
Math 372: Solutions to Homework

Steven Miller

December 9, 2013

Abstract

Below are detailed solutions to the homework problems from Math 372 Complex Analysis (Williams College,
Fall 2013, Professor Steven J. Miller, sjm1@williams.edu). The course homepage is

http://www.williams.edu/Mathematics/sjmiller/public_html/372

and the textbook is Complex Analysis by Stein and Shakarchi (ISBN13: 978-0-691-11385-2). Note to students:
it’s nice to include the statement of the problems, but I leave that up to you. I am only skimming the solutions.
I will occasionally add some comments or mention alternate solutions. If you find an error in these notes,
let me know for extra credit.
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1 Math 372: Homework #1: Yuzhong (Jeff) Meng and Liyang Zhang (2010)

Due by 11am Friday, September 13: Chapter 1: Page 24: #1abcd, #3, #13.

Problem: Chapter 1: #1: Describe geometrically the sets of points z in the complex plane defined by the fol-
lowing relations: (a) |z − z1| = |z − z2| where z1, z2 ∈ C; (b) 1/z = z; (c) Re(z) = 3; (d) Re(z) > c (resp., ≥ c)
where c ∈ R.

Solution: (a) When z1 6= z2, this is the line that perpendicularly bisects the line segment from z1 to z2. When
z1 = z2, this is the entire complex plane.
(b)

1

z
=

z

zz
=

z

|z|2
. (1.1)

So
1

z
= z ⇔ z

|z|2
= z ⇔ |z| = 1. (1.2)

This is the unit circle in C.
(c) This is the vertical line x = 3.
(d) This is the open half-plane to the right of the vertical line x = c (or the closed half-plane if it is ≥).

Problem: Chapter 1: #3: With ω = seiϕ, where s ≥ 0 and ϕ ∈ R, solve the equation zn = ω in C where n is a
natural number. How many solutions are there?

Solution: Notice that
ω = seiϕ = sei(ϕ+2πm),m ∈ Z. (1.3)

It’s worth spending a moment or two thinking what is the best choice for our generic integer. Clearly n is a bad
choice as it is already used in the problem; as we often use t for the imaginary part, that is out too. The most natural
is to use m (though k would be another fine choice); at all costs do not use i!

Based on this relationship, we have
zn = sei(ϕ+2πm). (1.4)

So,
z = s1/ne

i(ϕ+2πm)
n . (1.5)

Thus, we will have n unique solutions since each choice of m ∈ {0, 1, . . . , n − 1} yields a different solution so
long as s 6= 0. Note that m = n yields the same solution as m = 0; in general, if two choices of m differ by n then
they yield the same solution, and thus it suffices to look at the n specified values of m. If s = 0, then we have only
1 solution.

Problem: Chapter 1: #13: Suppose that f is holomorphic in an open set Ω. Prove that in any one of the follow-
ing cases f must be constant:
(a) Re(f ) is constant;
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(b) Im(f ) is constant;
(c) |f | is constant.

Solution: Let f(z) = f(x, y) = u(x, y) + iv(x, y), where z = x+ iy.
(a) Since Re(f) = constant,

∂u

∂x
= 0,

∂u

∂y
= 0. (1.6)

By the Cauchy-Riemann equations,
∂v

∂x
= −∂u

∂y
= 0. (1.7)

Thus, in Ω,

f ′(z) =
∂f

∂x
=
∂u

∂x
+ i

∂v

∂x
= 0 + 0 = 0. (1.8)

Thus f(z) is constant.

(b) Since Im(f) = constant,
∂v

∂x
= 0,

∂v

∂y
= 0. (1.9)

By the Cauchy-Riemann equations,
∂u

∂x
=
∂v

∂y
= 0. (1.10)

Thus in Ω,

f ′(z) =
∂f

∂x
=
∂u

∂x
+ i

∂v

∂x
= 0 + 0 = 0. (1.11)

Thus f is constant.

(c) We first give a mostly correct argument; the reader should pay attention to find the difficulty. Since |f | =√
u2 + v2 is constant, {

0 = ∂(u2+v2)
∂x = 2u∂u∂x + 2v ∂v∂x .

0 = ∂(u2+v2)
∂y = 2u∂u∂y + 2v ∂v∂y .

(1.12)

Plug in the Cauchy-Riemann equations and we get

u
∂v

∂y
+ v

∂v

∂x
= 0. (1.13)

− u∂v
∂x

+ v
∂v

∂y
= 0. (1.14)

(1.14)⇒ ∂v

∂x
=
v

u

∂v

∂y
. (1.15)

Plug (1.15) into (1.13) and we get
u2 + v2

u

∂v

∂y
= 0. (1.16)
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So u2 + v2 = 0 or ∂v∂y = 0.
If u2 + v2 = 0, then, since u, v are real, u = v = 0, and thus f = 0 which is constant.
Thus we may assume u2 + v2 equals a non-zero constant, and we may divide by it. We multiply both sides by

u and find ∂v
∂y = 0, then by (1.15), ∂v∂x = 0, and by Cauchy-Riemann, ∂u∂x = 0.

f ′ =
∂f

∂x
=
∂u

∂x
+ i

∂v

∂x
= 0. (1.17)

Thus f is constant.

Why is the above only mostly a proof? The problem is we have a division by u, and need to make sure
everything is well-defined. Specifically, we need to know that u is never zero. We do have f ′ = 0 except at points
where u = 0, but we would need to investigate that a bit more.

Let’s return to {
0 = ∂(u2+v2)

∂x = 2u∂u∂x + 2v ∂v∂x .

0 = ∂(u2+v2)
∂y = 2u∂u∂y + 2v ∂v∂y .

(1.18)

Plug in the Cauchy-Riemann equations and we get

u
∂v

∂y
+ v

∂v

∂x
= 0

−u∂v
∂x

+ v
∂v

∂y
= 0. (1.19)

We multiply the first equation u and the second by v, and obtain

u2
∂v

∂y
+ uv

∂v

∂x
= 0

−uv ∂v
∂x

+ v2
∂v

∂y
= 0. (1.20)

Adding the two yields

u2
∂v

∂y
+ v2

∂v

∂y
= 0, (1.21)

or equivalently

(u2 + v2)
∂v

∂y
= 0. (1.22)

We now argue in a similar manner as before, except now we don’t have the annoying u in the denominator. If
u2 + v2 = 0 then u = v = 0, else we can divide by u2 + v2 and find ∂v/∂y = 0. Arguing along these lines finishes
the proof. 2

One additional remark: we can trivially pass from results on partials with respect to v to those with respect to u
by noting that if f = u+ iv has constant magnitude, so too does g = if = −v+ iu, which essentially switches the
roles of u and v. Though this isn’t needed for this problem, arguments such as this can be very useful.
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The following is from Steven Miller. Let’s consider another proof. If |f | = 0 the problem is trivial as then
f = 0, so we assume |f | equals a non-zero constant. As |f | is constant, |f |2 = ff is constant. By the quotient
rule, the ratio of two holomorphic functions is holomorphic, assuming the denominator is non-zero. We thus find
f = |f |2/f is holomorphic. Thus f and f are holomorphic, and satisfy the Cauchy-Riemann equations. Applying
these to f = u+ iv yields

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
,

while applying to f = u+ i(−v) gives

∂u

∂x
=

∂(−v)

∂y
,

∂u

∂y
= −∂(−v)

∂x
.

Adding these equations together yields

2
∂u

∂x
= 0, 2

∂u

∂y
= 0.

Thus u is constant, and by part (a) this implies that f is constant. If we didn’t want to use part (a) we could subtract
rather than add, and similarly find that v is constant.

The following is from Craig Corsi, 2013 TA. The problem also follows from the polar form of the Cauchy-
Riemann equations.

It’s worth mentioning that (a) and (b) follow immediately from (c). For example, assume we know the real part
of f is constant. Consider

g(z) = exp(f(z)) = exp(u(x, y)) exp(iv(x, y)).

As |g(z)| = exp(u(x, y)), we see that the real part of f being constant implies the function g has constant magni-
tude. By part (c) this implies that g is constant, which then implies that f is constant.

2 Math 372: Homework #2: Solutions by Nick Arnosti and Thomas Crawford
(2010)

Due at the start of class by 11am Friday, September 20: Chapter 1: Page 24: #16abc, #24, #25ab. Chapter 2:
(#1) We proved Goursat’s theorem for triangles. Assume instead we know it holds for any rectangle; prove
it holds for any triangle. (#2) Let γ be the closed curve that is the unit circle centered at the origin, oriented
counter-clockwise. Compute

∮
γ f(z)dz where f(z) is complex conjugation (so f(x + iy) = x − iy). Repeat

the problem for
∮
γ f(z)ndz for any integer n (positive or negative), and compare this answer to the results

for
∮
γ z

ndz; is your answer surprising? (#3) Prove that the four triangles in the subdivision in the proof of
Goursat’s theorem are all similar to the original triangle. (#4) In the proof of Goursat’s theorem we assumed
that f was complex differentiable (ie, holomorphic). Would the result still hold if we only assumed f was
continuous? If not, where does our proof break down?
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3 Math 372: Homework #2: Solutions by Nick Arnosti and Thomas Crawford
(2010)

Due at the start of class by 11am Friday, September 20: Chapter 1: Page 24: #16abc, #24, #25ab. Chapter 2:
(#1) We proved Goursat’s theorem for triangles. Assume instead we know it holds for any rectangle; prove
it holds for any triangle. (#2) Let γ be the closed curve that is the unit circle centered at the origin, oriented
counter-clockwise. Compute

∮
γ f(z)dz where f(z) is complex conjugation (so f(x + iy) = x − iy). Repeat

the problem for
∮
γ f(z)ndz for any integer n (positive or negative), and compare this answer to the results

for
∮
γ z

ndz; is your answer surprising? (#3) Prove that the four triangles in the subdivision in the proof of
Goursat’s theorem are all similar to the original triangle. (#4) In the proof of Goursat’s theorem we assumed
that f was complex differentiable (ie, holomorphic). Would the result still hold if we only assumed f was
continuous? If not, where does our proof break down?

Problem: If γ is a curve in C, show that
∫
−γ f(z)dz = −

∫
γ f(z)dz.

Parameterize γ by z = g(t) for t in [a, b], and define w(t) = g(a + b − t). Then w(t) is a parameterization of
−γ on the interval [a, b] (note that w(a) = g(b), w(b) = g(a)). Additionally, w′(t) = −g′(a + b − t). It follows
that ∫

−γ
f(z)dz =

∫ b

a
f(w(t))w′(t)dt = −

∫ b

a
f(g(a+ b− t))g′(a+ b− t)dt.

Making the substitution u = a+ b− t, we get that

−
∫ b

t=a
f(g(a+ b− t))g′(a+ b− t)dt =

∫ a

u=b
f(g(u))g′(u)du

= −
∫ b

u=a
f(g(u))g′(u)du. (3.1)

But

−
∫ b

u=a
f(g(u))g′(u)du = −

∫
γ
f(z)dz,

which proves the claim.
Problem: If γ is a circle centered at the origin, find

∫
γ z

ndz.

We start by parameterizing γ by z = reiθ, 0 ≤ θ < 2π, so dz = ireiθdθ. Then∫
γ
zndz =

∫ 2π

0
rneinθ(ireiθ)dθ = irn+1

∫ 2π

0
ei(n+1)θdθ.
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If n = −1, this is ir0
∫ 2π
0 dθ = 2πi. Otherwise, we get

irn+1

∫ 2π

0
ei(n+1)θdθ =

rn+1

n+ 1
ei(n+1)θ

∣∣∣∣2π
0

= 0.

Problem: If γ is a circle not containing the origin, find
∫
γ z

ndz.

If n 6= −1, the function f(z) = zn has a primitive (namely zn+1

n+1 ), so by Theorem 3.3 in Chapter 1 of our book,∫
γ f(z)dz = 0.

If n = −1, we parameterize γ by z = z0 + reiθ, 0 ≤ θ < 2π, so dz = ireiθdθ.Then∫
γ

1

z
dz =

∫ 2π

0

ireiθ

z0 + reiθ
dθ =

ir

z0

∫ 2π

0

eiθ

1 + r
z0
eiθ
dθ.

Note that because our circle does not contain the origin, |z0| > r, so | rz0 e
iθ| < 1. Thus, we can write this

expression as a geometric series:

ir

z0

∫ 2π

0

eiθ

1 + r
z0
eiθ
dθ =

ir

z0

∫ 2π

0
eiθ

∞∑
k=0

(
−r
z0
eiθ)kdθ.

Interchanging the sum and the integral, we see that this is just

−i
∞∑
k=0

(
−r
z0

)k+1

∫ 2π

0
ei(k+1)θdθ = −

∞∑
k=0

(
−r
z0

)k+1 e
i(k+1)θ

k + 1

∣∣∣∣2π
0

dθ = 0.

Why may we interchange? We can justify the interchange due to the fact that the sum of the absolute values
converges.

Problem: If γ is the unit circle centered at the origin, find
∫
γ z̄

ndz.

We start by parameterizing γ by z = eiθ, 0 ≤ θ < 2π, so z̄ = e−iθ and dz = ieiθdθ. Then∫
γ
z̄ndz =

∫ 2π

0
e−inθ(ieiθ)dθ = i

∫ 2π

0
e−i(n−1)θdθ.

If n = 1, this is i
∫ 2π
0 dθ = 2πi. Otherwise, we get

i

∫ 2π

0
e−i(n−1)θdθ =

ei(1−n)θ

1− n

∣∣∣∣2π
0

= 0.
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Note that instead of doing the algebra, we could have observed that on the unit circle z̄ = z−1, so
∫
γ z̄

ndz =∫
γ z
−ndz. Applying our work from Problem 3, we get the answer above.

Problem: Where in the proof of Goursat’s theorem do we use the fact that the function f is holomorphic? Is it
sufficient to know that f is continuous?

Start by recapping the main ideas behind the proof. We began by continually splitting our triangle T into smaller
triangles. These triangles converge to a point in the limit, and we called this point z0. We then established the bound∣∣ ∫

T
f(z)dz

∣∣ ≤ 4n
∣∣ ∫

T (n)

f(z)dz
∣∣.

Our goal was to show that this quantity tends to zero as z → z0.
To do this, we Taylor expanded f(z) around the point z0 : f(z) = f(z0) + f ′(z0)(z − z0) + ψ(z)(z − z0).

Note that (z − z0) divides ψ(z), so ψ(z)→ 0 as z → z0.∣∣∣∣ ∫
T (n)

f(z)dz

∣∣∣∣ ≤ ∣∣∣∣ ∫
T (n)

f(z0) + f ′(z0)(z − z0)dz
∣∣∣∣+

∫
T (n)

|ψ(z)(z − z0)|dz

The first integrand in this sum has a primitive, so the value of this integral is zero. LetMn = maxz on T (n) |ψ(z)|.
Then |ψ(z)| ≤ Mn, and z − z0 ≤ diam(T (n)). Hence, the value of the second integral is at most perim(T (n)) ·
diam(T (n)) ·Mn.

Since the perimeter and diameter of T (n) both decay at a rate of 2−n, we establish the bound that
∣∣ ∫
T (n) f(z)dz

∣∣ ≤
4−nCMn for some constant C. Hence, CMn is an upper-bound for

∣∣ ∫
T f(z)dz

∣∣, and since ψ(z) → 0 as z → z0,
Mn → 0 as desired.

Now let us see what happens if we don’t know that f is differentiable. Using only continuity, we can approxi-
mate f(z) by f(z0) + ψ(z)(z − z0). Defining Mn as before, we can still bound our integral by CMn. We want to
say that Mn tends to 0, but limz→z0 ψ(z) = limz→z0

f(z)−f(z0)
z−z0 , which may not exist if f is not differentiable (and

certainly may not tend to zero). Thus, this approach fails.
We could also try the expression f(z) = f(z0) + ψ(z), and then ψ(z)→ 0 as z → z0. Unfortunately, without

the factor of (z− z0), our bound on |
∫
T (n) f(z)dz| will simply be perim(T (n)) ·Mn = 2−nCMn. Thus, our bound

for |
∫
T (n) f(z)dz| is 4n2−nCMn = 2nCMn. Even though Mn tends to 0, the factor of 2n may overwhelm it, so

this approach fails. From these attempts, it seems that knowing that f was differentiable was a fairly important step
in the proof.
Problem: Prove Goursat’s theorem for triangles using only the fact that it holds for rectangles.

Note that it suffices to prove that the integral along any right triangle is zero, since any triangle can be divided
into two right triangles by dropping an altitude.

Given a right triangle ABC, by drawing a series of rectangles inside the triangle, we can reduce the desired
integral to the integral along a series of n congruent triangles similar to ABC, each of which border the original
hypotenuse (as shown in the figure).
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Since f is continuous on the original triangle ABC (a compact set) we know that f is uniformly continuous on
the region of interest.

Thus, given any ε > 0, there exists a δ > 0 such that for any two points x, y in ABC with |x − y| < δ,
|f(x) − f(y)| < ε. If h is the length of the hypotenuse of ABC, choose n large enough so that the diameter of
each small triangle, h/n, is less than δ. Then for any triangle Tk and any point zk on that triangle write f(z) =
f(zk) + ψ(z), so that ∫

Tk

f(z)dz =

∫
Tk

f(zk) + ψ(z)dz =

∫
Tk

f(zk)dz +

∫
Tk

ψ(z)dz

Since f(zk) is a constant, it has a primitive, so the first integral is zero. Meanwhile, since any point on triangle
Tk is within h/n of zk, and we chose n to be such that h/n < δ, we know that |ψ(z)| = |f(z)− f(zk)| < ε. Thus,
|
∫
Tk
ψ(z)dz| < perim(Tk) · ε. But perim(Tk) < 3h/n, so the integral of f(z) along triangle Tk is at most 3hε/n.

Summing over all n triangles, we see that the integral of f(z) along the entire curve is at most 3hε. Since this
technique works for arbitrarily small ε, this implies that the integral of f along any right triangle is zero, proving
the claim.

4 Math 372: Homework #3: Carlos Dominguez, Carson Eisenach, David Gold

HW: Due at the start of class by 11am Friday, September 27: Chapter 2, Page 64: #1, #8. Also do: Chap-
ter 2: (Problems from me): (#1) In the proof of Liouville’s theorem we assumed f was bounded. Is it
possible to remove that assumption? In other words, is it enough to assume that |f(z)| < g(z) for some
real-valued, non-decreasing function g? If yes, how fast can we let f grow? (#2) a) Find all z where the
function f(z) = 1/(1 + z4) is not holomorphic; b) Let a, b, c, and d be integers such that ad− bc = 1. Find all
z where the function g(z) = (az + b)/(cz + d) is not holomorphic. (#3) Compute the power series expansion
of f(z) = 1/(1 − z) about the point z = 1/2 (it might help to do the next problem first, or to write 1 − z as
1/2− (z − 1/2)). (#4) Do Chapter 1, Page 29, #18.
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Math 372: Complex Analysis

HW #3: Due at the start of class by 11am Friday, September 27: Chapter 2, Page 64: #1, #8. Also do:
Chapter 2: (Problems from me): (#1) In the proof of Liouville’s theorem we assumed f was bounded. Is
it possible to remove that assumption? In other words, is it enough to assume that |f(z)| < g(z) for some
real-valued, non-decreasing function g? If yes, how fast can we let f grow? (#2) a) Find all z where the
function f(z) = 1/(1 + z4) is not holomorphic; b) Let a, b, c, and d be integers such that ad− bc = 1. Find all
z where the function g(z) = (az + b)/(cz + d) is not holomorphic. (#3) Compute the power series expansion
of f(z) = 1/(1 − z) about the point z = 1/2 (it might help to do the next problem first, or to write 1 − z as
1/2− (z − 1/2)). (#4) Do Chapter 1, Page 29, #18.

1. Let γ1 denote the straight line along the real line from 0 toR, γ2 denote the eighth of a circle fromR toRei
π
4 ,

and γ3 denote the line from Rei
π
4 to 0. Then by Cauchy’s theorem,∫

γ1+γ2+γ3

e−z
2
dz = 0.

We can calculate

−
∫
γ3

e−z
2
dz =

∫ R

0
e−(e

iπ/4t)2eiπ/4 dt

= eiπ/4
∫ R

0
e−it

2
dt

= eiπ/4
∫ R

0
cos (−t2)dt+ i sin (−t2) dt

= eiπ/4
∫ R

0
cos (t2)dt− i sin (t2) dt

So we can calculate the Fresnel integrals by calculating
∫
γ1+γ2

e−z
2
dz, taking R → ∞, dividing by eiπ/4,

and looking at the real and negative imaginary parts. First we show the integral over γ2 goes to zero:∣∣∣∣∫
γ2

e−z
2
dz

∣∣∣∣ =

∣∣∣∣∣
∫ π/4

0
e−R

2e2iθ iReiθ dθ

∣∣∣∣∣
≤ R

∫ π/4

0
e−R

2 cos 2θ dθ

= R

∫ π/4−1/R logR

0
e−R

2 cos 2θ dθ +R

∫ π/4

π/4−1/R logR
e−R

2 cos 2θ dθ

≤ R
(
π

4
− 1

R logR

)
e
−R2 cos

(
π
2
− 2
R logR

)
+R · 1

R logR

≤ π

4
Re
−R2 sin

(
2

R logR

)
+

1

logR
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The 1
logR term goes to zero as R goes to infinity. So we need to show that the first term goes to zero. Note

that sinx ≥ x/2 for positive x sufficiently close to 0, since sin 0 = 0 and d
dx sinx ≥ 1/2 for sufficiently

small x. So for sufficiently large R the first term is less than or equal to

π

4
Re
−R2· 1

R logR =
π

4
e
logR− R

logR ,

which goes to zero as R goes to infinity. So, as R→∞, the contribution from γ2 goes to zero. And we know
that as R→∞,

∫ R
0 e−x

2
dx =

√
π/2. So, finally,∫ ∞

0
cos (t2)dt− i sin (t2) dt =

√
π

2
· 1√

2/2 + i
√

2/2

=

√
2π

4
−
√

2π

4
i

as desired.

8. Since x ∈ R, f is holomorphic in an open circle of radius ε centered at x, 0 < ε < 1. And by Cauchy’s
inequality,

|f (n)(x)| ≤ n!||f ||C
Rn

Case 1: η ≥ 0. For some 0 < ε < 1,
|z| ≤ |x+ ε|

thus,
|f(z)| ≤ A(1 + |x+ ε|)η ≤ A(1 + ε+ |x|)η

by both the given and the triangle inequality. And in Cauchy’s inequality R is just ε. So by combining results
from above

|f (n)(x)| ≤ n!||f ||C
εn

≤ An!

εn
(1 + ε+ |x|)η

≤ An!

εn
(1 + ε+ |x|+ ε|x|)η

≤ An!

εn
(1 + ε)η(1 + |x|)η. (4.1)

Now let

An =
A(n!)

εn
(1 + ε)η

thus,
|f (n)(x)| ≤ An(1 + |x|)η.

Case 2: η < 0. For some 0 < ε < 1,
ε ≥ |x− z| ≥ |x| − |z|

12



by the reverse triangle inequality. When we rearrange the inequality we see that

|z| ≥ |x| − |ε| = |x|+ ε

Since η is negative, our goal is to minimize (1+|z|) in order to get an upper bound. Now, by combining our
result above with the Cauchy inequality we get that:

|f (n)(x)| ≤ n!||f ||C
εn

≤ An!

εn
(1− ε+ |x|)η

≤ An!

εn
(1− ε+ |x| − ε|x|)η

≤ An!

εn
(1− ε)η(1 + |x|)η. (4.2)

Now let

An =
A(n!)

εn
(1− ε)η

thus,
|f (n)(x)| ≤ An(1 + |x|)η.

q.e.d.

1. In the proof of Liouville’s theorem, we had that

|f ′(z0)| ≤
B

R

where B was an upper bound for f . It only matters that B is an upper bound for f in a disc of radius R about
z0, however. Let BR be the smallest upper bound for f in a disc of radius R about z0. Liouville’s theorem
still holds if BR → ∞ as long as BR/R → 0 for every choice of z0. Alternatively, we just need f to grow
slower than linear; say |f(z)| is less than C|z|1−ε or C|z|/ log |z| or anything like this (for those who have
seen little-oh notation, f(z) = o(z) suffices).

2. (a) f is holomorphic wherever its derivative exists:

f ′(z) = − 4z3

1 + z4

That is, whenever z4 6= −1. This gives z = eiπ/4, e3iπ/4, e5iπ/4, and e7iπ/4, or
√
2
2 +

√
2
2 i, −

√
2
2 +

√
2
2 i,

−
√
2
2 −

√
2
2 i, and

√
2
2 −

√
2
2 i.

(b) The ad − bc = 1 condition prevents g from being a mostly-constant function with an undefined value
at z = −d/c. (That is, if ad − bc = 0, then a/c = b/d, and so the function would simply collapse to
the value of a/c.) So

g′(z) =
(cz + d)a− (az + b)c

(cz + d)2
=

1

(cz + d)2

The function is then not holomorphic at z = −d/c.

13



3. Just use the geometric series formula:

1

1− z
=

1

1/2− (z − 1/2)

=
2

1− 2(z − 1/2)

=
∞∑
n=0

2n+1(z − 1/2)n.

4. Let f(z) =
∑∞

n=0 anz
n. Then

f(z) =
∞∑
n=0

an(z0 + (z − z0))n

=

∞∑
n=0

an

[
n∑

m=0

(
n

m

)
(z − z0)mzn−m0

]

=
∞∑
m=0

(z − z0)m
( ∞∑
n=m

an

(
n

m

)
zn−m0

)
.

The inner sum converges by the root test:

lim sup
n→∞

n

√
an

(
n

m

)
=

1

R
lim
n→∞

n

√(
n

m

)
=

1

R

where R is the radius of convergence of the original power series for f and second limit is evaluated by noting

1 ≤ n

√(
n
m

)
≤ nm/n and limn→∞ n

m/n = 1. Since the inner sum has the same radius of convergence as
the original sum, z0 still lies in the disc of convergence in the inner sum; hence all the coefficients of z − z0
converge, and f has a power series expansion about z0.

Homework 4: Due at the start of class by 11am Friday, October 11 (even if this is Mountain Day): Chapter
3, Page 103: #1, #2, #5 (this is related to the Fourier transform of the Cauchy density), #15d, #17a (hard).
Additional: Let f(z) =

∑∞
n=−5 anz

n and g(z) =
∑∞

m=−2 bmz
m be the Laurent expansions for two functions

holomorphic everywhere except possibly at z = 0. a) Find the residues of f(z) and g(z) at z = 0; b) Find the
residue of f(z) + g(z) at z = 0; c) Find the residue of f(z)g(z) at z = 0; d) Find the residue of f(z)/g(z) at
z = 0.
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5 Math 372: Homework #4: Due Friday, October 4, 2013: Pham, Jensen, Koloğlu

HW: Due at the start of class by 11am Friday, October 11 (even if this is Mountain Day): Chapter 3, Page
103: #1, #2, #5 (this is related to the Fourier transform of the Cauchy density), #15d, #17a (hard). Additional:
Let f(z) =

∑∞
n=−5 anz

n and g(z) =
∑∞

m=−2 bmz
m be the Laurent expansions for two functions holomorphic

everywhere except possibly at z = 0. a) Find the residues of f(z) and g(z) at z = 0; b) Find the residue of
f(z) + g(z) at z = 0; c) Find the residue of f(z)g(z) at z = 0; d) Find the residue of f(z)/g(z) at z = 0.

5.1 Chapter 3, Exercise 1

Exercise 5.1. Using Euler’s formula sinπz = eiπz−e−iπz
2i , show that the complex zeros of sinπz are exactly the

integers, and that they are each of order 1. Calulate the residue of 1
sinπz at z = n ∈ Z.

Solution: To show that the complex zeros of sinπz are exactly the integers, we will show that e
iπz0−e−iπz0

2i = 0
if and only if z0 ∈ Z.

First prove the forward direction. We see that e
iπz0−e−iπz0

2i = 0 gives

eiπz0 = e−iπz0 . (5.1)

Since z0 = x+ iy with x, y ∈ R,
eiπxe−πy = e−iπxeπy. (5.2)

For complex numbers to be equivalent, their magnitudes must be the same. Thus,

e−πy = eπy. (5.3)

This implies that −πy = πy, so y = 0. The angles corresponding to Equation 5.2 must be congruent modulo 2π as
well. Thus,

πx ≡ −πx mod 2π, (5.4)

which means πx ≡ 0 or π. So we have
2πx mod 2π ≡ 0, (5.5)

which implies that x is an integer. Thus x ∈ Z. Since y = 0, we have z0 = x, implying z0 ∈ Z.
To prove the backward direction, consider z0 ∈ Z for z0 even,

sinπz0 =
eiπz − e−iπz

2i

=
1− 1

2i
= 0. (5.6)

Similarly for z0 odd,

sinπz0 =
eiπz − e−iπz

2i

=
−1 + 1

2i
= 0. (5.7)

Thus sinπz0 = 0 if and only if z0 ∈ Z. So the zeros of sinπz are exactly the integers.
Next we must show that each zero has order 1. We refer to Theorem 1.1 in Stein and Shakarchi.
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Theorem 5.2. Suppose that f is holomorphic in a connected open set Ω, has a zero at a point z0 ∈ Ω, and does not
vanish identically in Ω. Then there exists a neighborhood U ⊂ Ω of z0, a non-vanishing holomorphic function g on
U, and a unique positive integer n such that f(z) = (z − z0)ng(z) for all z ∈ U .

Since sinπz is analytic, take its Taylor series about z0. We add zero to write z as z − z0 + z0. Using properties
of the sine function, we claim

sinπz = sinπ(z + z0 − z0) = sinπ(z − z0) cosπz0 + cosπ(z − z0) sinπz0. (5.8)

Note this statement does require proof, but will follow from standard properties of the exponential function (or
from analytic continuation). The reason some work needs to be done is that z− z0 need not be real, but the relation
above does hold when z is real. What we are trying to do is understand the behavior of the function near z0 from
knowledge near 0 (as z − z0 is close to zero). This is a common trick, but of course what makes this tractable is
that we have the angle addition formula for sine.

When z0 is an integer, we always have sinπz0 = 0. If z0 is odd then cosπz0 is -1 while if z0 is even it is 1.
Thus for odd z0,

sinπz = − π
1!

(z − z0)1 +
π3

3!
(z − z0)3 −

π5

5!
(z − z0)5 + · · · (5.9)

and for even z0,

sinπz =
π

1!
(z − z0)1 −

π3

3!
(z − z0)3 +

π5

5!
(z − z0)5 − · · · . (5.10)

We thus see that all zeros are simple.
We now turn to finding the residue at z = n for 1/ sinπz. From our Taylor expansion above, we have

1

sinπz
=

1

sinπ(z − n) cosπn
=

1

cosπn

1

sinπ(z − n)
. (5.11)

The problem is now solved by using the Taylor expansion of sine and the geometric series. We have cosπn =
(−1)n, so

1

sinπz
= (−1)n

1

π(z − z0)− 1
3!π

3(z − z0)3 + · · ·

=
(−1)n

π(z − z0)
1

1−
(
1
3!π

2(z − z0)2 + · · ·
)

=
(−1)n

π(z − z0)

(
1 +

(
1

3!
π2(z − z0)2 + · · ·

)
+

(
1

3!
π2(z − z0)2 + · · ·

)2

+ · · ·

)
.

(5.12)

Note that each term in parentheses in the last line is divisible by (z− z0)2, and thus none of these will contribute to
the residue, which is simply (−1)n/π.

5.2 Chapter 3, Exercise 2

Exercise 5.3. Evaluate the integral ∫ ∞
−∞

dx

1 + x4
.
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Solution: Consider the function f(z) = 1
1+z4

. This function has poles at

1/f(z) = 0

1 + z4 = 0

z = ei(
π
4
+nπ

2 ). (5.13)

Consider the contour of the semicircle in the upper half plane of radius R, denoted γ. Denote the part of the
contour along the real line γ1 and the part along the arc γ2. Note that two of the poles of f(z) lie inside this contour.
Thus by Cauchy’s residue theorem,

1

2πi

∮
γ
fdz = Resf (eiπ/4) + Resf (ei3π/4). (5.14)

To find the residues, write

f(z) =
1

1 + z4
=

(
1

z − ei
π
4

)(
1

z − ei
3π
4

)(
1

z − ei
5π
4

)(
1

z − ei
7π
4

)
.

Thus

Resf (eiπ/4) =

(
1

ei
π
4 − ei

3π
4

)(
1

ei
π
4 − ei

5π
4

)(
1

ei
π
4 − ei

7π
4

)
= e−i

3π
4

(
1

1− i

)(
1

2

)(
1

1 + i

)
= −1 + i

4
√

2
(5.15)

and similarly

Resf (ei
3π
4 ) = e−i

9π
4

(
1

1 + i

)(
1

1− i

)(
1

2

)
=

1− i
4
√

2
(5.16)

Thus we have

1

2πi

∮
γ
fdz = −1 + i

4
√

2
+

1− i
4
√

2

= − i

2
√

2∮
γ
fdz =

π√
2
. (5.17)

Now, note that ∮
γ
fdz =

∮
γ1+γ2

fdz =

∫
γ1

fdz +

∫
γ2

fdz. (5.18)
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Observe that ∫
γ1

fdz =

∫ R

−R

1

1 + x4
dx

and that ∫
γ2

fdz =

∫ R

−R

1

1 + z4
dx∣∣∣∣∫

γ2

fdz

∣∣∣∣ =

∣∣∣∣∫ R

−R

1

1 + z4
dx

∣∣∣∣
≤ max

z∈γ2

∣∣∣∣ 1

1 + z4

∣∣∣∣πR
=

1

R4 − 1
πR. (5.19)

Thus

lim
R→∞

∣∣∣∣∫
γ2

fdz

∣∣∣∣ ≤ lim
R→∞

πR

R4 − 1
= 0. (5.20)

Hence, as R→∞,
∫
γ2
fdz → 0. Therefore as R→∞ we get our final result;

lim
R→∞

∫ R

−R

1

1 + x4
dx+ lim

R→∞

∫
γ2

fdz =
π√
2∫ ∞

−∞

1

1 + x4
dx =

π√
2
. (5.21)

5.3 Chapter 3, Exercise 5

Exercise 5.4. Use contour integration to show that
∫ +∞
−∞

e−2πixξ

(1+x2)2
dx = π

2 (1 + 2π|ξ|)e−2π|ξ| for all ξ real.

Solution: Let f(z) = e−2πizξ

(1+z2)2
= e−2πizξ

(z+i)2(z−i)2 . We see that f(z) has poles of order 2 at z = ±i. Thus

resz0f(z) = lim
z→z0

d

dz
(z − z0)2f(z). (5.22)

Alternatively, we could write our function as

f(z) =
g(z)

(z − z0)2
, (5.23)

and then we need only compute the coefficient of the z − z0 term of g.
Now consider the residue at z0 = i:

resz0=if(z) = lim
z→i

d

dz
(e−2πizξ(z + i)−2)

= lim
z→i

(−2πiξe−2πizξ(z + i)−2 − 2e−2πizξ(z + i)−3)

=
1

2
πiξe2πξ − 1

4
ie2πξ. (5.24)
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For z0 = −i, we have:

resz0=−if(z) = lim
z→i

d

dz
(e−2πizξ(z − i)−2)

= lim
z→−i

(−2πiξe−2πizξ(z − i)−2 − 2e−2πizξ(z − i)−3)

=
1

2
πiξe−2πξ +

1

4
ie−2πξ. (5.25)

Now let us first consider the case when ξ < 0. We will use the contour γ of a semicircle oriented counterclockwise
in the upper half-plane with radius R. Call the portion of γ along the real line γ1 and the arc portion γ2. Note that
there is a pole inside γ at z0 = i. By the residue formula, we have that∫

γ
f(z)dz = 2πi

(
1

2
πiξe2πξ − 1

4
ie2πξ

)
= −π2ξe2πξ +

1

2
πe2πξ. (5.26)

We also know that ∫ +∞

−∞
f(x)dx = lim

R→∞

∫
γ1

f(z)dz. (5.27)

Along γ2, z = Reiθ and dz = iReiθdθ, where z = R cos θ + iR sin θ. Thus∫
γ2

f(z)dz =

∫ π

0

e−2πiξRe
iθ
iReiθ

(1−R2ei2θ)2
dθ. (5.28)

Then it follows that ∣∣∣∣∫
γ2

f(z)dz

∣∣∣∣ ≤ ∫ π

0

∣∣∣∣e−2πiξR cos θe2πξR sin θiReiθ

(1−R2ei2θ)2

∣∣∣∣ dθ
≤

∫ π

0

∣∣∣∣∣Re−2π|ξ|R sin θ

(1−R2)2

∣∣∣∣∣ dθ
≤

∫ π

0

R

(1−R2)2
dθ =

πR

(R2 − 1)2
. (5.29)

Taking the limit as R goes to infinity, we have

lim
R→∞

∣∣∣∣∫
γ2

f(z)dz

∣∣∣∣ ≤ lim
R→∞

πR

(R2 − 1)2
= 0. (5.30)

Thus
lim
R→∞

∫
γ2

f(z)dz = 0. (5.31)

So limR→∞
∫
γ f(z) = limR→∞

∫
γ1
f(z). It thus follows from Equation 5.26 that∫ +∞

−∞

e−2πixξ

(1 + x2)2
dx = −π2ξe2πξ +

1

2
πe2πξ

=
π

2
(1 + 2π|ξ|) e−2π|ξ| (5.32)
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Now consider ξ ≥ 0. We will use the contour γ of a semicircle oriented counterclockwise in the lower half-
plane with radius R. Call the portion of γ along the real line γ1 and the arc portion γ2. Note that there is a pole
inside γ at z0 = −i. By the residue formula, we have that∫

γ
f(z)dz = 2πi

(
1

2
πiξe−2πξ +

1

4
ie−2πξ

)
= −π2ξe−2πξ − 1

2
πe−2πξ. (5.33)

Also note that, ∫ +∞

−∞
f(x)dx = − lim

R→∞

∫
γ1

f(z)dz. (5.34)

Along γ2, z = Reiθ and dz = iReiθdθ, where z = R cos θ + iR sin θ. Thus,∫
γ2

f(z)dz =

∫ 0

−π

e−2πiξR cos θe2πξR sin θiReiθ

(1−R2ei2θ)2
dθ. (5.35)

Accordingly, ∣∣∣∣∫
γ2

f(z)dz

∣∣∣∣ ≤ ∫
γ2

|f(z)|dz

≤
∫ 0

−π

∣∣∣∣∣ Re2π|ξ|R sin θ

(1−R2ei2θ)2

∣∣∣∣∣ dθ
≤

∫ 0

−π

∣∣∣∣ R

(1−R2)2

∣∣∣∣ dθ
=

πR

(1−R2)2
(5.36)

Taking the limit as R goes to infinity, we have

lim
R→∞

∣∣∣∣∫
γ2

f(z)dz

∣∣∣∣ ≤ lim
R→∞

πR

(R2 − 1)2
= 0. (5.37)

And thus,

lim
R→∞

∫
γ2

f(z)dz = 0. (5.38)

So limR→∞
∫
γ f(z) = limR→∞

∫
γ1
f(z). It thus follows from Equation 5.33 that∫ +∞

−∞

e−2πixξ

(1 + x2)2
dx = −

(
−π2ξe−2πξ − 1

2
πe−2πξ

)
=

π

2
(1 + 2π|ξ|) e−2π|ξ| (5.39)

Thus for all ξ real, ∫ +∞

−∞

e−2πixξ

(1 + x2)2
dx =

π

2
(1 + 2π|ξ|) e−2π|ξ| (5.40)
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5.4 Chapter 3 Exercise 15d
1 For any entire function f , let’s consider the function ef(x). It is an entire function and furthermore we have the
real part of f is bounded so:

|ef | = |eu+iv| = |eu| ≤ ∞

Hence ef is bounded and therefore, by Louisville’s Theorem, ef is constant. It then follows that f is constant .
Alternatively, we could argue as follows. We are told the real part of f is bounded. Let’s assume that the real

part is always at most B − 1 in absolute value. Then if we consider g(z) = 1/(B − f(z)) we have |g(z)| ≤ 1.
To see this, note the real part of B − f(z) is at least 1. We again have constructed a bounded, entire function, and
again by Liouville’s theorem we can conclude g (and hence f ) is constant.

5.5 Chapter 3 Exercise 17a

Exercise 5.5. Let f be non-constant and holomorphic in an open set containing the closed unit disc. Show that if
|f(z)| = 1 whenever |z| = 1, then the image of f contains the unit disc.

Solution: Suppose f(z) does not have a zero in the unit disc, D. Then 1/f(z) is holomorphic in D. Note that
since |f(z)| = 1 whenever |z| = 1, |1/f(z)| = 1/|f(z)| = 1 whenever |z| = 1 as well. But f(z) is holomorphic
in D, implying |f(z)| ≤ 1 in D by the maximum modulus principle since |f(z)| = 1 on the boundary of D. We
find 1 ≤ |f(z)| ≤ 1 in the unit disk, which implies that our function is constant as its modulus is constant (we
would like to use Exercise 15d, but that requires our function to be entire; fortunately we can obtain constancy by
the Open Mapping Theorem), contradicting the assumption that f is not constant!

Let w0 ∈ D. Consider the constant function g(z) = −w0. On the unit circle, |f(z)| = 1 > |w0| = |g(z)| for
all |z| = 1. Thus by Rouché’s theorem, f(z) and f(z) + g(z) have the same number of zeroes inside the unit circle
(ie, in D). But we have shown that f(z) has at least one zero, thus for some zw, 0 = f(zw) + g(zw) = f(zw)−w0.
Thus for all w0 ∈ D, there exists zw such that f(zw) = w0. Thus the image of f(z) contains the unit disc. �

5.6 Additional Problem 1
2 Let:

f(z) =

∞∑
n=−5

an z
n g(z) =

∞∑
m=−2

bm z
m

1. We have:
res0f = a−1 res0g = b−1

2. We have

f(z) + g(z) =

−3∑
n=−5

anz
n +

∞∑
n=−2

(an + bn)zn

So res0(f + g) = a−1 + b−1.

1Hint from Professor Miller
2Hint from Professor Miller

21



3. We have −1 = −5 + 4 = −4 + 3 = −3 + 2 = −2 + 1 = −1 + 0 = 0− 1 = 1− 2 so:

res0(f g) = a−5 b4 + a−4 b3 + a−3 b2 + a−2 b1 + a−1 b0 + a0 b−1 + a1 b−2

4. We have (assuming b2 6= 0):

f(z)

g(z)
=

∑∞
n=−5 an z

n∑∞
m=−2 bm z

m

=
1

z3

∑∞
n=−2 an−3 z

n∑∞
m=−2 bm z

m

=
1

b−2z

∑∞
n=−2 an−3 z

n

1− (− 1
b−2

∑∞
m=1 bm−2 z

m)
. (5.41)

As z → 0 the final quantity in parentheses tends to zero, and thus we can expand using the geometric series
formula. We only care about the constant term of this fraction, as it is multiplied by 1/b−2z and thus only the
constant term contributes to the pole. This is a very useful observation. It means that, when we expand with
the geometric series, we can drop many terms, as we only need to keep terms that contribute to the constant
term. Remember, we are not trying to find the Taylor expansion of this function, but rather just one particular
term. We can thus write:

f(z)

g(z)
=

1

b−2z
(

∞∑
n=−2

an−3 z
n)

∞∑
k=0

(
− 1

b−2

∞∑
m=1

bm−2 z
m)

)k
=

1

b−2z

[
(a−5z

−2)

(
−1

b−2
(b0z

2 + · · · ) +
1

b2−2
(b2−1z

2 + · · · ) + · · ·
)

+(a−4z
−1)

(
−1

b−2
(b−1z

1 + · · · ) + · · ·
)

+ (a−3z
0) (1 + · · · ) + · · · .

]
(5.42)

So:

res0(
f

g
) =

1

b−2

[
a−5(−

b0
b−2

+
b−1
b2−2

) + a−4(−
b−1
b−2

) + a−3

]
.

Homework due Friday October 18 (though you are strongly encouraged to hand it in on Friday, October 18, you
may hand it in by 10am on Monday October 21, but 10am does not mean 10:05am!!!): The Midterm!

HW: Due at the start of class by 11am Friday, October 25: Chapter 5: Page 155: #6, #7, #9 (extra credit:
what is the combinatorial significance of this problem?). Chapter 3: Page 104: #10. Additional Problems:
(1) Find all poles of the function f(z) = 1/(1− z2)4 and find the residues at the poles. (2) Consider the map
f(z) = (z − i)/(z + i). Show that this is a 1-to-1 and onto map from the upper half plane (all z = x + iy
with y > 0) to the unit disk. (3) Calculate the Weierstrass product for cos(πz) (this is also problem #10b in
Chapter 5, and the answer is listed there), and for tan(πz).
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6 Math 372: Homework #5: Due Friday October 25: Pegado, Vu

HW: Due at the start of class by 11am Friday, October 25: Chapter 5: Page 155: #6, #7, #9 (extra credit:
what is the combinatorial significance of this problem?). Chapter 3: Page 104: #10. Additional Problems:
(1) Find all poles of the function f(z) = 1/(1− z2)4 and find the residues at the poles. (2) Consider the map
f(z) = (z − i)/(z + i). Show that this is a 1-to-1 and onto map from the upper half plane (all z = x + iy
with y > 0) to the unit disk. (3) Calculate the Weierstrass product for cos(πz) (this is also problem #10b in
Chapter 5, and the answer is listed there), and for tan(πz).

6. Prove Wallis’s product formula

π

2
=

2 · 2
1 · 3

· 4 · 4
3 · 5

. . .
2m · 2m

(2m− 1) · (2m+ 1)
. . . .

[Hint: Use the product formula for sin z at z = π/2.]

6. We know (from p. 142) the product formula for the sine function is

sin(πz)

π
= z

∞∏
n=1

(
1− z2

n2

)
.

Let z = 1/2. Then,
sin(π/2)

π
=

1

2

∞∏
n=1

(
1− (1/2)2

n2

)
.

Using sin(π/2) = 1, we simplify this equation:

1

π
=

∞∏
n=1

(
1− z2

n2

)
=

1

2

∞∏
n=1

(
1− 1

(2n)2

)
2

π
=

∞∏
n=1

(
(2n)2 − 1

(2n)2

)
=

∞∏
n=1

(
(2n+ 1)(2n− 1)

(2n)2

)
. (6.1)

But this implies that
π

2
=
∞∏
n=1

(
(2n)2

(2n+ 1)(2n− 1)

)
,

proving the identity.

7. Establish the following properties of infinite products.
(a) Show that if Σ|an|2 converges, and an 6= −1, then the product

∏
(1 + an) converges

to a non-zero limit if and only if Σan converges.
(b) Find an example of a sequence of complex numbers {an} such that Σan converges

but
∏

(1 + an) diverges.
(c) Also find an example such that

∏
(1 + an) converges and Σan diverges.
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7. a) Let
∑
|an|2 converge with a1 6= −1.

(⇐) First assume
∑
an converges to a nonzero limit. Without loss of generality we may assume that each

an satisfies |an| ≤ 1/2; this is clearly true in the limit (as the sum converges, the summands must tend to zero).
We assume this to facilitate expanding with logarithms. Consider the product

∏
(1 + an). Taking logs, we see

log
(∏

(1 + an)
)

=
∑

log(1 + an). Setting x = −an and using the Taylor expansion

log(1 + x) = −x+
x2

2
− x3

3
+
x4

4
− · · · ,

we see that

log
(∏

(1 + an)
)

=
∑(

an −
a2n
2

+
a3n
3
− · · ·

)
.

In general, notice that
∞∑
k=2

−|x|k ≤
∣∣∣∣−x22 +

x3

3
− · · ·

∣∣∣∣ ≤ ∞∑
k=2

|x|k,

or

−|x|2(1 + |x|+ |x|2 + . . . ) ≤
∣∣∣∣−x22 +

x3

3
− · · ·

∣∣∣∣ ≤ |x|2(1 + |x|+ |x|2 + . . . ).

If a sum
∑
x converges to a nonzero limit, we know that |x| converges to zero; thus we may assume (without

changing convergence) that |x| ≤ 1
2 . Thus using the geometric expansion, we see that 1 + |x|+ |x|2 + · · · = 1

1−|x| .
Because |x| ≤ 1

2 , we have that 1
1−|x| ≤ 2. Hence we have that

−2|x|2 ≤
∣∣∣∣−x22 +

x3

3
− · · ·

∣∣∣∣ ≤ 2|x|2.

Recall that we were looking at log
(∏

(1 + an)
)

=
∑(

an− a2n
2 + a3n

3 − · · ·
)
. Since

∑
an converges, we know

eventually we must have |an| < 1/2, so we can assume |an| < 1/2 without changing convergence, and thus use
the simplification involving the geometric series expansion developed in the previous paragraph. Thus we write

log
(∏

(1 + an)
)

=
∑(

an −
a2n
2

+
a3n
3
− · · ·

)
≤

∑(
an + 2|an|2

)
=
∑

an + 2
∑
|an|2.

(6.2)

A QUICK WORD OF WARNING. THE ABOVE EQUATION, AND THE ONES BELOW, ARE A LIT-
TLE ODD. REMEMBER THAT OUR SEQUENCE NEED NOT BE JUST REAL NUMBERS. AS SUCH,
WE MUST BE CAREFUL WITH THE DEFINITION OF ABSOLUTE VALUE. WE ABUSE NOTATION
A BIT – WHEN WE WRITE a ≤ b + c, THIS MEANS THE DESIRED RELATION IS TRUE UP TO A
LINEAR RESCALING. REALLY WHAT WE MEAN IS a = b UP TO AN ERROR AT MOST |c|. WE
REALLY SHOULD WRITE THINGS LIKE |a − b| ≤ c, BUT IN A HOPEFULLY OBVIOUS ABUSE OF
NOTATION....

Since by assumption both
∑
an and

∑
|an|2 converge, we must have that

∑
an + 2

∑
|an|2 is finite, call it L.

Thus log
(∏

(1 + an)
)
≤ L, so

∏
(1 + an) ≤ eL, which is again finite. Thus the product converges.
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(⇒) Next assume
∏

(1+an) converges to a nonzero limit. Since
∏

(1+an) is converging to a nonzero limit, the
terms in the product must be converging to 1, so we must have |an| approaching zero and we can assume |an| < 1/2
without affecting convergence. We now write:

log
(∏

(1 + an)
)

=
∑(

an −
a2n
2

+
a3n
3
− · · ·

)
≥

∑(
an −

|an|2

2
− |an|

3

3
− · · ·

)
≥
∑(

an − |an|2 − |an|3 − · · ·
)
.

(6.3)

As before, we substitute in using the geometric series expansion:

log
(∏

(1 + an)
)
≥

∑(
an − |an|2 − |an|3 − · · ·

)
=

∑(
an − |an|2(1 + |an|+ |an|2 + · · · )

)
≥

∑(
an − 2|an|2

)
=
∑

an − 2
∑
|an|2.

(6.4)

Thus we see that log
(∏

(1 + an)
)

+ 2
∑
|an|2 ≥

∑
an. Since

∏
(1 + an) and

∑
|an|2 converge, we must

have that log
(∏

(1 + an)
)

+ 2
∑
|an|2 are both finite. Thus our sum

∑
an is bounded by finite terms, and so the

sum must also be finite itself. Hence the sum
∑
an must converge to a finite limit.

b) Let {an} = { i√
1
, −1√

1
, i√

2
, −i√

2
, . . . }. The sum

∑
an converges by the alternating series test, since the absolute

value of the terms approaches zero (one can show this by showing that first the odd terms tend to zero in absolute
value and then that the even terms do as well).

Consider now the product
∏(

1 + an
)
. For an arbitrary integer N , look at the 2N -th partial product:

2N∏
n=1

(
1 + an

)
=

(
1 +

i√
1

)(
1− i√

1

)
· · ·
(

1 +
i√
2N

)(
1− i√

2N

)
=

(
1− i2√

12

)
· · ·
(

1− i2√
(2N)2

)
=

(
1 +

1

1

)
· · ·
(

1 +
1

2N

)
=

(
2

1

)
· · ·
(

2N + 1

2N

)
= 2N + 1.

(6.5)

Thus when we evaluate at an even term 2N , we see that

lim
2N→∞

2N∏
n=1

(1 + an) = lim
2N→∞

(2N + 1) =∞,

so the product diverges. Hence the product diverges at even terms and thus cannot converge in general.
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This was found by setting a2n+1 = −a2n = bn, and then requiring (1 + bn)(1 − bn) = n+1
n (we know this

product diverges). After some algebra we get b2n = −1/n so bn = i/
√
n.

c) For a trivial example, let {an} = {1,−1, 1,−1, . . . }. The sum
∑
an does not converge because the limit of

the N th partial sum as N tends to infinity does not converge; it alternates between 0 and 1. However, the product
will clearly converge: ∏

an = (1 + 1)(1− 1)(1 + 1)(1− 1) · · · = (1)(0)(1)(0) · · · = 0.

For an example in which the sum diverges but the product converges to a nonzero limit, consider the sequence
{an|a2n−1 = 1/

√
n, a2n = −1/(1 +

√
n)}∞n=1. Grouping the pairs 2n and 2n− 1 together, we see that

∞∑
m=1

am =

∞∑
n=1

(
1√
n
− 1

1 +
√
n

)
=

∞∑
n=1

1

n+
√
n

.

We’ll show that this series diverges. Notice that for every n,

∞∑
n=1

1

n+
√
n
≥
∞∑
n=1

1

2n

and since the series on the RHS diverges, by comparison test, so does the series on the LHS. So
∑
an diverges.

However, grouping again the even and odd pair terms, for even N , we have

N∏
m=1

(1 + am) =

N/2∏
n=1

(1 +
1√
n

)(1− 1√
n+ 1

)

=

N/2∏
n=1

(1 +
1√
n
− 1√

n+ 1
− 1√

n+ n
)

=

N/2∏
n=1

(1− −
√
n+
√
n+ 1− 1√

n+ n
) =

N/2∏
n=1

1 = 1

and for odd N,
N∏
m=1

(1 + am) = (1 +
1√
N

)

which converges to 1 as N →∞. Thus,
∞∏
n=1

(1 + an) = 1.

Hence {an} is the desired sequence.
9. Prove that if |z| < 1, then

(1 + z)(1 + z2)(1 + z4)(1 + z8) · · · =
∞∏
k=0

(
1 + z2

k
)

=
1

1− z
.
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9. Consider the product (1 + z)(1 + z2)(1 + z4)(1 + z8) · · · . Suppose we tried to multiply this product out:
to get one term, we would need to choose either the 1 or the power of z in each term to multiply by. For example,
one term we could get out is simply z, where we would choose the z in the first term and the 1 in every succeeding
term; another way to say this is to write z = z × 1 × 1 × · · · . To write out the entire product, we would have to
make sure we evaluated every possible choice of ones and powers of z.

But this isn’t so bad if we think of choosing terms as counting in binary. In binary counting, a number is written
entirely in terms of 0s and 1s. For any given number, each digit represented a choice between the digit 0 and the
digit 1. If we think of selecting the power of z in a term as picking 1 for a given digit in binary counting, and
selecting the 1 in a term as picking 0 for a given digit in binary, we can identify a bijective correspondence between
integers written in binary and products from our term (with the exception that 000000000 · · · = 1 in our product).
For example, the binary number 101 = · · · 000101 = 22 × 1 + 21 × 0 + 20 × 1 = 5, and if choose the terms
(z)(1)(z4)(1)(1) · · · , we see that we get the product z5.

To evaluate our product we must sum over all such possible choices. Since all possible binary numbers together
yield precisely the nonnegative integers, this bijective correspondence importantly tells us that the sum over all such
products will be the sum over all nonnegative powers of z, or 1 + z + z2 + z3 + . . . . Thus we have (1 + z)(1 +
z2)(1 + z4)(1 + z8) · · · = 1 + z + z2 + z3 + . . . . Since |z| < 1, we can use the geometric expansion of z to write
(1 + z)(1 + z2)(1 + z4)(1 + z8) · · · = 1

1−z , as desired.
Significance for combinatorics: notice the way in which our solution invokes combinatorics (such as seeing

how many ways we can choose our terms to make a product).
Alternatively, we can truncate the product and multiply by 1 − z. Note that (1 − z)(1 + z) = (1 − z2), then

(1− z2)(1 + z2) = (1− z4), and so

(1− z)(1 + z)(1 + z2)(1 + z4) · · · (1 + z2
k
) = 1− z2k+1

;

as |z| < 1 the latter tends to 1, and thus

(1 + z)(1 + z2)(1 + z4) · · · (1 + z2
k
) =

1

1− z
− z2

k+1

z − 1
→ 1

1− z
.

Chapter 3

10. Show that if a > 0, then ∫ ∞
0

log x

x2 + a2
dx =

π

2a
log a.

[Hint: Use the contour in Figure 10.]

10. We will first find the residue at ia and then integrate over the given contour. Let f(z) = log z
z2+a2

, where we
take the branch cut of the logarithm along −ib for all b ∈ [0,∞). Furthermore, ia is a zero of order 1. Finding the
residue at ia, we have

resiaf = lim
z→ia

(z − ia)
log z

z2 + a2
= lim

z→ia
(

log z

z + ia
) =

log ia

2ia
=

log a

2ia
+

π

2a
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Label the contours from the portion on the positive real axis γ1, the larger arc γ2, the portion on the negative real
axis γ3, and the smaller arc γ4. Choose ε < min{a, 1}a, R > max{a, 1}. Parametrize γ1 with z(t) = t from ε
to R, γ2 with z(t) = Reit from 0 to π, γ3 with z(t) = t from −R to −ε, and γ4 with z(t) = εeit from π to 0.
Integrating over the γ2 and taking absolute values, we have∣∣∣∣∫

γ2

log z

z2 + a2
dz

∣∣∣∣ =

∣∣∣∣∫ π

0

logReit

(Reit)2 + a2
Rieitdt

∣∣∣∣
≤
∫ π

0

∣∣∣∣ logReit

R2e2it + a2
Rieit

∣∣∣∣ dt
=

∫ π

0

∣∣∣∣ logReit

R2e2it + a2

∣∣∣∣Rdt
=

∫ π

0

∣∣∣∣ logR+ it

R2e2it + a2

∣∣∣∣Rdt
≤
∫ π

0

logR+ |it|
|R2e2it|+ |a2|

Rdt

=

∫ π

0

logR+ t

|Re2it|+ |a2|
R

dt ≤
∫ π

0

logR+ t

R+ |a2|
R

dt ≤ π
logR+ π

R+ |a2|
R

since t, logR > 0. Since R→∞, logR+ π,R+ |a2|
R →∞, by L’Hopital,

lim
R→∞

logR+ π

R+ |a2|
R

= lim
R→∞

1/R

1− |a
2|
R2

= lim
R→∞

1

R− |a
2|
R

= 0.

Thus, as R→∞, the contribution along γ2 vanishes to 0. Similarly, for γ4, we have∣∣∣∣∫
γ4

log z

z2 + a2
dz

∣∣∣∣ =

∣∣∣∣∫ 0

π

log εeit

(εeit)2 + a2
εeitdt

∣∣∣∣
≤
∫ 0

π

∣∣∣∣ log εeit

ε2e2it + a2
εeit
∣∣∣∣ dt

=

∫ 0

π

∣∣∣∣ log εeit

ε2e2it + a2

∣∣∣∣ εdt
=

∫ 0

π

∣∣∣∣− log ε+ it

ε2e2it + a2

∣∣∣∣ εdt
≤
∫ 0

π

− log ε+ |it|
|ε2e2it|+ |a2|

εdt

≤
∫ 0

π

− log ε+ t

|εe2it|+ |a2|
ε

dt ≤
∫ 0

π

− log ε+ t

ε+ |a2|
ε

dt ≤ π
− log ε+ π

ε+ |a2|
ε

dt

since t,− log ε > 0. Since ε→ 0, − log ε+ π, ε+ |a2|
ε →∞, by L’Hopital,

lim
ε→0

− log ε+ π

ε+ |a2|
ε

= lim
ε→0

−1/ε

1− |a
2|
ε2

= lim
ε→0

−1

ε− |a
2|
ε

= 0.
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Thus, as ε→ 0, the contribution along γ4 also vanishes to 0. For the integral over γ1, γ3, we have∫
γ1+γ3

log z

z2 + a2
dz =

∫ R

ε

log t

t2 + a2
dt+

∫ −ε
−R

log s

s2 + a2
ds.

Letting s = −t, we have∫
γ1+γ3

log z

z2 + a2
dz =

∫ R

ε

log t

t2 + a2
dt+

∫ ε

R

log−t
(−t)2 + a2

(−1)dt

=

∫ R

ε

log t

t2 + a2
dt+

∫ R

ε

log−t
t2 + a2

dt

=

∫ R

ε

log t

t2 + a2
dt+

∫ R

ε

log t+ iπ

t2 + a2
dt

= 2

∫ R

ε

log t

t2 + a2
dt+ iπ

∫ R

ε

1

t2 + a2
dt = 2

∫ R

ε

log t

t2 + a2
dt+

iπ

a
arctan

t

a

∣∣∣∣R
ε

Thus we have, as R→∞, ε→ 0 and as resiaf = log a
2ia + π

2a , we have

lim
R→∞,ε→0

(
2

∫ R

ε

log t

t2 + a2
dt+

iπ

a
arctan

t

a

∣∣∣∣R
ε

)
= 2πi

(
log a

2ia
+

π

2a

)

lim
R→∞,ε→0

(
2

∫ R

ε

log t

t2 + a2
dt

)
+ lim
R→∞,ε→0

(
iπ

a
arctan

t

a

∣∣∣∣R
ε

)
=
π log a

a
+
iπ2

a

lim
R→∞,ε→0

(
2

∫ R

ε

log t

t2 + a2
dt

)
+
iπ2

a
=
π log a

a
+
iπ2

a

lim
R→∞,ε→0

(
2

∫ R

ε

log t

t2 + a2
dt

)
=
π log a

a∫ ∞
0

log t

t2 + a2
dt =

π log a

2a

as desired.

Additional Problems

1. Find all poles of the function f(z) = 1/(1− z2)4 and find the residues at the poles.

Let g(x) = 1/f(z) = (1 − z2)4 = ((1 + z)(1 − z))4. We see that the zeros of g are ±1, each with order 4.
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Hence, the residues are

res1(f) = lim
z→1

1

(4− 1)!

(
d

dz

)4−1
(z − 1)4

1

(1− z2)4

= lim
z→1

1

6

(
d

dz

)3 1

(1 + z)4

= lim
z→1

1

6
(−4)(−5)(−6)

1

(1 + z)7

= lim
z→1

−20

(1 + z)7
=
−20

27
=
−5

32

and

res−1(f) = lim
z→−1

1

(4− 1)!

(
d

dz

)4−1
(z + 1)4

1

(1− z2)4

= lim
z→−1

1

6

(
d

dz

)3 1

(z − 1)4

= lim
z→−1

1

6
(4)(5)(6)

−1

(z − 1)7

= lim
z→−1

−20

(z − 1)7
=
−20

−27
=

5

32

Thus we have found the desired residues.
We sketch an alternative proof. We have

f(z) =
1

(z − 1)4
1

(z + 1)4

=
1

(z − 1)4
1

(z − 1 + 2)4

=
1

(z − 1)4
1

24
1

(1 + z−1
2 )4

=
1

(z − 1)4
1

16

(
1− z − 1

2
+

(z − 1)2

4
− (z − 1)3

8
+ · · ·

)4

. (6.6)

The difficulty is we have to expand the factor to the fourth power well enough to identify the coefficient of (z−1)3.
A little algebra shows it is −5

2(z − 1)3, and thus (remembering the factor 1/16) the residue is just −5/32.

2. Consider the map f(z) = (z − i)/(z + i). Show that this is a one-to-one and onto map from the upper half
plane (all z = x+ iy with y > 0) to the unit disk.

2. First we’ll show that the range of f is the unit disk. Writing z = x+ iy where x, y ∈ R, y > 0, then we have

|f(x+ iy)| =
∣∣∣∣x+ (y − 1)i

x+ (y + 1)i

∣∣∣∣ =

√
x2 + (y − 1)2√
x2 + (y + 1)2
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and since y > 0,
√
x2 + (y − 1)2 <

√
x2 + (y + 1)2, f(x+ iy) < 1, so the range of f is the unit disk.

Now we’ll show that f is injective. Suppose for z1, z2 with imaginary part positive, f(z1) = f(z2). Then

z1 − i
z1 + i

=
z2 − i
z2 + i

(z1 − i)(z2 + i) = (z2 − i)(z1 + i)

z1Z2 + z1i− Z2i+ 1 = z1z2 − z1i+ z2i+ 1

2i(z1 − z2) = 0

z1 = z2. (6.7)

Here’s another, faster way to do the algebra. We add zero:

z1 − i
z1 + i

=
z2 − i
z2 + i

z1 + i− 2i

z1 + i
=

z2 + i− 2i

z2 + i

1− 2i

z1 + i
= 1− 2i

z2 + 1
; (6.8)

it is clear that the only solution is when z1 = z2.

Now we’ll show that f is surjective. Given any w ∈ D, setting z = (w + 1)i/(1− w), we see that

f(z) =

(w+1)i
(1−w) − i
(w+1)i
(1−w) + i

=
(w + 1)i− (1− w)i

(w + 1)i+ (1− w)i
= w.

Now we’ll show that z has positive imaginary part. Writing w = x+ iy with x, y ∈ R, x2 + y2 < 1, we have

z = i
(x+ 1) + iy

(1− x)− iy
=
−2y + i(1− y2 − x2)

(1− x)2 + y2
.

So the imaginary part is 1− (x2 + y2) > 0, so z has positive imaginary part.

3. Calculate the Weierstrass product for cos(πz) (this is also problem 10b in Chapter 5, and the answer is listed
there) and for tan(πz).

3. By the Euler formulas for sine and cosine, we see that

cos(πz) =
eiπz + e−iπz

2

=
ei
π
2 (eiπz + e−iπz)

2i

=
(eiπ(z+

1
2
) + e−iπ(z−

1
2
))

2i

=
eiπ(

1
2
−z) − e−iπ(

1
2
−z)

2i
= sin(π(

1

2
− z))
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and since the zeros of sinπz occur only at the integers, the zeros of cosπz occur at m + 1
2 for all m ∈ Z. Thus,

define the sequence {a2n−1 = n+ 1
2 , a2n = −(n+ 1

2)}∞n=1, which are precisely the zeros of cosπz. Furthermore,
since the zeros of sine are of order 1, the zeros of cosine are also of order one. Thus we have, for hk(z) =

∑k
j=1

zj

j ,
grouping together the pairs 2n and 2n − 1, the Weierstrauss product of cosπz is, up to a factor of eh(z) for some
entire function h,

∞∏
m=0

(1− z

am
)ehm(z) =

∞∏
n=0

(1− z

n+ 1
2

)(1− z

−(n+ 1
2)

)
∞∏
m=1

ehm(z)

=

∞∏
n=0

(1− z2

(n+ 1
2)2

)e
∑∞
m=1 hm(z)

=
∞∏
n=0

(1− 4z2

(2n+ 1)2
)e
∑∞
m=1 hm(z).

Considering
∏∞
n=0(1−

4z2

(2n+1)2
), we’ll show this product converges. Note that

∞∑
n=1

1

n2
=
∞∑
n=1

1

(2n)2
+
∞∑
n=0

1

(2n+ 1)2

3

4

∞∑
n=1

1

n2
=

∞∑
n=0

1

(2n+ 1)2

so since the sum on the RHS is bounded
∑∞

n=1
1
n2 , a convergent series, the series on the RHS converges as well,

and as the convergence is absolute, the product converges. Thus (up to the exponential of an entire function) the
Weierstrauss product of cosπz is

∏∞
n=0(1−

4z2

(2n+1)2
).

Next, notice that tan(πz), has poles at odd integer multiples of π
2 , and so by definition does not have a Weier-

strass product.

HW: Due Friday, November 1: (1) Evaluate
∫∞
−∞ cos(4x)dx/(x4 + 1). (2) Let U be conformally equivalent to

V and V conformally equivalent to W with functions f : U → V and g : V → U . Prove g ◦ f (g composed
with f ) is a bijection. (3) The Riemann mapping theorem asserts that if U and V are simply connected
proper open subsets of the complex plane then they are conformally equivalent. Show that simply connected
is essential: find a bounded open set U that is not simply connected and prove that it cannot be conformally
equivalent to the unit disk. (4) Chapter 8, Page 248: #4. (5) Chapter 8: Page 248: #5. (6) Chapter 8: Page
251: #14.
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7 Math 372: Homework #6: Kung, Lin, Waters

HW: Due Friday, November 1: (1) Evaluate
∫∞
−∞ cos(4x)dx/(x4 + 1). (2) Let U be conformally equivalent to

V and V conformally equivalent to W with functions f : U → V and g : V → W . Prove g ◦ f (g composed
with f ) is a bijection. (3) The Riemann mapping theorem asserts that if U and V are simply connected
proper open subsets of the complex plane then they are conformally equivalent. Show that simply connected
is essential: find a bounded open set U that is not simply connected and prove that it cannot be conformally
equivalent to the unit disk. (4) Chapter 8, Page 248: #4. (5) Chapter 8: Page 248: #5. (6) Chapter 8: Page
251: #14.

1. Evaluate
∫∞
−∞ cos(4x)dx/(x4 + 1). Evaluate

∫∞
−∞ cos(4x)dx/(x4 + 1)

First observe that cos(4x) = 1
2(e4ix+e−4ix), since e4ix = cos(4x)+i sin(4x) and e−4ix = cos(4x)−i sin(4x).

We can rewrite this integral, then, as∫ ∞
−∞

cos(4x)

x4 + 1
dx =

1

2

∫ ∞
−∞

e4ix + e−4ix

x4 + 1
=

1

2

(∫ ∞
−∞

e4ix

x4 + 1
dx+

∫ ∞
−∞

e−4ix

x4 + 1
dx

)
and we can evaluate both halves separately.

For both halves, observe that the poles are located at z = e
1
4
πi, e

3
4
πi, e

5
4
πi, e

7
4
πi, since those are the solutions to

z4 + 1 = 0. We can now choose a contour over which to integrate and apply the residue theorem. Our choice of
contour is motivated by the decay of the functions. We need to work in the upper half plane for exp(4iz) to decay,
and in the lower half plane for exp(−4iz) to decay.

For
∫∞
−∞

e4ix

x4+1
dx, consider the contour γ1 that traverses the semicircle of radius R in the upper half-plane and

the real axis, with standard orientiation. This contour will enclose only the poles at z = e
1
4
πi, e

3
4
πi, so it suffices to

find the residues at those two points in order to apply the residue theorem.
The simplest way to compute the residues is to note that we have simple poles and we may write f(z) =

g(z)/h(z) with h(z) having simple zeros and g, h holomorphic. Then the residue of f at a pole z0 is just
g(z0)/h

′(z0). For us, g(z0) = exp(4iz0), while h′(z0) = 4z30 .
At e

1
4
πi =

√
2
2 + i

√
2
2 , the residue will be

exp(4i exp(πi/4))

4 exp(iπ/4)3
=

exp(2i(
√

2 + i
√

2))

4 exp(3iπ/4)
=

exp(−2
√

2 + i2
√

2))

−2
√

2 + i2
√

2
.

We can compute this another way as well:

lim
z→e

1
4πi

(z − e
1
4
πi)

e4iz

z4 + 1
dz =

e−2
√
2+2
√
2i

(e
1
4
πi − e

3
4
πi)(e

1
4
πi − e

5
4
πi)(e

1
4
πi − e

7
4
πi)

=
e−2
√
2+2
√
2i

2
√

2(−1 + i)
.
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At e
3
4
πi, the residue will be

lim
z→e

3
4πi

(z − e
3
4
πi)

e4iz

z4 + 1
dz =

e−2
√
2−2
√
2i

(e
3
4
πi − e

1
4
πi)(e

3
4
πi − e

5
4
πi)(e

3
4
πi − e

7
4
πi)

=
e−2
√
2−2
√
2i

2
√

2(1 + i)
.

Thus, the countour integral over γ1 is equal to

2πi

(
e−2
√
2+2
√
2i

2
√

2(−1 + i)
+
e−2
√
2−2
√
2i

2
√

2(1 + i)

)
.

Now let the radius R tend to infinity, and observe that the portion of gamma that is not on the real axis (i.e. the
semicircle of radius R) will make a zero contribution to the integral. In the upper half-plane, the integral is at most
the maximum value of the integrand on our contour times the length of the contour. Since the length of the contour
is πR, then, we have ∣∣∣ lim

R→∞

∫
γ1,semicircle

e4iz

z4 + 1
dz
∣∣∣ < ∣∣∣ lim

R→∞

πReRi

R4 − 1
dx
∣∣∣ = 0

(note we need R4 − 1 and note R4 + 1 in the denominator, as the upper bound occurs when the denominator is as
small as possible in absolute value; this happens when z4 is negative, which occurs for z = R exp(iπ/4)).

Only the portion of the contour integral that lies on the real axis makes any non-zero contribution to the integral,
then, so ∫ ∞

−∞

e4ix

x4 + 1
dx = 2πi

(
e−2
√
2+2
√
2i

2
√

2(−1 + i)
+
e−2
√
2−2
√
2i

2
√

2(1 + i)

)
.

As our denominator is non-zero and decays rapidly, and exp(4ix) = cos(4x) + i sin(4x), we see we may drop the
integral from the sine term. The reason is that this is an odd, rapidly decaying function integrated over a symmetric
region, and thus it gives zero. We therefore find∫ ∞

−∞

cos 4x

x4 + 1
dx = 2πi

(
e−2
√
2+2
√
2i

2
√

2(−1 + i)
+
e−2
√
2−2
√
2i

2
√

2(1 + i)

)
.

WE MAY STOP HERE! There is no need to evaluate the other contour, as it will simply give us another
calculation of our desired integral. For completeness, we include how the calculation would go in the lower half
plane, but again, there is no need to do this!

For
∫∞
−∞

e−4ix

x4+1
dx, we can repeat the same process, but we must use a different contour. For this function, e

−4iz

z4+1
won’t vanish as R → ∞ for z in the upper half-plane, since −4iz will have a large positive real component, but it
will vanish in the lower half-plane. Use the contour γ2 consisting of the semicircle of radius R in the lower half-
plane and the real axis; it is very important to note that we are traversing the real axis in the opposite orientation,
running from∞ to −∞. Now, with z restricted to the lower half-plane, our integrand will again vanish, so we have

lim
R→∞

∫
γ2,semi−circle

e−4iz

z4 + 1
dz = 0,
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and we see that ∫
γ2

e−4iz

z4 + 1
dz =

∫ −∞
∞

e−4ix

x4 + 1
dx = −

∫ ∞
−∞

e−4ix

x4 + 1
dx.

Our contour γ2 encloses the poles at exp(54πi) and exp(74πi), so we need to find the residues at those two points.

At e
5
4
πi, the residue will be

lim
z→e

5
4πi

(z − e
5
4
πi)

e−4iz

z4 + 1
dz =

e−2
√
2+2
√
2i

(e
5
4
πi − e

1
4
πi)(e

5
4
πi − e

3
4
πi)(e

1
4
πi − e

7
4
πi)

=
e−2
√
2+2
√
2i

2
√

2(1− i)
.

At e
7
4
πi, the residue will be

lim
z→e

7
4πi

(z − e
7
4
πi)

e−4iz

z4 + 1
dz =

e−2
√
2−2
√
2i

(e
7
4
πi − e

1
4
πi)(e

7
4
πi − e

3
4
πi)(e

7
4
πi − e

5
4
πi)

=
e−2
√
2−2
√
2i

2
√

2(−1− i)
.

The integral over γ2, then, is equal to

2πi

(
e−2
√
2+2
√
2i

2
√

2(1− i)
+

e−2
√
2−2
√
2i

2
√

2(−1− i)

)
.

As R→∞, this equals the integral over the real line; however, remember that we are proceeding with the opposite
orientation, running from∞ to −∞ as we are using a semi-circle in the lower half plane, and thus we traverse the
real line in the opposite orientation as usual. To fix this and restore the correct orientation requires a minus sign,
and we find ∫ ∞

−∞

e−4ix

x4 + 1
dx = −2πi

(
e−2
√
2+2
√
2i

2
√

2(1− i)
+

e−2
√
2−2
√
2i

2
√

2(−1− i)

)
.

We then argue as before, namely that exp(−4ix) = cos(4x)−i sin(4x), and the sine integral does not contribute
as it leads to an odd integral over a symmetric region. Arguing along these lines, we find the same answer as before.

2. Let U be conformally equivalent to V and V conformally equivalent to W with functions f : U → V
and g : V →W . Prove g ◦ f (g composed with f) is a bijection.

To prove that g ◦ f is a bijection, we need to show that g ◦ f is one-to-one and onto.

One-to-one: Consider an arbitrary x1, x2 in U and assume that g ◦ f(x1) = g ◦ f(x2). We need to show that
x1 = x2. First observe that, since g is one-to-one, g ◦ f(x1) = g ◦ f(x2) implies f(x1) = f(x2). Since f is also
one-to-one, we have that x1 = x2, and we are done.
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Onto: Consider an arbitrary x ∈ U . Since g is onto, there is some v ∈ V such that g(v) = x. Since f is also
onto, there is some u ∈ U such that f(u) = v. Therefore, g ◦ f(u) = x, so g ◦ f is onto.

Then g ◦ f is one-to-one and onto, so it is a bijection.

3. The Riemann mapping theorem asserts that if U and V are simply connected proper open subsets of the
complex plane then they are conformally equivalent. Show that simply connected is essential. In other words,
find a bounded open set U that is not simply connected and prove that it cannot be conformally equivalent to
the unit disk.

Solution: Consider the punctured unit disc, D−{0}, a bounded open set that is not simply connected. Consider
function f(z)=1/z on a circle of radius 1/2. Then f(z) is holomorphic on the set, since the origin is not included.

If a conformal map g exists from D to the punctured disc, then the function f(z) will map to a holomorphic
function on D, and the circle will be mapped to a closed curve in D. (Technically we proved Cauchy’s theorem,
which we’ll use in a moment, only for simple, non-intersecting curves. One can show that the image of our closed
curve is also a simple, non-intersecting closed curve. If it intersected itself, that would violate the 1-1 property of
our conformal map g between the two regions.)

We first compute 1
2πi

∫
|z|=1/2 f(z)dz. As f(z) = 1/z, a brute-force computation (or use the Residue Theorem)

tells us that this is just 1.
What if we look at the inverse image of the circle of radius 1/2 in the unit disk? Let’s call the inverse image

γ, so g(γ) = {z : |z| = 1/2}. Then, using the change of variables formulas, if z = g(w) (recall g is our assumed
conformal map from D to the punctured disk), then dz = g′(w)dw and

1

2πi

∫
|z|=1/2

f(z)dz =
1

2πi

∫
γ
f(g(w))g′(w)dw.

As f and g are holomorphic, so too is f(g(w))g′(w). As we are integrating a holomorphic function over a closed
curve, it is just zero.

We’ve thus computed the integral two different ways, getting 1 as well as 0. As 1 6= 0, we have a contradiction
and thus the unit disk and the punctured unit disk are not conformally equivalent.

4. Chapter 8, Page 248: #4. Does there exist a holomorphic surjection from the unit disc to the complex plane
C?

Solution: From 8.1.1 in the book, we know that there exists a conformal map from the disc to the upper half-
plane:

f(z) = i
1− z
1 + z

(7.1)

Now we just map this image to the complex plane. We can do so by moving it down i units and then squaring
it. The upper half-plane H represents complex numbers with positive imaginary part (z=x+iy, y>0); however, a
better way to view this is to note that the upper half plane are all numbers of the form r exp(iθ) with r > 0 and
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0 < θ < π. If we were just to square this as is, we would get every angle we need but θ = 0 and every radius we
need but r = 0. The problem is that the upper half plane is an open set and does not include its boundary, the real
axis. We may rectify this by mapping the image of the unit disk under f , namely the upper half plane, down i units.
We now include the entire real line as well. While our resulting map won’t be 1-1, it will be onto. Now our region
includes all r ≥ 0 and all θ ∈ [0, π]. Squaring this gives all r ≥ 0 and all θ ∈ [0, 2π], as desired. Thus our next
maps are

g(z) = z − i (7.2)

and
h(z) = z2 (7.3)

The functions f , g, and h are all holomorphic surjections on the complex plane, so h(g(f(z))) is a holomorphic
surjection that will map D→ H→ C.

h(g(f(z))) = h(g(i
1− z
1 + z

))

= h(i
1− z
1 + z

− i)

= h(i(
1− z
1 + z

− 1))

= h(−i 2z

1 + z
)

= − 4z2

(1 + z)2
. (7.4)

5. Chapter 8: Page 248: #5. Prove f(z) = −1
2(z + z−1) gives us a conformal map from the half-disk

{z = x+ iy : |z| < 1, y > 0} to the upper half plane.
First, we check that f(z) is holomorphic. We have that f ′(z) = −1

2(1 − 1
z2

) and so it is as z 6= 0. We next
check that this mapping will give us a value in the upper half plane. We take z = x+ iy. Because z is in the upper
half disk, y > 0. Thus,

f(z) =
−1

2
(x+ iy +

1

x+ iy
)

= −1

2

(
x+ iy +

x− iy
x2 + y2

)
.

Because |z| < 1, we have that |x2 + y2| < 1, and thus the imaginary part inside the parentheses above is negative,
and thus becomes positive upon multiplication by −1/2. Thus f(z) is in H.

We now show that f(z) is onto. That is, given w in the upper half plane, we must find a z in the upper half disk
such that f(z) = −1

2 (z + 1
z ) = w. Thus, we have to solve

z +
1

z
= −2w

−2wz = z2 + 1

z2 + 2wz + 1 = (z + w)2 − (w2 − 1) = 0

(z + w)2 = w2 − 1. (7.5)
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Therefore,
z =

√
w2 − 1− w

and so proving f(z) is onto is equivalent to showing that
√
w2 − 1 − w is in the upper half disk whenever w is in

the upper half plane. Of course, we could also have z = −
√
w2 − 1− w....

Missing step, added by Professor Miller, though if you see a better way please let me know! The best way I can
think to proceed is to use the general binomial theorem, the relevant part is√

1− x2 = 1− x2

2
− x4

8
− x6

16
− 5x8

128
− · · · .

If |w| > 1 we write√
w2 − 1 = w

√
1− 1/w2 = w

(
1− 1

2w2
− 1

8w4
− · · ·

)
= w − 1

2w
− · · · ;

when we subtract w the main term is −1/2w, which is in the upper half plane and less than 1 in absolute value. We
have great convergence because of how rapidly the coefficients decay. If |w| < 1 we use√

w2 − 1 = i
√

1− w2 = i

(
1− 1

2w2
− 1

8w4
− · · ·

)
;

when we subtract w now we have i− w − 1/2w2; this should be in the upper half disk....
Solution added by Aviv Lipman: We know that the imaginary part of w is greater than 0 because w ∈ H. We

know that there exists some z inside the unit disc (including the boundary). The reason is that the product of the
two roots is 1, so one of the root is inside and one of the roots is outside. Thus we can assume |z| ≤ 1. We need to
prove that z is inside the upper half disk, so if z = reiθ, θ should be in (0, π) and r < 1. We have

w = −1

2
(z + z−1)

= −1

2

(
reiθ +

1

reiθ

)
= −1

2

(
r(cos θ + i sin θ) +

1

r(cos θ + i sin θ)

)
= −1

2

(
r(cos θ + i sin θ) +

1

r
(cos θ − i sin θ)

)
,

and the imaginary part of that is −1
2(r − r−1) sin θ. Could |z| = 1? If it did, the imaginary part of w is now zero,

which means w ∈ R, which means w is not in the upper half plane! As the imaginary part of w is greater than
0, and z is inside unit disc so r is less than 1, and thus the coefficient in front of sin θ is negative, we find sin θ is
positive and thus θ ∈ (0, 1) as desired.

We now show that f(z) is one-to-one. To do this, we take f(a) = f(b), with a, b in the upper half disk. Thus,
we have

− 1

2

(
a+

1

a

)
= −1

2

(
b+

1

b

)
a+

1

a
= b+

1

b
a2b+ b = ab2 + a

a2b− ab2 − a+ b = (a− b)(ab− 1) = 0.
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We then see that, if (ab − 1) = 0, then ab = 1, so a = 1/b. Because b is in the upper half disk, |b| < 1. This
would cause |1/b| = |a| > 1. Because we know that a is in the upper half disk as well, this cannot be the case,
and so ab− 1 6= 0. This means then that a− b = 0, and so a = b. Therefore, f(z) is one-to-one, and so f(z) is a
conformal map from the upper half disk to the upper half plane.

6. Chapter 8: Page 251: #14. Prove all conformal maps of the upper half plane to the unit disk are of the
form eiθ(z − β)/(z − β) for θ real and β in the upper half plane.

We first see that, given f and g two conformal maps from H to D, we then have that g−1 : D→ H and f ◦ g−1
is a conformal map from D to D. That is, f ◦ g−1 is an automorphism of D. From the book, we know that f ◦ g−1
is of the form eiθ α−z1−αz for some α in the unit disk. In order to then solve for a general form for f , we can use the
inverse of any function g : H→ D. In other words, f(z) = (f ◦ g−1 ◦ g)(z). We choose g(z) = z−i

z+i .
We find

f(z) = (f ◦ g−1 ◦ g)(z)

= eiθ
α− g(z)

1− αg(z)

= eiθ
α− z−i

z+i

1− α z−iz+i

= eiθ
αz+αi−z+i

z+i
z+i−αz+αi

z+i

= eiθ
z − i− αz − αi
z + i− αz + αi

= eiθ
(1− α)z − i(1 + α)

(1− αz) + i(1 + α)
. (7.6)

We have to be a bit careful in simplifying the above. Note the goal is to get a rotation times z−β over z−β. We
thus need to have just a z plus or minus a constant in the numerator and denominator. We therefore pull out a 1−α
from the numerator and a 1−α from the denominator. Note these two quantities have the same norm, and thus their
ratio is of size 1. We can thus write their ratio as exp(iθ′) for some θ′, and hence exp(iθ) exp(iθ′) = exp(iθ′′). We
find

f(z) = exp(iθ′′)
z − i(1 + α)(1− α)−1

z + i(1 + α)(1− α)−1
.

If we set
β = i(1 + α)(1− α)−1

then clearly we do have
β = −i(1 + α)(1− α)−1.

We thus have
f(z) = exp(iθ′′)

z − β
z − β

;
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all that remains is to show that β is in the upper half plane. This isn’t too bad if we multiply by 1:

β = i
1 + α

1− α
· 1− α

1− α
= i

(1− |α|2) + 2=(α)i

|1− α|2
;

as |α| < 1 the imaginary part of β above is (1− |α|2)/|1− α|2 > 0, and thus β ∈ H.

HW: Due Friday, November 8: DO ANY FIVE OUT OF THE FOLLOWING SIX: IF YOU DO MORE,
THAT’S GOOD BUT ONLY THE FIRST FIVE WILL BE GRADED. (1) Consider the functions fn(x) =
n/(1 + nx2) where n is a positive integer. Prove that each fn is uniformly continuous on the real line. Is
the family {fn: n a positive integer} equicontinuous on compact sets? (2) Consider a 2 × 2 matrix M with
integer entries and top row (a, b) and bottom row (c, d) such that ad − bc = 1; we denote the set of all such
matrices by SL(2,Z). Consider the map fM (z) = (az + b)/(cz + d) with z in the upper half plane. Is the
family {fM : M in SL(2,Z)} uniformly bounded on compact sets of the upper half plane? Hint: I think each
map is bounded on compact subsets of the upper half plane, but you can find a sequence of matrices such
that no bound works simultaneously. (3) Let fn(x) = 1 − nx for 0 ≤ x ≤ 1/n and 0 otherwise, and let F =
{fn: n a positive integer}. Prove that lim fn exists and determine it. (4) Consider the family from (3). Prove
it is not normal (the problem is that the convergence is not uniform). Specifically, to be normal not only must
it converge, but given any epsilon there is an N such that, for all n > N , |fn(x)−f(x)| < ε (or this must hold
for a subsequence). (5) Evaluate

∫∞
−∞ x

2dx/(x4 + x2 + 1). (6) Integrate
∫ 2π
0 dθ/(a + b sin θ), where a and b

are real numbers. What restrictions must we place on a and b in order for this to make sense?
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8 Math 372: Homework #7: Thompson, Schrock, Tosteson

HW: Due Friday, November 8: DO ANY FIVE OUT OF THE FOLLOWING SIX: IF YOU DO MORE,
THAT’S GOOD BUT ONLY THE FIRST FIVE WILL BE GRADED. (1) Consider the functions fn(x) =
n/(1 + nx2) where n is a positive integer. Prove that each fn is uniformly continuous on the real line. Is
the family {fn: n a positive integer} equicontinuous on compact sets? (2) Consider a 2 × 2 matrix M with
integer entries and top row (a, b) and bottom row (c, d) such that ad − bc = 1; we denote the set of all such
matrices by SL(2,Z). Consider the map fM (z) = (az + b)/(cz + d) with z in the upper half plane. Is the
family {fM : M in SL(2,Z)} uniformly bounded on compact sets of the upper half plane? Hint: I think each
map is bounded on compact subsets of the upper half plane, but you can find a sequence of matrices such
that no bound works simultaneously. (3) Let fn(x) = 1 − nx for 0 ≤ x ≤ 1/n and 0 otherwise, and let F =
{fn: n a positive integer}. Prove that lim fn exists and determine it. (4) Consider the family from (3). Prove
it is not normal (the problem is that the convergence is not uniform). Specifically, to be normal not only must
it converge, but given any epsilon there is an N such that, for all n > N , |fn(x)−f(x)| < ε (or this must hold
for a subsequence). (5) Evaluate

∫∞
−∞ x

2dx/(x4 + x2 + 1). (6) Integrate
∫ 2π
0 dθ/(a + b sin θ), where a and b

are real numbers. What restrictions must we place on a and b in order for this to make sense?

(1) Consider the functions fn(x) = n/(1 + nx2) where n is a positive integer. Prove that each fn is
uniformly continuous on the real line. Is the family {fn: n a positive integer} equicontinuous on compact
sets?

We must show that, given any ε > 0 that there exists a δ such that, for any x, y ∈ R and any fn in our family that
whenever |x− y| < δ then |fn(x)− fn(y)| < ε.

Suppose |x− y| < δ. Then, by the Mean Value Theorem,

|fn(x)− fn(y)| = |f ′(c)||x− y| < |f ′(c)|δ

So, all we need to show is that f ′ is bounded. Why? If |f ′(x)| ≤ B for all x, then the above gives

|fn(x)− fn(y)| < B|x− y| < Bδ.

If we take δ < ε/(B + 1) then we see that, whenever |x− y| < δ then |fn(x)− fn(y)| < ε, as desired.
We now show f ′ is bounded. We easily find that

f ′(x) =
−2n2x

(1 + nx2)2

f ′′(x) =
−2n2

(1 + nx2)2
− 8n2x2

(1 + nx2)3

Now, setting the second derivative to zero to get

x2 =
1

3n

so there are at most two local extrema. Notice that

lim
x→±∞

f ′(x) = lim
x→±∞

−2n2x

(1 + nx2)2
= lim

x→±∞

−2n2x

x4(n+ 1
x2

)2
= 0,
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which implies that the maximum of f ′ cannot occur as x→ ±∞. Thus the maximum value of f ′ occurs at both of
x = ±1/

√
3n, and this is the desired bound.

Alternatively, we could argue as follows. We have

|f ′(x)| = 2n2 · |x|
(1 + nx2)2

.

Once x ≥ 1/n the denominator exceeds the numerator; as |x|/(1 + nx2)2 is continuous on [−1/n, 1/n], it is
bounded on this interval. Thus f ′ is bounded.

(2) Consider a 2x2 matrix M with integer entries and top row (a,b) and bottom row (c,d) such that ad-bc
= 1; we denote the set of all such matrices by SL(2,Z). Consider the map fM (z) = (az + b)/(cz + d) with z
in the upper half plane. Is the family {fM : M in SL(2,Z)} uniformly bounded on compact sets of the upper
half plane? Hint: I think each map is bounded on compact subsets of the upper half plane, but you can find
a sequence of matrices such that no bound works simultaneously.

If we let K be an arbitrary compact subset of the upper half plane, we know each z ∈ K has its imaginary part
bounded above and below, and similarly for the real parts. To show that our family is not uniformly bounded, we
must find a sequence of matrices and points such that the maps applied to these bounds become arbitrarily large in
absolute value.

We’re studying maps of the form

fM (z) =
az + b

cz + d

For problems like this, it is often useful to try and analyze special cases, where the algebra is simpler. Wouldn’t
it be nice if the denominator were just one? Well, to get that and satisfy the conditions, we would have to study
matrices of the form (

1 n
0 1

)
,

which are in our family. These lead to fM (z) = z + n. Clearly, as n increases, this is not bounded (as the real and
imaginary parts of z are bounded, so by sending n→∞ we see it is unbounded.

(3) Let fn(x) = 1 − nx for 0 <= x <= 1/n and 0 otherwise, and let F = {fn: n a positive integer}. Prove
that lim fn exists and determine it.

Let x0 6= 0 be a point on the positive real line. Then for all n > N , where N > 1/|x0|, we have fn(x0) = 0. This
is because

fn(x) =

{
1− nx 0 ≤ x ≤ 1

n

0 otherwise

and
n >

1

|x0|
⇒ |x0| >

1

n
⇒ f(x0) = 0.
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So as n→∞, fn → f where

fn(x) =

{
1 x=0
0 otherwise

Of course, we haven’t said anything about limn fn(0); however, as each fn(0) = 1, it is clear that the limit is 1 as
well. Finally, what happens for x negative? Well, as fn(x) = 0 for x < 0 by definition, then limn fn(x) = 0 for x
negative.

(4) Consider the family from (3). Prove it is not normal (the problem is that the convergence is not
uniform). Specifically, to be normal not only must it converge, but given any epsilon there is an N such that,
for all n > N, |fn(x)− f(x)| < epsilon (or this must hold for a subsequence).

Take x = ε, y = 0. Then obviously |x− y| ≤ ε. But for n such that 1
n < ε:

|fn(x)− fn(y)| = 1.

So, not normal.

(5) Evaluate the integral from -oo to oo of x2/(x4 + x2 + 1).
Using the quadratic formula we find that the equation z2 + z + 1 = 0 has roots at e2πi/3 and e4πi/3. Therefore

the function p(z) = z4 + z2 + 1 has roots at eπi/3, e2πi/3, e4πi/3 and e5πi/3. Thus we can rewrite our integral as∫ ∞
−∞

x2

(x− eπi/3)(x− e2πi/3)(x− e4πi/3)(x− e5πi/3)
dx.

For our contour we will take a semicircle in the upper halfplane of radius R centered at the origin. In this region we
have poles at z = eπi/3 and z = e2πi/3. To find what these residues are at the poles, we recall that if we can write a
function h(z) as a ratio of two entire functions f(z) and g(z), with g(z) having a simple zero at the point z0, then
the residue of h at z0 is simply f(z0)/g

′(z0). Using this we see the residue of p(z) at eπi/3 is:

e2πi/3

(eπi/3 − e2πi/3)(eπi/3 − e4πi/3)(eπi/3 − e5πi/3)
=

1

12
(3− i

√
3).

Similarly, the residue of p(z) at e2πi/3 is:

e4πi/3

e2πi/3 − eπi/3)(e2πi/3 − e4πi/3)(e2πi/3 − e5πi/3)
=

1

12
(−3− i

√
3).

The sum of the residuals is therefore−
√

3i/6 = −i/(2
√

3). We now show that the integral over the circular portion
of the contour, call it γ2, contributes nothing in the limit as R→∞. Since the length of γ2 is πR, we have:∣∣∣∣∫

γ2

z2

z4 + z2 + 1
dz

∣∣∣∣ ≤ πR R2

R4 −R2 − 1
→ 0.

Therefore in the limit we have:
1

2πi

∫ ∞
−∞

x2

x4 + x2 + 1
dx = −i/(2

√
3),
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which gives ∫ ∞
−∞

x2

x4 + x2 + 1
dx =

π√
3
.

(6) Integrate from 0 to 2pi the function 1 / (a + b sin theta) where a and b are real numbers. What restrictions
must we place on a and b in order for this to make sense?∫ 2π

0

dθ

a+ b sin θ

z = eiθ, e−iθ = 1/z, dz = izdθ, dθ = −idz/z∫ 2π

0

dθ

a+ b sin θ
=

∫
γ

−idz
z(a+ b(z − 1/z)/2i)

=

∫
γ

2dz

2iaz + b(z2 − 1)

where γ is ∂D (the circle bounding the unit disk).
The following lines are the original write-up of the solution; these are based on the previous line having a

factor of 2iaz instead of 2iaz2.
This has poles at

z0 =
i

b

(
−a±

√
a2 − b2

)
where the only one inside the unit circle is the plus root. This gives residue:

b

i
√
a2 − b2

So ∫ 2π

0

dθ

a+ b sin θ
=

2πb√
a2 − b2

as long as a2 > b2.
Unfortunately, the above cannot be correct, as a simple test shows. If we double a and b, then the original

integral decreases by a factor of 2, while our answer here does not change. Thus there must be an algebra
error. Below is the corrected argument.

Consider the integral ∫ 2π

0

dθ

a+ b sin θ
.

Making the change of variables z = eiθ, e−iθ = 1/z, dz = izdθ, dθ = −idz/z, we find∫ 2π

0

dθ

a+ b sin θ
=

∫
γ

−idz
z(a+ b(z − 1/z)/2i)

=

∫
γ

2dz

b(2i(a/b)z + z2 − 1)

where γ is ∂D (ie, γ is the unit circle centered at the origin). From the quadratic formula, we see that the integrand
has poles at

z0 = i

(
−a
b
±
√(a

b

)2
− 1

)
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where the only one inside the unit circle is the plus root. To compute the residue, we use the following fact: if
A(z) = B(z)/C(z) and C(z) is a holomorphic function with a simple zero at z0 and B(z) is holomorphic, then
the residue at z0 is just B(z0)/C

′(z0). This gives a residue of

2

ib
√

(ab )2 − 1

So ∫ 2π

0

dθ

a+ b sin θ
=

2π√
a2 − b2

as long as a2 > b2 (remember that the residue formula requires the integral to be multiplied by 1/2πi, thus in our
case we must multiply the residue by 2πi as our integral was unadorned).

Alternatively, if we factor out a b from the denominator we have

1

b

∫ 2π

0

dθ

(a/b) + sin θ
.

This is solved exactly like the problem on the midterm, except instead of having a+sin θ we now have (a/b)+sin θ,
with an extra factor of 1/b outside. Thus the answer is just

1

b
· 2π√

(a/b)2 − 1
=

2π√
a2 − b2

.

Notice this solution has all the desired properties. It doesn’t make sense for |a| < |b|. For b fixed and a → ∞ it
converges to 2π/a, et cetera. It is always good to do these quick consistency checks.
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9 Math 372: Homework #8: Xiong, Webster, Wilcox

HW: Due Tuesday, November 23rd: DO ANY FIVE OUT OF THE FOLLOWING SIX: IF YOU DO MORE,
THAT’S GOOD BUT ONLY THE FIRST FIVE WILL BE GRADED. (1) Let Omega be the subset of the
complex plane of all z = x+ iy with |x| < |y|. Does there exist a logarithm on Omega? If yes, what does the
image of Omega under the logarithm look like? (2) Let Omega be the region from (4); is Omega conformally
equivalent to the unit disk? Prove your assertion. Hint: remember the full definition of what it means to be
simply connected. (3) Let Omega be the subset of the complex plane of all z = x + iy with |x| < |y| + 1.
Conformally map Omega onto an open subset of the disk – you must give an explicit form for the map. (Note:
The Riemann Mapping Theorem asserts that you can get a map that is onto the disk; here you are just being
asked to get a map that is holomorphic and 1-1). (4) Evaluate

∫ 2pi
0 cos(x)mdx, where m is a positive integer.

(5) Evaluate
∫ 1
0 (1 − x2)ndx, where n is a positive integer. Hint: Let x = Sin[theta], dx = Cos[theta] d theta.

(6)
∫∞
0 log(x)dx/(1 + x2).

Problem: Let Ω = {z = x+ iy ∈ C : |x| < |y|}. Does there exist a logarithm on Ω. If yes, what does the image
of Ω under the logarithm look like?
Solution: First note that Ω contains the imaginary axis save the origin. Now imagine the lines y = ±x in the
plane. Ω looks like the open hourglass strictly between the lines and containing the imaginary axis. Noting that
Ω ⊆ C\(−∞, 0], we can take the principal branch of the logarithm and use the restriction of this logarithm to Ω
(see Chapter 3, Theorem 6.1 in the book). To see the image of Ω under this logarithm, write z = reiθ with r > 0
and |θ| < π, and then we have log z = log r + iθ where log r is the standard logarithm on the positive reals. Note
that for example −i would be written 1 · e−π/2. Evaluating at some test points, we see

log(ei) = log(e1+iπ/2) = 1 + iπ/2

log(e1+iπ/4) = 1 + iπ/4

log(−ei) = 1− iπ/2,

etc. Evaluating points along the boundary lines shows us that the image of Ω under this logarithm is two horizontal
strips, defined by

log[Ω] =

{
z = x+ iy ∈ C

∣∣∣ y ∈ (−3π

4
,
−π
4

)
∪
(
π

4
,
3π

4

)}
.

2

Problem: Let Ω be the region from Problem 1. Is Ω conformally equivalent to the unit disk D? Prove your asser-
tion.

Solution: Ω is not conformally equivalent to D since Ω is not simply connected due to the hole at the origin. Citing
Hw 6 #3, being simply connected is necessary for Ω to be uniformly equivalent to D.

A simple illustration: we may choose one point a ∈ Ω ∩ H (the upper-half complex plane) and another point
b in the lower half. Suppose that Ω is conformally equivalent to D, then ∃ a conformal map f : Ω → D. If we
draw a continuous curve γ connecting f(a) and f(b) in D, we may use the reverse conformal map f−1 : D→ Ω to
map γ into Ω and still obtain a continuous curve. However, since Ω excludes the origin, it is impossible to draw a
continuous curve in Ω connecting a and b. 2
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Problem: Let Ω be the set from Problem 1. Conformally map Ω onto an open subset of the (unit) disk – you must
give an explicit form for the map. (Note: The Riemann Mapping Theorem asserts that you can get a map that is
onto the disk; here you are just being asked to get a map that is holomorphic and 1-1).

Solution: Define a map f1 : Ω→ f1(Ω) ⊂ C by

f1(z) = z + 2010.

Clearly, f1 is conformal, and f1(Ω) lies outside the unit disk. Define a map f2 : C \ D→ C be defined

f2(z) =
1

z
,

which conformally maps regions outside the disk onto regions inside of the disk. Thus, f2(f1(Ω)) lies inside the
disk. Let

f(z) = f2(f1(z)) =
1

z + 2010
.

As desired, f maps Ω conformally onto f2(f1(Ω)) ⊆ D, which is open because Ω is open and f is continuous. 2

Problem: Evaluate ∫ 2π

0
(cos(x))mdx,

where m ∈ N+.

Solution: Begin by setting x = θ and applying Euler’s formula for cosine.∫ 2π

0
(cos(x))mdx =

∫ 2π

0

(
eiθ + e−iθ

2

)m
dθ

Let z = eiθ. Notice that as θ goes from 0 to 2π, z travels around the unit circle. We then have

dz = ieiθdθ

dθ =
dz

ieiθ

= −iz−1dz,

and substituting yields
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∫ 2π

0

(
eiθ + e−iθ

2

)m
dθ =

∫
|z|=1

(
z + z−1

2

)m
dz

=
−i
2m

∫
|z|=1

(z + z−1)mz−1dz

=
−i
2m

∫
|z|=1

m∑
k=0

(
m

k

)
z2k−m−1dz

= 2πi
−i
2m

am

=
π

2m−1
am,

where am is the coefficient of z−1 in
m∑
k=0

(
m

k

)
z2k−m−1.

If m is odd, then am = 0 and our integral is 0. If m is even, then

am =

(
m

m/2

)
,

and our integral is

π

2m−1

(
m

m/2

)
.

2

Problem: Evaluate ∫ 1

0
(1− x2)ndx,

where n ∈ N+.

Solution: Note that we could expand using the binomial formula and power through some algebra. Instead, we
translate to the unit circle and use complex analysis and recurrence relations to simplify the computation. So let
x = sin θ where θ ∈ [0, π2 ], and then dx = cos θdθ and note 1− x2 = cos2 θ. Substituting yields∫ 1

0
(1− x2)ndx =

∫ π
2

0
(cos θ)2n+1dθ.

Now write

In =

∫ π
2

0
(cos θ)2n+1dθ
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for n ∈ N, and note that

I0 =

∫ π
2

0
cos θdθ

= sin θ
∣∣∣π2
0

= 1.

Then for n ≥ 1, we have

(cos θ)2n+3 = (cos θ)2n+1(1− (sin θ)2),

thus

In+1 =

∫ π
2

0
(cos θ)2n+3dθ

=

∫ π
2

0
(cos θ)2n+1dθ −

∫ π
2

0
(cos θ)2n+1(sin θ)2dθ,

and observe ∫ π
2

0
(cos θ)2n+1dθ = In.

Now let u = sin θ and dv = (cos θ)2n+1 sin θ, then du = cos θdθ and

v = −(cos θ)2n+2

2n+ 2
.

Then using integration by parts, we have∫ π
2

0
(cos θ)2n+1(sin θ)2dθ = uv −

∫
vdu

= −
[
sin θ

(cos θ)2n+2

2n+ 2

]π
2

θ=0

+
1

2n+ 2

∫ π
2

0
(cos θ)2n+3dθ.

Evaluating the left term we find

−
[
sin θ

(cos θ)2n+2

2n+ 2

]π
2

θ=0

= 0,

and we are left with

1

2n+ 2

∫ π
2

0
(cos θ)2n+3dθ =

In+1

2n+ 2
.
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In the end we have,

In+1 = In −
In+1

2n+ 2
,

so In+1 =
2n+ 2

2n+ 3
In

and finally, In =
2n

2n+ 1
· 2n− 2

2n− 1
· · · 2

3
· I0

=
(2n)!!

(2n+ 1)!!
.

While we could try to solve this problem by replacing the cosines with z and 1/z, that unfortunately leads to
a bit of algebra as the resulting expression won’t just be integrals of zk for k an integer, but rather for 2k (or 4k,
depending on how clever we are with our choice of variables) an integer.

2

Problem: Evaluate ∫ ∞
0

log x

1 + x2
dx.

Solution: ‘ Rather than resort to the branch cut method, whose details have already been exposed3. We apply the
Cauchy residue formula more directly, using the indented semicircle contour. Note that this requires that we take
advantage of the symmetry of our integrand. In particular, it is easily integrable along the negative real axis. So, let

f(z) =
log z

1 + z2
,

(where we take the branch cut for the log to be along the negative imaginary axis) and let γ = γ1 + γ2 + γ3 + γ4,
where γ1 is the line segment along the positive real axis from ε toR, γ2 is the upper half semicircle of radiusR with
counterclockwise orientation, γ3 the segment from −R to −ε and γ4 the upper half semicircle of radius ε and with
clockwise orientation. We will show that the integrals along γ2 and γ4 go to zero in the limit ε → 0 and R → ∞.
Then we may evaluate the integral by collecting terms and computing residues. We jump to the punchline first.

Note that f has a simple pole at z = i, and (applying Theorem 1.4 from Chapter 3) the residue there is

lim
z→i

(z − i)f(z) = lim
z→i

log(z)

z + i

=
log(i)

2i

=
log(1) + iπ2

2i

=
π

4
.

3A very similar integral is done via the branch cut method on pages 10 and 11 of the wikipedia printout handed out in class if you’re
interested.
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And when applying the residue theorem, we will need

2πi
∑

poles z0

resf (z0) = 2πi · π
4

=
iπ2

2
.

Now consider the integral over γ3, and note that for x ∈ R, with x < 0, we have log x = log |x|+ iπ where the log
on the right hand side is taken to be the standard logarithm for the positive reals. Then∫

γ3

f(z) dz =

∫ 0

−∞

log x

1 + x2
dx

=

∫ ∞
0

log x+ iπ

1 + x2
dx

=

∫ ∞
0

log x

1 + x2
dx+ iπ

∫ ∞
0

1

1 + x2
dx

=

∫ ∞
0

log x

1 + x2
dx+

iπ2

2
.

Then if we can show that the integrals over γ2 + γ4 vanish in the limit, we will have by Cauchy’s residue theorem
that

iπ2

2
=

∫
γ1+γ3

f(z) dz = 2

∫ ∞
0

log x

1 + x2
dx+

iπ2

2
,

at which point we may conclude ∫ ∞
0

log x

1 + x2
dx = 0.

Now on to show that the required integrals vanish. We begin with γ2. We have∫
γ2

f(z) dz =

∫
γ2

log z

1 + z2
dz,

and then letting z = εeiθ, dz = iεeiθdθ and θ ∈ [0, π]∫
γ2

f(z) dz =

∫ π

0

log(εeiθ)

1 + ε2e2iθ
iεeiθ dθ.

Then we note that for our branch of the logarithm, log(εeiθ) = log ε+ iθ where the log on the right is the standard,
and next take absolute values to see ∣∣∣∣∫

γ2

f(z) dz

∣∣∣∣ ≤ επ max
0≤θ≤π

∣∣∣∣ log ε+ iθ

1 + ε2e2iθ

∣∣∣∣
≤ επ | log ε|+ π

1− ε2
.
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Now citing the fact that limε→0 ε log ε = 0, we see that this integral vanishes in the limit. Moving more quickly
through γ4, we see ∫

γ4

f(z) dz =

∫ π

0

log(Reiθ)

1 +R2e2iθ
Rieiθ dθ,

and so in absolute value we have ∣∣∣∣∫
γ4

f(z) dz

∣∣∣∣ ≤ πR | logR|+ π

R2 − 1
.

Thus the integral grows like (logR)/R in the limit as R → ∞, and by l’Hopital’s rule, this goes to 0. So the
integrals over γ2 and γ4 vanish as claimed, and we now have that the original integral is also 0.

2
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10 Math 372: Homework #9: Miller

10.1 Problems.

HW: Due Friday, December 6:ăDO ANY FIVE OUT OF THE FOLLOWING SEVEN: IF YOU DO MORE,
THAT’S GOOD BUT ONLY THE FIRST FIVE WILL BE GRADED. THIS IS GREAT PRACTICE FOR THE
FINAL. IF YOU DO THIS ASSIGNMENT I WILL DROP WHATEVER HW ASSIGNMENT BEING DROPPED
HELPS YOUR AVERAGE THE MOST; IF YOU DO NOT DO THIS ASSIGNMENT THEN I WILL ’DROP’
THIS FROM YOUR HW AVERAGE.ă(1) Let G(s) =

∫∞
0 exp(−x2)xs−1dx. Find a functional equation for G(s).

Hint: there is a nice expression forG(s+2). (2) LetH(z) = 1+z2+z4+z6+z8+· · · . Find an analytic continuation
for H(z). For what z does your analytic continuation make sense? For what z is it undefined? What should H(2)
equal? (3) Let L(s) =

∫∞
0 xsdx/(x2 + 1). For what s does the integral exist? (4) Let ζalt(s) =

∑∞
n=1(−1)n−1/ns

(alt for alternating). Prove this series converges for Re(s) > 1. Show that ζalt(s) = ζ(s) − (2/2s)ζ(s) (hint:
group the even and odd terms of ζalt(s) together). From this deduce that ζ(s) = (1 − 21−s)−1ζalt(s). The
importance of this exercise is that, using partial summation, one can show that ζalt(s) is well-defined for all s
with Re(s) > 0. This furnishes yet another analytic continuation of ζ(s) (at least for Re(s) > 0). (5) Show∫∞
0 x4dx/(1 + x8) = (π/4)

√
1− 1/

√
2. Hint: remember if f(z) = g(z)/h(z) with g, holomorphic and h having

a simple zero at z0, then the residue of f at z0 is g(z0)/h
′(z0). (6) Chapter 6, Page 175, #5: Use the fact that

Γ(s)Γ(1 − s) = π/ sin(πs) to prove that |Γ(1/2 + it)| =
√

2π/(exp(πt) + exp(−πt)) for t real. (7) Method of
Stationary Phase: Use Laplace’s Method to estimate (2m − 1)!! =

∫∞
−∞ x

2m(1/
√

2π) exp(−x2/2)dx, the 2m-th
moment of the standard normal (recall the double factorial is every other term down to 2 or 1, so 5!! = 5 ·3 ·1 = 15).
DO NOT convert this to a value of a Gamma function and invoke Stirling; the point of this exercise is to go through
the Method of Stationary Phase to make sure you know how to use it.

10.2 Solutions.

The following are sketches of the solutions to the problems. If you want more details let me know.
Problem: 1 LetG(s) =

∫∞
0 exp(−x2)xs−1dx. Find a functional equation forG(s). Hint: there is a nice expression

for G(s+ 2).
Solution: 1 If we change variables we can relate this to the Gamma function. Specifically, let u = x2 so du = 2xdx
or dx = 1

2u
−1/2du. Then

G(s) =

∫ ∞
0

exp(−u)u(s−1)/2
1

2
u−1/2du =

1

2

∫ ∞
0

exp(−u)us/2−1du =
1

2
Γ(s/2).

Thus G(s) inherits its functional equation from that of Γ(s).

Problem: 2 Let H(z) = 1 + z2 + z4 + z6 + z8 + · · · . Find an analytic continuation for H(z). For what z does
your analytic continuation make sense? For what z is it undefined? What should H(2) equal?
Solution: 2 Note this is a geometric series with ratio r = x2, and thus H(z) = 1/(1− z2). It is defined so long as
z 6∈ {−1, 1}, and H(2) should be −1/3.

Problem: 3 Let L(s) =
∫∞
0 xsdx/(x2 + 1). For what s does the integral exist?

Solution: 3 We need things to be well behaved as we go to zero and infinity. We need to decay to a power more
than 1/x as x → ∞. Thus we need Re(s) < 1. We must also be well-behaved (it’s hyphenated, so this way I’m
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right at least once!) as x → 0 from above. The denominator tends to 1, so we need the numerator to be decaying
slower than 1/x. Thus we need Re(s) > −1 to be okay at the origin, and thus combining we need the real part to
be between -1 and 1.

Problem: 4 Let ζalt(s) =
∑∞

n=1(−1)n−1/ns (alt for alternating). Prove this series converges for Re(s) > 1. Show
that ζalt(s) = ζ(s) − (2/2s)ζ(s) (hint: group the even and odd terms of ζalt(s) together). From this deduce that
ζ(s) = (1 − 21−s)−1ζalt(s). The importance of this exercise is that, using partial summation, one can show that
ζalt(s) is well-defined for all s with Re(s) > 0. This furnishes yet another analytic continuation of ζ(s) (at least
for Re(s) > 0).
Solution: 4 Done in class; see your notes. See

http://arxiv.org/pdf/math/0209393v2.pdf

for a nice article on the alternating zeta function.

Problem: 5 Show
∫∞
0 x4dx/(1 + x8) = (π/4)

√
1− 1/

√
2. Hint: remember if f(z) = g(z)/h(z) with g, holo-

morphic and h having a simple zero at z0, then the residue of f at z0 is g(z0)/h
′(z0).

Solution: 5 Let h(z) = 1 + z8. Note the only poles are when 1 + z8 = 0, so z = eiπe2πik/8 for k ∈ {0, 1, . . . , 7}.
We choose as our contour the real axis from−R toR and then a semi-circle in the upper half plane connecting these
extremes. For |z| large, |1 + z8| > |z|8/2, and thus |f(z)| = |z4/(1 + z8)| is bounded by a constant over R4 on
the semi-circle. As the length of that curve is πR, it has a negligible contribution. The claim follows by computing
the residues, which is greatly aided by the observation that the residue of f at a simple zero of the denominator
(remember f is a quotient) is g(zk)/h

′(zk).

Problem: 6 Chapter 6, Page 175, #5: Use the fact that Γ(s)Γ(1 − s) = π/ sin(πs) to prove that |Γ(1/2 + it)| =√
2π/(exp(πt) + exp(−πt)) for t real.

Solution: 6 This follows from noting that |Γ(1/2 + it)| = |Γ(1/2− it)| and sin z = (eiz − e−iz)/2.

Problem: 7 Method of Stationary Phase: Use Laplace’s Method to estimate (2m−1)!! =
∫∞
−∞ x

2m(1/
√

2π) exp(−x2/2)dx,
the 2m-th moment of the standard normal (recall the double factorial is every other term down to 2 or 1, so
5!! = 5 · 3 · 1 = 15). DO NOT convert this to a value of a Gamma function and invoke Stirling; the point of
this exercise is to go through the Method of Stationary Phase to make sure you know how to use it.
Solution: 7 While we are told we cannot convert this to a Gamma value, we can mimic the argument from before.
We want to replace x with some function of m times x. While it is natural to try x 7→ mx, it’s better to look at
x 7→

√
mx. The reason is the exponential will be nicer now, and we don’t care if we have

√
m raised to the 2m-th

power. We get

(2m− 1)!! =
1√
2π
mm

∫ ∞
−∞

e2m log xe−mx
2/2√mdx

=
1√
2π
mm+1/2

∫ ∞
−∞

e−m(x2/2−log x).

So if we write the integrand as exp(−mΦ(x))Ψ(x), then Φ(x) = x2/2 − log x and Ψ(x) = 1. We find Φ′(x) =
x− 1/x and Φ′′(x) = 1/x2. Thus, while the derivatives of Φ(x) are good, the critical point is x = 0 and Φ(0) 6= 0.
Thus we want to look at a slight change, and we need to subtract the value of Φ(0) which is 1/2.
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Thus let’s try

(2m− 1)!!
1√
2π
mmem/2

∫ ∞
−∞

e−m(x2/2−1/2−log x) · 1dx.

Now we take
Φ(x) = x2/2− 1/2− log x, Ψ(x) = 1.

We find Φ(1) = 0, Φ′(1) = 0 and Φ′′(x) = 1/x2. We see the conditions of the theorem are met, and the result now
follows by substituting into the formula from the appendix in the book.
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