are called proofs by induction
or induction (or inductive) proofs.

The standard examples are to show results such as, k = . It turns out that
> r_o k™ is a polynomial inn of degreem + 1 with leading coefficient /(m + 1) (one
can see that this is reasonable by using the integral tesptage the sum with an integral);
however, the remaining coefficients of the polynomial aneléato find, and without them
it is quite hard to run the induction argument for say= 20009.

n(n+1)

(3) Dirichlet’s Pigeonhole principle: Let A;, A,, ..., A, be a collection of sets with the prop-
erty thatA; U---U A, has at least + 1 elements. Then at least one of the sét$as at
least two elements. We frequently use the Pigeonhole ptetd ensure that some event
happens.
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5. COMPLEX ANALYSIS (MATH 302)

5.1. Complex Differentiability. Similar to one-dimensional real variable calculus, ev@ng in
complex analysis follows from the definition of the derivati What drastically changes the subject
from a real variable is the geometry of the space. In the ne@) you can approach a point essen-
tially in only two ways: from above or from below. In the coraplplane, there are an infinitude
of paths, ranging from along the axes to spirals to what Cathkayla draw. This leads to the
definition

Complex differentiability: A function of a complex variabl e is said to be complex differen-

tiable at z if
p FE+h) = £)
h—0 h
exists ash # 0 tends to 0 along any path.

Functions such as the polynomidlg;_, ¢;2* are differentiable, while functions such @sare
not (remembeE = = — iy if z = x + iy).

If f(x+1iy) = u(z,y)+iv(z,y), thenf is holomorphic (i.e., complex differentiable) if and only
if it satisfies theCauchy-Riemann equations

% — @ and a_u — _@

or Oy oy Oz’
5.2. Cauchy’s Theorem. We say a functiorf has gorimitive F'if F'(z) = f(z). From the theory
of line integrals, we see that1fis a simple closed curve arfdhas a primitive, therf f(z)dz = 0.
The main result is Cauchy’s Theorem:

Cauchy’s Theorem: Let f be a holomorphic function and a simple closed curve. Then

fﬁ/ f(z)dz = 0.

There are many ways to prove this. A popular one is to first @fégursat's Theoren if f
is holomorphic on an open set containing a trianglethen fan(z)dz = 0 (wheredT is the
boundary of the triangle). The key step in proving this is ¢ reducing the line integral into
four smaller line integrals; geometrically this is doabsewee can divide a triangle easily into four
similar triangles. We then use some compactness arguneefitisgh the proof. From Goursat’s
Theorem, we can then prove that any holomorphic functionroopen disk has a primitive on the
disk. We do this by taking polygonal paths with componentslipel to thex andy-axes.

There are many consequences of Cauchy’s Theorem. The fstaitotv us to evaluate many
integrals. Another is the

Integral Representation Theorem: If f is holomorphic on an open set that contains a closed
curve~, then for anyz in the set we have

f(z) = i/g(_ozdz.

271
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Notice that this means that if we knofvon the boundary and if we knoyvis holomorphic then
there is a unique extension to the interior. This formuladasultitude of consequences as well. In
particular, it gives us a series expansion for a holomorfalmiction, and shows that holomorphicity
implies analyticity (the converse is straightforward, as ean differentiate power series term by
term). Recall that a function mnalytic if it has a convergent series expansion.

Holomorphic equals Analytic: If a complex function is differentiable once, it is infiniyedlif-
ferentiable and it equals its Taylor series. Specifically,

o0

f2) = D an(z=2)", an = f"(z)/n!

where ©
!
myy = MO
F(z) 2mi J, (¢ — )+t =
where as always is a simple closed curve. The proof follows by using the gdomseries formula
to expand the denominator in the integral representatjpegiBcally

G5 = (C=a)= (= 20) = (=) (1- 222

for z close toz,, the fraction above is less than one and we may expand th@oeal of the above
with the geometric series formula; note the extra factaf ef z, in front is what is responsible for
the exponent being + 1 and notn.

This is remarkably different than real analysis (rememberftinctionf (z) = exp(—1/z?) for
x # 0 and0 for z = 0; this function is infinitely differentiable, but only eqaits Taylor series
atz = 0 (which is not impressive, as by definition all functions egtieir Taylor series at the
expansion point!).

Another consequence are tGauchy Inequalities, which state that iff is holomorphic on a set
containing a circle with boundary centered at, with radiusR then

!
(n) < n!||flle
7Pl < S
where||f||c denotes the largest value pon C.

From the Cauchy Inequalities we immediately obthiouville’s Theorem (also known as the
first big theorem without Cauchy’s name in it): ffis entire (i.e., holomorphic on all f) and
bounded thery is entire. The proof follows by using the Cauchy Inequaditom larger and larger
circles; asf is bounded the numerators are uniformly bounded while tihhethnators tend to zero
with R. From Liouville’s Theorem we obtain tfeundamental Theorem of Algebra which states
that any degree polynomial with complex coefficients has exactlyoots.

We end with two other important concepts.

Analytic continuation: Given a functionf defined in some subset of the complex plane, its
analytic continuation is a new function which agrees with ¢fd in the original region, but makes
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sense elsewhere. The standard example is the geometgs $eminula:> "> 2" = 1/(1 — z);
the right hand side makes sense for all values &f 1, while the left hand side is only defined if
|x| < 1. This leads to the interpretation thiat- 2 +4 + 8 + 16 + - - - = —1!

Accumulation points: Let f be a complex differentiable function defined on an openlset
assumef(z,) = 0 for some sequence of poin{s,, }>° , that has an accumulation pointén(i.e.,
there is some* such that a subsequence of thés converge ta:*). Then f is identically zero!
Again, this is very different than real analysis: the fuantjf(z) = z®sin(1/x) for x # 0 and0
for z = 0 is zero whenever = 1/nm, and is zero at = 0; however, clearly this function is not
identically zero even near the origin (just considet 2/nr for n odd). In probability, this result is
used to study the moment problem, namely, how many momeatsesded to uniquely determine
a probability density. The proof involves the equivaleneeéAeen holomorphicity and analyticity.
We Taylor expand our function about the accumulation paimd, note that all the derivatives vanish
there (some work is required to show that).

5.3. The Residue Formula. Perhaps the most important result in complex analysis (faonap-
plications standpoint, though this arises in numerousrétaal investigations as well) is

The Cauchy Residue Formula: Supposef is holomorphic in an open set containing a simple
closed curvey except for finitely many poles (at, . . . , z,,) with residuesRes., (f). Then

%[{f(z)dz = Z:;Reszj(f).

One proves this in a similar manner to extensions of Greéesrem in the plane, taking contours
where we approach one of the poles, circle around it, andrittesice our steps back to the main
curve. The point is to convert the integral oveto n integrals over circles centered at the poles.

The residue off at 2, is the negative first coefficient in its Laurent expansion,athe Laurent
expansion is similar to the Taylor expansion, except now Negva: to be raised to negative integer
powers as well). A useful way to compute residues is the\otig:

Computing Residues:Assumef(z) = g(z)/h(z) whereg andh are holomorphic and has a
simple zero at, (i.e., the zero has multiplicity one). Then the residug @t z is g(z0)/h' (z0).

We can use the residue theorem to evaluate many integrakscialy real integrals. We com-
plete the contours, carefully choosing our completion fgl@xthe decay in the function. For some
examples, see 85.6.

We list a few applications of the Residue Theorem:

Argument Principle: If fis meromorphic (holomorphic except at finitely many placéere it
has poles) on an open set containing some simple closed ¢iinen

1orfe,
2mi J., f(z)d
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equals the number of zeros ffinsidey minus the number of poles inside The formula can be
generalized to include a factgfz) in the integrand, which results in the zeros and poles rawpiv
different weights which are a function gfat these points. This weighting is quite useful in number
theory.

Rouche’s Theorem:If f andg are holomorphic on an open set containing a simple closag:cur
vand|f(z)| > |g(z)| for all z on~ thenf and f 4+ ¢g have the same number of zeros insidé'he
idea is to use the argument principle, and note the intedvél ®) /1.(z) is a continuous and integer
valued. If we take the family,(z) = f(z) + tg(z), we see that the value at= 0 equals the value
att = 1.

Rouche’s theorem provides a nice way to reach several usults. We say a map apenif
it maps open sets to open sets. Note many simple real valnetidas are not open; for example,
f(x) = z%is not open as it maps-1,1) to [0, 1). We have

Open Mapping Theorem: If f is holomorphic and non-constant in a regionthen f is open.

We may also prove the Open Mapping Theorem by noting that@maiphic function is analytic,
and then analyzing the series expansion. This is more woreufonly want the Open Mapping
Theorem, but this perspective is useful for other probles$, gives a better sense of what the map
Is going. This point of view can surface in studying the Riem&apping Theorem.

Maximum Modulus Principle: If f is non-constant and holomorphic on an open set, then
cannot attain its maximum in the open set (if we assyhie continuous on the boundary of our
open set, therf attains its maximum on the boundary). The Open Mapping Tdrads the key
ingredient in the proof; ag is open, if it attained a maximum at an interior poigthen the image
of a neighborhood of that point includes a ball abg(4,), and hence includes a point with larger
absolute value.

Finally, we note that the complex logarithm exists, thougtoies not have all the properties of
the real logarithm. It can be defined on any simply connea¢thsit is not all ofC.

5.4. Weierstrass Products. It is convenient to represent a function as a product. Tresgecially

true if we are going to consider its logarithmic derivatiyé(z)/f(z) = £ log f(z) (which the
argument principle tells us is a natural item to study). Afmite product][(1 + a,,) converges if
> lan| < oo (it may of course converge even if this sum diverges).

Let Ey(2) =1 — zandEg(2) = (1 — 2)exp(z + 22/2 + - - - + 2*/k!) for k > 1. Writing 1 — 2
asexp(log(1 — 2)), we see the exponential factor is deliberately chosen toatdhe firstk terms
of log(1 — z). These are called theanonical factors

Weierstrass Products: Given any sequencéa,} of complex numbers witha,,| — oo as
n — oo, there is an entire functioli that vanishes at eacf), and nowhere else. i also only
vanishes at these points, then there is an entitg such thatf (z) = g(z) exp(h(2)).
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The key ingredient in the proof is to use these canonicabfadb make sure our product con-
verges. Specifically, if we want to hawezeros at the origin then we look Atz) = =™ [[°2, E..(z/ay,).
This is wasteful; note the degree of the canonical factoraesving. In many instances we can al-
ways taken = 1 orn = 2.

5.5. The Riemann Mapping Theorem. Undoubtable one of the gems of the subject is the Rie-
mann Mapping Theorem. The proof is quite involved, and neguiumerous concepts from analy-
sis. The main application of this beautiful result is thatose reduce the analysis of many problems
to the study of an equivalent problem in the unit disk. Thia iet like the change of base formulas
for logarithms:log, z = log, x/ log. b, which implies that if we know logarithms in one base we
know them in any base.

We say amayf : U — V is conformal if f is bijective and holomorphic. If that is the case, we
sayU andV areconformally equivalent; one can show this is in fact an equivalence relation (the
hard part is showing that the inversefois holomorphic, but we can do this through the chain rule).

Below are some useful facts. Rememeis the unit disk.

(1) The Schwarz lemma: jf : D — D is holomorphic and(0) = 0 then (i)| f(2)| < || for all
z e D; (i) If |f(20)] = |20] for somez, € D thenf is a rotation (i.e.f(z) = ¢~ for some
0 € R; (iii) |f'(0)] < 1 and if it equals 1 therf is a rotation. The proof involves looking
at f as a power series (holomorphic implies analytic) and udiegrhaximum modulus
principle.

(2) Automorphisms of the unitdisk: Letting,(z) = (a«—2)/(1 —az) for a € C with |o| < 1,
we find that if f is an automorphism db then there is @ € R and anx with absolute value
less than 1 such thdt(z) = ¢?%¢,(z). The proof uses the Schwarz lemma repeatedly. From
this we can enumerate all automorphisms of any set conftyrealivalent taD.

(3) If Qis an open subset @ and.F is a family of holomorphic functions, then the family is
said to benormal on () if every sequence iff has a subsequence that converges uniformly
on every compact subset Qf(note the limit function need not be iR). The family is said
to beuniformly bounded on compact subsets of? if for any compactk’ C 2 there is a
constantBx > 0 such that for anyf in the family we havef(z)| < Bk forall z € K. The
family is equicontinuouson a compact sek if given anye > 0 there is & > 0 such that
for any f in the family and any, w € K with |z —w| < § then|f(z) — f(w)| < e.

The main result we need from all of this is

Montel's Theorem: Let F be a family of holomorphic functions of2. Assume the family is
uniformly bounded on compact subsets(bf Then (1) The family is equicontinuous on compact
subsets of?; (2) the family is normal.

The last part of this theorem is often called the Arzela-Aistioeorem. The proof of (1) involves
the Cauchy integral formula, which shows why a similar steget does not hold in the real case
(as we do not have an analogue of this integral represenjaiibe second part requires us to find a
countable, dense subset@fwhich is possible by looking at those= x + iy in Q with z, y € Q.
This part does not involve complex analysis, and the coarding result holds in the real case.
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Riemann Mapping Theorem: Any open, proper (i.e., not all &) subsef) of C that is simply
connected is conformally equivalent to the unit disk

There are three main steps to the proof. (1) We first showSthiatconformally equivalent to
a subset ofd. If Q2 misses an entire ball, we simply invert about that ball arsd¢ake. If not, we
use the complex logarithm to first mépto a set that misses an entire ball and then invert. (2) We
consider the family of holomorphic injective maps fréin— D with f(0) = 0 (recall now we are
able to assum@ C D). We use Montel’s theorem, and find a function in the familyosé absolute
value of its derivative at 0 is equal to the supremum of thekibs values of the derivatives at the
origin of all holomorphic functions in our family. (3) We theshow that the function found in (2) is
surjective, completing the proof; if it weren’t surjectjwee explicitly show how to construct a new
function that has larger absolute value of its derivativéhatorigin.

It is a natural question to ask when one can extend the magetbdbindary; this can be done
in some cases. In fact, if our region is a nice polygon, we catewdown explicitly the conformal
equivalence.

Note how amazing this result is — we have the existence offanitely differentiable map from
the unit square to the unit disk (as well as more complicaggebns!).

5.6. Examples of Contour Integrals. The following are the solutions to some contour integrals
from the midterm, and highlight many of the techniques.

e (a: 20 points)
[e%¢) .TZ
Ceo Xt H1

exp(—2?)
A
f

wherey is the diamond given biz| + |y| = 2010.
/ cos T .
Lo €Tt eT®

2m 1
J—is
o @-+sind

wherea > 1. Hint: on the unit circle, e=* = 1/ = 1/2. Try writingsin as g(z,1/z)
for some function g.
(&) Lety, be the part of the real line from R to R and~, be a counter-clockwise oriented
semicircle of radiugk from R to —R. Two poles lie in the region enclosed by these paths:
z = e™* ande® /4, The residues are
. (Z _ 67ri/4z2) - 67ri/2
csemit A1 (emi/t _ e3mi/A)(gri/d _ bmi/)(emi/d _ oTmi/d)

V2 V2

=Y2_ Y5

8 8

e (b: 20 points)

e (c: 20 points)

e (d: 20 points)
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and
. (Z _ 63m/422) _ 637ri/2
e =y 241 (€37ri/4 _ em'/4)<e37ri/4 _ €5m/4)(63m'/4 _ 677ri/4)
V2 V2
8 8
So

22 22 \/§ 7T\/§
L1z4+1 Z+L2z4+1 =2l =

Now we can calculate

22 R? TR?
< . =
[,2z4+1dz‘—7rR RI—1 Ri-1

which clearly goes to zero d8 goes to infinity. So we then have

/oo 22 J 7T\/§

AT 1Y T
by taking the limit ofy; asR — oo.

(b) Since the curve is already closed, we need only find traéiues. There is clearly only one
pole, a pole of order 2 at = 0. The residue at = 0 is 0. One can see this by noting
that the Taylor series expansionefp(—z%)/z? contains only even powers of hence the
coefficient of1/z is 0. Since the integral i8r: times the sum of the residues, the integral
itself must just be 0.

(c) This problemis a bit tricky. The problem is the numeragabs z = (¢ +e~%) /2 while the
denominator i* + e~ *. If we takez = = +ix with z — oo, then our function is essentially
equal to 1/2, and thus it izt decaying to infinity! This tells us that a semi-circular count
is probably not goign to be a good idea. For problems like thigen you aren’t given the
contour, it's best to try and get a feel for the size of the fiorcin different places. Here
we see

eiz + e—iz 6im6—y + 6—im6y

€% + e~ % - eTely + e—xe—iy’
and then taking: = y shows that this ratio is essentially 1/2 fotarge.

What contour should we choose? Seeing exponential fursctike these, a rectangular
one is a natural guess. Why? We have periodicity in the exgaldunctions, and there
is thus a chance of the ‘top’ and ‘bottom’ being simply mukgp of each other. For this
one, we take a rectangle with verticeR, R, R + iw and —R + iw. It's not too bad to
show that the integral over the two vertical sides tends to asR — oo, and then a lit-
tle algebra relates the top contribution to the bottom. Adlttremains is to find the poles
(which probably should have been done earlier). We réede=* = 0, ore?* = —1. As
e’ = —1for § = m + 27n, we see the poles are locatectat /2 & mn, which means that
there is only one pole inside the region. After doing all tigelra, one finds the answer is
ﬂ/(en/z + 6—7r/2)_
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(d) If z is a point on the unit circle, say,= ¢, thene=® = 1/z. Thensinf = (z — 1/z)/2i
(thez in the denominator is very important — you will get an ansvat tioesn’t make sense
if you forget it — more on that observation later). Furtha@rce z = ¢ we have

dz = ie?df = izdf
or equivalently
idf
—

df =
Therefore

/ZWLdH—/ ! —zd —/#d
o a+sing  La+(z-1/2)/2i =z T y 2%+ 2iaz — 1 :

where~ is the unit circle centered at 0. The integrand has polesiat: iv/a? — 1. The
only one inside the unit circle, however,isa + iv/a? — 1 (becausea| > 1), which gives
the residue as

2 1

(—ia+iva2 — 1) — (—ia —iva®? —1)  iva? — 1

So the integral is justri times the above; that is,

2
1
/ N
o a-+sind a? — 1

Note that the answer has a very good property — it is undefirrehw? < 1. This makes
sense, as our original integral is only well-defined 4ér> 1, because for smaller® the
denominator can vanish. It is very important to be able toggaat a solution and test for
reasonableness.

Another way to do this problem is to use the geometric sespamsion, assuming you
know the integral ofin x to any integer power. We have

1 1 1 1( sinf sin’é )
— = — |1 - 4+ ... i

a+snf El—(—%) a a a?

Of course, even after doing the integralsaf?* # we’re not done — we then have to recog-
nize the Taylor series expansionf(a? —1)~'/2, a highly non-trivial observation to make.
That said, this does show that, in principle, this integoald be done without resorting to
complex analysis (and gives an appreciation of the poweowidex analysis!).

Let's spend a little more time thinking about this probleme ¢an ‘see’ many features
of the solution. Asi — oo, the denominator is essentialty and thus the integral tends to
27 /a asa — oo. We know the integral makes sense for > 1 and not for|a| < 1; the
denominator is zero whein = +1. Thus it is reasonable to guess that the denominator of
the integral looks like/a? — 1. Why? This is bad fofa| < 1, and tends ta (if we take
the appropriate square-root) felarge. This is not groof, but it suggests that the answer
should be something liker /v/a? — 1.
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6. FOURIER ANALYSIS (MATH 3XX)

(1) Integral transforms: If K(s,t) andg(t) are nice functions, we define the integral trans-
form of g with kernel K to be [*°_g(t)K (s, t)dt. What this does is, given a function as
input, generates a new function. Two particularly usefahsforms are the Fourier trans-
form (f(y) = [ f(z)e~*™™vdz) and the Laplace transformi4 f)(s) = [, f(t)e *'dt).
Depending on the problem, it may be worthwhile to take a fians of both sides, as often
the transformed quantity is easier to analyze. For exanipl&, andY are independent
random variables with densitigs and fy, then the density of their sum is the convolution

Frav(t) = (Fx # fr)(t) = / " () o (t — w)du.

As the Fourier transform of a convolution is the pointwisedrct of the Fourier transforms,
we have

fxev(t) = fx(t)- fr(t);
thus the convolution integral has been replaced with stahdaltiplication (the integration
has not vanished — we must take the Fourier transfornig aind fy, and then we must take
the inverse Fourier transform to recov@r, y; however, this is still often progress). There

are many other nice properties of the Fourier transform.example, lep be a probability
density. Then

[e.e]

) = [ plae .

—00

Taking the derivative yields

) = [ bl (-2miz)e v,
and then setting = 0 yields

p'(0) = —27m'/ zp(zr)dr = —2miE[X].
We note two important items: the Fourier transform-éfriz times the functiorp is the
derivative of the Fourier transform pf and the derivative of the Fourier transform at O is a
simple multiple of the mean (and a generalization holds fghér moments).

(2) Complex differentiability: A function of a complex variable is said to be complex differ-

entiable at if
p fE R = £(2)
h—0 h

exists ash # 0 tends to 0 along any path. Functions such as the polynommigls, 2"
are differentiable, while functions suchzsare not (remember = x — iy if z = x + 7).

If a complex function is differentiable once, it is infingetifferentiable and it equals
its Taylor series; this is remarkably different than readlgsis (remember the function
f(z) = exp(—1/2?) for z # 0 and0 for = = 0; this function is infinitely differentiable, but
only equals its Taylor series at= 0 (which is not impressive, as by definition all functions
equal their Taylor series at the expansion point!).
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(3) Analytic continuation: Given a functionf defined in some subset of the complex plane, its
analytic continuation is a new function which agrees witohd in the original region, but
makes sense elsewhere. The standard example is the geoseeies formula) |~ 2" =
1/(1—x); the right hand side makes sense for all values gf 1, while the left hand side is
only defined if|z| < 1. This leads to the interpretation thiat- 2 + 4 + 8 + 16 4 - - - = —1!

(4) Accumulation points: Let f be a complex differentiable function defined on an open set
U; assumef(z,) = 0 for some sequence of poin{s,, }°° , that has an accumulation point
in U (i.e., there is some* such that a subsequence of thés converge toz*). Then a
beautiful result from complex analysis says tlfas identically zero! Again, this is very
different than real analysis: the functigitz) = z3sin(1/z) for x # 0 and0 for x = 0
is zero whenever = 1/nm, and is zero atr = 0; however, clearly this function is not
identically zero even near the origin (just consider 2/nr for n odd). In probability,
this result is used to study the moment problem, namely, hamwyrmoments are needed to
uniquely determine a probability density.

(5) Poisson summation:for nice functions,) f(n) = >_ f(n). Often this allows us to re-
place a long sum of slowly decaying terms with a short sum @ititg decaying terms. We
used this in obtaining very good estimates on the probglfibeing far from the mean for
normal random variables, as well as proving the functiogala¢éion of the Riemann zeta
function.

(6) A nice function can be uniformly approximated by a trigametric polynomial (Fejer’s
theorem). One great use of this isrific mod 1, as trig functions are particularly nice to
work with.
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7. PROBABLITY THEORY (MATH 341)

7.1. Combinatorics.

1)

(2)

3)

(4)

Combinatorics: There are several items to remember for combinatorial prabl The first
is to be careful and avoid double counting. The second isfteguiently a difficult sum
can be interpreted two different ways; one of the interpi@ta is what we want, while the
other is something we can do. We have seen many examplesotthe is that

n 2 n
n n n
206 =265
k=0 k=0
is the middle coefficient ofz + y)*", and thus equal§™).

‘Auxiliary lines’: In geometry, one frequently encounters proofs where theoasitadd an
auxiliary line not originally in the picture; once the ling added things are clear, but it is
often a bit of a mystery as to how someone would think of addiige in that place. In
combinatorics we have an analogue of this. Consider thsiclasokie problem: we wish
to divide 10 identical cookies among 5 distinct people. Ongpte way to do this is to
imagine we have 141¢ = 10 + 5 — 1) cookies, and eat 4 of them. This partitions the
remaining cookies into 5 sets, with the first set going to tist fierson and so on.

For example, if we havé0 cookies and people, say we choose cookigst, 7 and13
of the10 + 5 — 1 cookies:

OORXIROOROOOOOKKO

This corresponds to persdrreceiving two cookies, persdhreceiving zero, persod re-
ceiving two, persod receiving five and persomnreceiving one cookie.

This implies that the answer to our problem(1§™> "), or in general “ 5" 1).

pP-1

Find an interpretation: Consider the following sumy_"_, (“47;"). By the arguments

above, we are summing the number of ways of dividingpokies amongP people for

c € {0,...,C} (or we divideC' cookies amongP people, but we do not assume each
cookie is given). A nice way to solve this is to imagine tharthis aP + 15 person who
receives’’ — ¢ cookies, in which case this sum is now the same as countinguimder of
ways of dividingC' cookies among® + 1 people where each cookie must be assigned to
a person, of“5"). (See also the ‘tell a story’ entry in §7.2 and the ‘convaatientry in
§7.3))

Inclusion - Exclusion Principle: Supposed;, A, ..., A, is a collection of sets. Then the
Inclusion-Exclusion Principle asserts that

4

i=1

= > A=) D JANA |+ AN AN A=

7 2,] 1,5,k
This has many uses for counting probabilities. We used ieternine the probability of a
generic integer is square-free, as well as the probabitiynedom permutation of1, ..., n}
returns at least one element to its initial location.
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(5) Binomial Theorem: We have

n o_ ~ (n k n—k _ ~ (n n—k, k.
(x+y)" = Z(k)x y't = Z(k)x The
k=0 k=0

in probability we usually take = p andy = 1 — p. The coefficients(’,;‘) = ,( have
the interpretation as counting the number of ways of chapsiobjects fromn When order
does not matter. A better definition of this coefficient is

n\ nn-1)---(n—(k-1))

k) k(k—1)---1 '

The reason this definition is superior is tf@) makes sense with this definition, and is just
zero. One can easily sho@l) = 0 wheneverk > n, which makes sense with our combina-
torial interpretation: there is no way to chodsebjects fromn whenn < k, regardless of
whether or not order matters.

7.2. General Techniques of Probability.

(1) Differentiating Identities: Equalities are the bread and butter of mathematics; diftere
ating identities allows us to generate infinitely many moaarf one, which is a very good
deal! For example, consider the identity

(p+q" = kz: <Z)pkq"‘k- (7.1)

Applying the operatop ;- < to both sides we find

n(p+q)" Zk( ) (7.2)

Settingg = 1 — p yields the mean of a binomial random variable:

np =y k‘(Z)p"”(l —p)" (7.3)
k=0

It is very important that initiallyp andq are distinct, free variables, and only at the end do
we sety = 1 — p. Another example is differentiating - =" = 1/(1 — z) by applying the
operatorr-L givesy >” nz" = x/(1 — z)?. While we can prove them™ moment of the
standard normal im—1)!! by induction, we can also do this with differentiating idées.

(2) Law of Total Probability: This is perhaps one of the most useful observati®nsb(A°¢) =
1 — Prob(A), whereA°© is the complementary event. It is frequently easier to camphe
probability that something does not happen than the préibaibidoes. Standard examples
include hands of bridge or other card games.

(3) Fundamental Theorem of Calculus (cumulative distributionfunctions and densities):
One of the most important uses of the Fundament Theorem ctiCalis the relationship
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between the cumulative distribution functidiy of a random variabl&” and its density .
We have

Fx(xz) = Prob(X < x) / fx(t)

In particular, the Fundamental Theorem of Calculus impliest ', () = fx(z). This
means that if we know the cumulative distribution functiare can essentially deduce the
density. For example, leX have the standard exponential density (sdz) = e for

x > 0 and 0 otherwise) and s&t = X2. Then fory > 0 we have

Fy(y) = Prob(Y <y) = Prob(X* <y) = Prob(X <. /y) = Fx(/9).

We now differentiate, using the Fundamental Theorem of @ascand the Chain Rule, and
find that fory > 0

d 1 e~VY

Wly) = Fk(x/ﬁ%d—y(\/@) = fx(x/@'ﬁ N

(4) Binary (or indicator) random variables: For many problems, it is convenient to define a
random variable to be 1 if the event of interest happens antth€nwise. This frequently
allows us to reduce a complicated problem to many simpldblprms. For example, con-
sider a binomial process with parametereandp. We may view this as flipping a coin
with probability p of heads a total of: times, and recording the number of heads. We
may letX; = 1 if the i" toss is heads and 0 otherwise; then the total number of heads i
X = X; + -+ X,. In other words, we have represented a binomial randomhianaith
parameters andp as a sum of. independent Bernoulli random variables. This facilitates
calculating quantities such as the mean or variance, as wdaeeE[X| = nE[X;] = np
andVar(X) = nVar(X;) = np(1 — p). Explicitly, to compute the mean we need to eval-
uateE[X;] = 1-p+ 0- (1 — p) and then multiply byr; this is significantly easier than
directly evaluating the mean of the binomial random vagaklthich requires us to deter-
mine",_ k- (})p*(1 —p)"*.

(5) Linearity of Expectation: One of the worst complications in probability is that random
variables might not be independent. This greatly compicadhe analysis in a variety of
cases; however, if all we care about is the expected valasettifficulties can vanish! The
reason is that the expected values of a sum is the sum of tleetexpvalues; explicitly, if
X =X+ -+ X, thenE[X] = E[X4] + --- + E[X,,]. One great example of this was
in the coupon or prize problem. Imagine we hawdifferent prizes, and each day we are
randomly given one and only of theprizes. We assume the choice of prize is independent
of what we have, with each prize being chosen with probahilit. How long will it take
to have one of each prize? If we I&t denote the random variable which is how long we
must wait, giveni — 1 prizes, until we obtain the next new prize, th&n is a geometric
random variable with parametgy = 1 — % and expected valug = — ( Y . Thus the
expected number of days we must wait until we have one of eazh is S|mply

E[X] = ZE[Xi] = ﬁ = CZ
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whereH, = 1/1+1/2+---+1/cis thec" harmonic number (anfl,. ~ log c for c large).
Note we do not need to consider elaborate combinations ottherizes are awarded. Of
course, if we want to compute the variance or the mediama ifgferent story and we can’t
just use linearity of expectation.

(6) Bring it Over: We have seen two different applications of this method. Gmeévaluating
integrals. Let/ be a complicated integral. What often happens is that, aftere number of
integration by parts, we obtain an expression of the forma+b1; so long a$ # 1 we can
rewrite this ag1 — b)/ = a and then solve fof (I = %;). This frequently occurs for inte-
grals involving sines and cosines, as two derivatives (egirals) basically returns us to our
starting point. We also saw applications of this in mema@ylgames, to be described below.

(7) Memoryless games / processesthere are many situations where to analyze future be-
havior, we do not need to know how we got to a given state or gordtion, but rather
just what the current game state is. A terrific example isippasketball, with the first
person to make a basket winning. Sayshoots first and always gets a basket with proba-
bility p, and B shoots second and always makes a basket with probadilityand B keep
shooting,A then B then A then B and so on, until someone makes a basket. What is the
probability A wins? The long was is to note that the probabilityvins on hem™ shot is
(1-p)(1—q)"" p,and thus

Prob(A wins) = Y (1 —p)(1—q))" "' p;
n=0
while we can evaluate this with the geometric series, the@nieasier way. How caA
win? She can win by making her first basket, which happens prtibability p. If she
misses, then to win she neeBgo miss as well. At this point, it isl’s turn to shoot again,
and it is as if we've just started the game. It does not mategriioth have missed! Thus

Prob(A wins) = p+ (1 — p)(1 — ¢)Prob(A wins).
Note this is exactly the set-up for using ‘Bring it over’, amé find

. p
Prob(A wins) = ;
) = T
in fact, we can use this to provide a proof of the geometrieeséormula! The key idea
here is that once both miss, it is as if we've just started Hrag This is a very fruitful way
of looking at many problems.

(8) Standardization: Given a random variabl& with finite mean and variance, itis almost al-
ways a good idea to consider the standardized random vakiabl (X —E[X])/StDev(X),
especially if X is a sum of independent random variables. The reason i'thew has
mean 0 and variance 1, and this sets us up to compare quaptitibe same scale. Equiv-
alently, when we discuss the Central Limit Theorem evenghwill converge to the same
distribution, a standard normal. We thus will only need tautate the probabilities for one
normal, and not a plethora or even an infinitude. The sitnasigimilar to logarithm tables.
We only need to know logarithms in one base to know them iraalthe Change of Base
formula giveslog, x = log, x/ log, ¢ (and thus if we know logarithms in bagewe know
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then in base).

(9) Tell a story: One of our exam questions was whether or fiot) = ("**~1)(1 — p)"p* for
ne€{0,1,2,...},p € (0,1) is a probability mass function. One way to approach a problem
like this is to try and tell a story. How should we interpres factors? Well, let's makethe
probability of getting a head when we toss a coin, or we coefid Idenote the probability
of a success. Thefl — p)"p* is the probability of a string with exactly failures andk
successes. There a(@ ways to choose which of n+ k places to be the failures; however,
we have("**~"). What's going on? The difference is that we are not consideall possi-
ble strings, but only strings where thest event is a success. Thus we must have exactly
failures (or exactlyc — 1 successes) in the first+- k£ — 1 tosses followed by a success on trial
n+ k. By finding a story like this, we know it is a probability masmttion; it is possible to
directly sum this, but that is significantly harder. (Se®@dhe ‘find an interpretation’ entry
in 87.1 and the ‘convolution’ entry in §7.3.)

(10) Probabilistic Models: We can often gain intuition about complex but determinigtie-
nomena by employing a random model. For example, the Prirmeld¢u Theorem tells us
that there are about/ log = primes at most, leading to the estimation that anyis prime
with probability aboutl/logn (this is known as the Cramer model). Using this, we can
estimate various number theoretic quantities. For exangil&’,, be a random binary indi-
cator variable which is 1 with probabilitfg? and0 with probability 1 — @ If we want to
estimate how many numbers upitstart a twin prime pair (i.en andn + 2 are both prime)
then the answer would be given by the random variable Xo X+ X3X5+- -+ X,,_2X,,.

As everything is independent afid.X ;] = bgk, we have
n2 n=2 n—2
1 dt €T
E[X] = E[X]E[X. = ~ ~ _
[ ] ; [ k] [ k+2] s 10g(l€) 10g<k + 2) L 10g2t logzx

The actual (conjectured!) answer is ab@ut:/ log” 2, where

~ .66016.

What's important is to note that the simple heurislid capture the correct dependence,
namely a constant times/ log” z. Of course, one must be very careful about how far one
pushes and trusts these models. For example, it would prbeie are abouf'sz/ log® =
prime triples(n,n + 2,n + 4) up tox for some non-zer@’;, whereas in actuality there
is only the triple(3,5,7)! The problem is this model misses arithmetic, and in anyethre
consecutive odd numbers exactly one of them is divisible.by 3

(11) Simplifying sums: Often we encounter a sum which is related to a standard sum; th
is particularly true in trying to evaluate moment genenationctions. Some of the more
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common (and important) identities are

N z? a8 = 2"
€ = 1+l’+§+§+"':;ﬁ
1 2 3 - n
—— = l+a+a’+a o=y
n=0
1 = /n
= 1+2:)3+3:)33+4933:Z<>x"_1
— 2
(1 ZE') n=0 1
1 = (n) ok
— Nk Z L
(1—2) — \k
—1
(x_'_y)n — l’n—i-’flﬂfn 1y+n<n2 )xn—2y2
_ — (n E n—k __ ~ (n n—k_k
=S ()t = ()
k=0 k=0

The goal is to ‘see’ a complicated expression is one of thevalffor a special choice
of z). For example, letX be a Poisson with paramet@r thus fx(n) = xA"e " /n! if
n €40,1,2,...} and0 otherwise. Then

Mt_EtX_ootn)\ne_A
x(t) = El¥] = Y e
n=0
Fortunately, this looks like one of the expressions aboamely the one foe”. Rearranging

a bit gives

-2 — (el -2 t t
Mx(t) = e Z = e exp (Ae') = exp (A" = A).
n=0 :

7.3. Moments.

(1) Convolution: Let X andY be independent random variables with densifigsand fy.
Then the density ok + Y is

Frav() = (fx = fy)(w) = / " ) it — u)dus

we call fx = fy the convolution ofX andY. While we can prove by brute force that
fx * fyv = fy * fx, a faster interpretation is obtained by noting that sincéitamh is
commutative,X + Y =Y + X and hencefx,y = fy.x, which implies convolution is
commutative. Convolutions give us a handle on the densitgdms of independent random
variables, and is a key ingredient in the proof of the Cetirait Theorem.

(2) Generating Functions: Given a sequencfu, }2° ,, we define its generating function by

Ga(s) = i a,s"
n=0
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for all s where the sum converges. For discrete random variablesateabn values at the
non-negative integers, an excellent choice is to tgke= Prob(X = n), and the result

is called the generating function of the random variakile Using convolutions, we find
that if X; and X, be independent discrete random variables taking on non-negative inte-
ger values, with corresponding probability generatingcfions Gy, (s) andGx, (s), then
GX1+X2<S> = GXl (S>GX2<S>'

(3) Moment Generating Functions: For many probability problems, the moment generating
function M (¢) is more convenient to study than the generating functiors defined by
Mx (t) = E[e*X], which implies (if everything converges!) that

pot® | pst®

TR

where ), = dkMX(t)/dtk‘ is the £ moment of X. Key properties of the moment

t=0
generating function are: (i) Let and be constants. Then
Max+5(t) = 6BtMX (Oét)

@) if Xy,..., Xy are independent random variables with moment generatingtins
M, (t) which converge foft| < ¢, then

MX1+---+XN <t> = MX1 (t>MX2 (t> e MXN (t)

If the random variables all have the same moment generatingtibn M (t), then the
right hand side become¥ x (¢)"V. Unfortunately the moment generating function does not
always exist in a neighborhood of the origin (this can be dBenonsidering the Cauchy
distribution); this is rectified by studying the characséid function,E[e?*X], which is es-
sentially the Fourier transform of the density (thaEis—2"~]).

_‘_...’

(4) Moment Problem: When does a sequence of moments uniquely determine a plibbabi
density? If our distribution is discrete and takes on onlytdig many (for definiteness,
say N) values, then only finitely many moments are needed. If thsitheis continuous,
however, infinitely many might not be enough. Consider

1 ~(log?z
file) = g et
fa(x) = fi(x) [l +sin(27logz)].

These two densities have the same integral moments {theioments are**/2 for k& a non-
negative integer); while they also have the same half-ratagoments, all other moments
differ (thus there is no sequence of moments where they agned has an accumulation
point; see 86). Thus it is possible for two densities to héasgesame integral moments but
differ.

7.4. Approximations and Estimations.
(1) Cauchy-Schwarz inequality: For complex-valued functionsandg,

[ 1s@stias < ([ If(x)|2dx)% (/ |g<x>|2dx)% |
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One of my favorite applications of this was proving the absolalue of the covariance of
X andY is at most the product of the square-roots of the variancég KBy step in the
proof was writing the joint densityx y (x, y) as+\/fx.y (z,y) v/ fxv(z, y) and putting one
factor with |z — ux| and one withly — uy|. The reason we do this is we cannot directly
integratez? or |x — ux|?; we need to hit it with a probability density in order to have a
chance of getting a finite value. This explains why we write diensity as a product of its
square root with its square root; it allows us to use Caudttya@rz.

(2) Stirling’s Formula: Almost any combinatorial problem involves factorialsheit directly
or through binomial coefficients. Itis essential to be abledtimate:! for largen. Stirling’s
formula says

1 1 139
n! = n"e_"\/27m<1+1 — +‘“);

on T 28802 5184013

thus forn large,n! ~ (n/e)?v/2mn. There are many ways to prove this, the most common
being complex analysis or stationary phase. We can get paoklestimate by ‘summify-
ing’. We haven! = exp(logn!), and

log n! :ZIng‘ ~ / log tdt.
k=1 1

As the anti-derivative ofogt is tlog t, we findlogn! ~ nlogn — n, son! ~ en8" ™" =
n"e~™, which is off by a factor of/27n (while this is a large number, it is small relative
ton"e~¢. If we wanted, using the integral test and a better job ofrestie upper and lower
sums (the Euler-Maclaurin formula), we could get a bett@raximation forn!.

(3) Chebyshev’'s Theorem: Chebyshev’'s theorem (or inequality) is a mixed blessings it
terrific in the sense that it works for any density that hasdinmiean and variance; however,
in many applications its estimates are far from the truthe fidason is that it works fall
such densities, and thus cannot exploit any specific priegesf the density to get decay.
(This is similar to the difference between using Divide ar@hQuer or Newton’s Method
to find a zero of a function; Newton’s method is magnitudetefasecause it assumes more
about the function, namely differentiability, and thusxp#its that to get better estimates.)
Chebyshev’s theorem states

Prob(|X — pu| > ko) < %
Note the eventX — | > ko is a very natural event to consider: we are seeing how far
X is from its expected value, and measuring this differenceiims of the natural units,
the standard deviation. The assumptions for Chebyshestad¢im are a little weaker than
those for the Central Limit Theorem, and there are situatishere crude bounds suffice
(for example, some of the problems we studied in additivelmemtheory).

(4) The Central Limit Theorem: The Central Limit Theorem (CLT) states thatX, ..., X,
are independent, identically distributed random variglalith mearn: and variance?, then
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in many instances we have

7 X+ +X,—nu X1+-7-L-—4-Xn_’u
" oV T o/vm

converges to having the standard normal distributiom ass oo. If the moment gener-
ating function exists in a neighborhood containing the iarighat suffices for the CLT
to hold (though with additional work we the conclusion holdsler weaker assumptions
about theX;’s). In practice one often uses the normal approximatioreanc 30. One
application is to use the CLT to estimate sums of random bksa Another is for hy-
pothesis testing; there key thresholds are that ifas the standard normal distribution, the
Prob(|Z] < 1) =~ 68.3%, Prob(|Z] < 1.96) ~ 95.0% andProb(|Z| < 2.575) ~ 99.0%.

(5) Taylor Series: See the section from Calculus | and II. For us, particulariportant Taylor

series are
.1'2 ..'13'3 ..'13'4
loo(1 - Tt
og(1+z) r-gtg -t
2 3 7t
log(1 — - _ SR T E
og(l —x) (x+2+3+4+ )
¢ e T T = dm (145)
¢ = ltatgtgte = lm (1+0)
. r? a2 _ T\"
e = leat ot = lm (1-7)
1
= l+a+22+2°4+---.
11—z

7.5. Applications.

(1) Benford’s Law:

(2) Additive Number Theory:
(3) Economics:

(4) Gambling:

(5) Sabermetrics:

(6) Monte Carlo Integration:
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8. NUMBER THEORY (MATH 308 AND 406)

(1) Elementary functions: ¢ = cos(#) + isin(f), ¢(q) is the number of positive integers at
mostq that are relatively prime to, ....

(2) The Prime Number Theorem or the Siegel-Walfisz Theoremwe used these frequently
in analyzing prime sums as these yield unconditional eséma

(3) Partial summation: allows us to pass from one known sum to another. For examipdsyk
ing>_ ., logp ~ x we can then evaluafe, _, 1.

(4) Dirichlet’s Pidgeonhole principle: this was very useful in studying*a mod 1, and gave
us very good rational approximations to irrationals.

(5) Unique factorization of the integers: this was crucial in proving (s) = > 1/n® also
equals[] (1 —p~')~"; as we knwo where the integers are, the hope is that we camisse t
knowledge to deduce information about the primes.
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9. GENERAL TECHNIQUES (FOR MANY CLASSES

These are techniques that appear in several different class I've taught, over and over. The
notes below are written from the point of view of a student whohas taken these classes, and
thus some of the passages below may be hard to follow / may refi®e advanced material.

(1) Being algebraically lazy: Another common theme is that we try to do as little work as
possible to get as good of an estimate as needed. For exawglepmputed the mo-
ment generating function of the standard normal by compdethe square, and found
My (t) = E[e"X] = ¢°/2. Later we needed to Fourier transform of the standard normal
while we could attack the integral which arises, it is farieat note the Fourier transform
aty is the same as the moment generating functionatiy. While we need to use some
results from complex analysis to justify this argument, weviget the Fourier transform.

(2) Problem formulation and blinders: We've also seen on a few problems how the way the
problem is formulated can influence how one attempts to salueor example, recall the
function 23 sin(1/x). The oscillation is bounded by two cubics; however, if wet josk
at the part above the-axis, the plot looks like a parabola. It is thus a good idegou're
stuck, to try and think of alternative ways of looking at algem. Other examples include
the graph coloring problem from the HW (vertices are 2 thtongand are connected if
they share a divisor; the HW problem was to show the coloringlmer is at least 13, which
can be done by looking at powers of 2, but it's actually ati®&&890, from looking at even
numbers) and the following (for each> 1 finding anm > 1 such that:m only has Os and
1s base 10; one proof is similar to the pidgeonhole problemsafbset of a4, . .., a, } has
a sum divisible byn). It is amazing how often one can get trapped at looking abalpm
in a certain way; this is something to be aware of.

(3) Choosing approachesCertain functions become natural choices in studying tepmb-
lems. For example, fon*a mod 1 we use the exponential function. The reason this is
so useful is thatxp(2min*a) = exp(27ri(n*a mod 1)). Thus we may drop the difficult
modulo 1 condition and sum more easily. Depending on thelpnobdifferent functions
and expansions will be more useful than others. The easeielhWie exponential function
handles the modulo 1 condition suggests the usefulnesgbfiag Fourier analysis.

(4) Adding zero / multiplying by one: This is perhapshe most important technique to learn,
though it is one of the hardest to master. The difficult pathese methods is figuring out
how to ‘do nothing’ in an intelligent way. The first examplewmight remember is proving
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the product rule from calculus. Let(z) = f(x)g(x). Then

A(x + h) — A(x)

A = i
oy SR+ ) — f@)g(a)
h—0 h
L Ja gl + h)-Fgeeh) + 09g0eth) — f(@)g(a)
h—0 h
o [fE g0 = f@)gle 4 ) | f@g(e+ ) — Fa)gl)
 hs0 h h

fle+h) - f(x) (x)9($+h) —g(x)

= lim 5 g(x + h) + lim f
_ }lg% f($+h})L—f($) }liir(l)g(x%—h)+f(x)}lli_>r%g<x+h2_g(x)
= flx)g(x)+ f(x)d ().

My favorite example was probably in proving the multinondadtribution is a density.

(5) Summifying or summification: We frequently replacé] a,, with exp (log[] a,), as this
converts the product to a sum, and we have a much better tadeirsy of sums. Proba-
bly the most important use was in proving the Central Limiedtem, where we replaced
studying[ [, Mx, (t) with studying) _,log Mx,(t). We also used it to obtain an approx-
imation for Stirling’s formula, replacing! with )",  log¢ (which we evaluated by us-
ing the integral test). We used this to provide a good lowemiofor the singular series

&(N) =1L~ (1 — ﬁ) in the Circle Method (writing odd numbers as the sum of three

primes). We also used it to get a good lower boundgf@y), which allowed us to see that
q/loglogq < ¢(q) < ¢ —1.

(6) L*-norms: in the Circle Method we had the generating functibn(z) = > p<nlogp

exp(2mipr). We are able to get a very good bound fﬁjr\FN(:c)de as|Fy(x)]*> =
Fx(z)Fxn(—x), and the only terms that survive the integration are whenave Ineinforce-
ment. More generally, it is often easy (or at least easiepeireasonable estimates for
quantities such a$ | F(z)[*" dz.

(7) Removing conditions: Whenever you have a theorem, you should always explore what
happens if you remove a condition. Frequently (though noags$) the claim no longer
holds; sometimes the claim is still true but the proof is lkardRarely, but it can happen,
removing a condition causes you to look at a problem in a nght,liand find a simpler
proof.

(8) Efficient algebra: It is frequently worthwhile to think about whether or not wancap-
proach a tedious algebra problem another way. Some exafnpiegrevious courses: to
computeA” for n large, diagonalized if possible, sayd = SAS~! with A the diagonal
matrix of eigenvalues. TheA™ = SA"S—!, andA" is readily computed. Another example
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is telescoping serie$g; —ag) + (as —aq) + - - - + (@, —a,—1) = a, —ap; this is a key ingre-
dient in many proofs of the Fundamental Theorem of Calcukrequently in probability
we combine these approaches with recognizing and expdagimidentity; for example, if
we had to evaluat€})2? + (3)2° + --- + (7)2", we might notice that this is almost the
binomial expansion of1 + 2); it would be, but we're missing the first two terms. The
solution is to add zero by adding and subtracting those teshish gives

(G (e = (S 0)m) () ()
= (1+2)"—=(n+nn-1) = 3" —n?

note we included the factdr—* to make this match the standard binomial theorem expan-
sion.

(9) llluminating algebra: It is very easy to obtain complicated expressions involthe pa-

rameters of interest; while the answer is correct, the finadlpct is not illuminating. It is
worthwhile to see if the answer can be simplified. For examasider the sabermetrics
(baseball math) problem where we had Te&nscores runs from a geometric distribution
with parametep (in this caseProb(X = m) = (1 — p)p™ form € {0,1,2,...} and
allows runs to Teamy” with a geometric distribution with parametgrwe assume the two
random variables are independent. The mean number of riam Xescores is denoted
RS, and equal®S = ﬁ which impliesp = %ﬁl; we letRA denote the runs allowed, and
R_A = l%q which impliesq = %ﬁl. After some algebra we found the probability Team
wins is
(1 —q)

p(l—q)+q(l—-p)
No one, however, things in terms of the decay probabilityfiscoringm to scoringm + 1
runs; we want a formula in terms of runs scored RS and rung@tidRA. Substituting for
p andq yields

( RA )RS

" 1+RA

0+ R (L, =0 )}

14+RS 1+RA

a most unilluminating formula! With some work, we can simyplhis to the nice answer
we’ll describe below; however, what is important about ingblem (for us — major league
baseball would beg to differ!) is not the result, but how taate it efficiently. We know

thatﬁ is a nice expression, namely RS, and similarlyf@g. Thus we should take our

expression and multiply by 1 in the forfa /(1 — p)(1 — ¢)) / (1/(1 —p)(1 —q)). Doing
so yields

1
p(1—q) C(-p)(-gq l%p RS .
PA-a)+dl-p) goa=g 15ty RS+RA

Note we obtain a very nice formula very quickly.
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FIGURE 1. Histogram plot of number of shots to make 341 baskets gwvé8%
chance of making a shot. The data was obtained by playingaimed 0,000 times
and recording how long it took. The sample mean is 852.05&c{wis quite close
to the predicted 852.5), the sample standard deviation.B032 (quite close to the
predicted 35.7596), and 67.4% of the time the number of sivatswithin 35 of
852.5 (quite close to our prediction).

(10) Numerical exploration: When given a problem, one can frequently build intuition bg-r
ning numerical experiments. For example, one of our probleancerned a person who
made 40% of all their shots. We wanted to know the probahitiat the number of shots
required to make 341 baskets was within 35 of the mean nunfb&nats required. We
came up with an answer by seeing that this was equivalenetsum of 341 independent
geometric random variables with parametet .4, and thus the Central Limit Theorem is
applicable to estimate the probability.

To test our predictions, consider the person shooting theil get 341 baskets a stagger-
ing 10,000 times (see Figure 1). Note the numerical dataite glose to theory. If you can
program in some environment, you can quickly gather nurakdata to help elucidate the
answer. The Mathematica code for this problem is:

testefnum]:=Modul€g/{},

count= {};

prob = 0;

mean= 852.5;

Forln = 1,n < num n++,
{

numfound= 0;

counter= 0;
While[numfound< 341,
{

counter= counter+ 1;

If[Randonf] < .4, numfound= numfound+ 1];
H;

count= AppendTdcount counte;

If [Abs|counter— mear < 35, prob= prob-+ 1];
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3
PrintHistogranjcount {750, 950, 10}, Probability];

Printjprob100.0/num;
I;

Of course, sometimes we are fortunate enough that, insteadtiting for numerical
answers, programs like Mathematica can find the exact answeexample, consider the
following difference equation, which arises in a problertated to a random walk with

boundaries:
Ty = 21, 1701 L
p D D
Typing
Simplify[RSolve[{T[i]==p (T[i + 1] + 1) + (1 - p) (T[i - 1] + 1), T[0] == 0, T[M] == 0},

Tl 1]]

HM(@)LQ _Z»(l%p)f”'
<(1P%P>M - 1) (2p—1)

(11) Test functions: You should always consider testing the limits of a theoreomjecture or
intuition. Does it hold for the standard normal? For the ®@s?c How important is the
finiteness of moments? Usually a result is false if you remeeendition; however, when
you are trying to figure out what the conditions should be inetem, you're in a different
mindset. In this case, it is worthwhile to play with varioustions and see what happens.

into Mathematica yields

T, =

(12) Check for reasonablenessWhenever we have a formula, it is a very good idea to check
special cases to see if it is reasonable. For example, canrtbiel sabermetrics formula from
the previous point: if a team scores on average RS runs pex gathallows on average RA
per game (with RS and RA independent geometric random \asatith respective means
RS and RA), then its probability of winning 8S/(RS + RA). Is this formula reasonable?
There are many checks we can do. The first is that we alwaysrgehber between 0 and 1
(which is a must for a probability!). Further, if RS is zeroibRA tends to infinity than we
have no chance of winning, exactly as we would expect. If vageson average more runs
than we allow, our winning percentage is greater than 50%ewfrwe score and allow the
same number on average than the winning percentage is 5@84,@gte reasonable.

For another example, imagine we flip a fair coin with prohiabip of heads and — p

of tailsn times, and we ask how many runs (alterations between headsits) there are;

for example, if the outcome were HHTTHTHTTTTTHTHHHH theretle were 18 tosses,

9 heads and 9 tails and 9 runs, the shortest being a run ohldnghd the longest being

a run of length 5. The expected number of run$ is (n — 1)2p(1 — p). Is this formula
reasonable? Note thatjf= 0 or p = 1 then because of the factp(l — p) the expected
number of runs is 1; we should be shocked if this is not the, @ss# the coin always lands

on heads, how could there ever be an alteration? A littleubadcshows that the maximum
expected value is whem= 1/2, which also seems reasonable. Finally, in the special case
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p = 1/2 the expected number is essentiall§2; there are: tosses and each toss has a 50%
chance of being different than the previous (and thus stadirun), so again our answer
makes sense.

(13) Check all conditions: Whenever you want to use a theorem, make sure all the conslitio
are satisfied. For example, if you are summing the geomedriesl + x + 22 + 2% + - - -
then you better havee| < 1. If you are asked whether or not something is a probability
distribution, it must satisfy both requirements (non-riegsand sums to 1; it is not enough
to just sum to one). If you want something to be a group, it nsasisfy all four properties
(closure, identity, associativity, inverse). Frequersityne but not all of the conditions are
met.
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