Math 372: Fall 2015: Solutions to Homework

Steven Miller

December 7, 2015

Abstract

Below are detailed solutions to the homework problems froath\872 Complex Analysis (Williams College,
Fall 2015, Professor Steven J. Miller, sim1@williams.edije course homepage is

http://www. willians.edu/ Mat hematics/sjm |l er/public_htm/372Fal5

and the textbook i€omplex Analysiby Stein and Shakarchi (ISBN13: 978-0-691-11385-2). Not&tdents:
it's nice to include the statement of the problems, but | éethat up to youl am only skimming the solutions.

I will occasionally add some comments or mention alternatedutions. If you find an error in these notes,
let me know for extra credit.
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1 Math 372: Homework #1: Yuzhong (Jeff) Meng and Liyang Zhang(2010)

1.1 Problems for HW#1: Due September 21, 2015
Due September 21: Chapter 1: Page 24: #1abcd, #3, #13.

Problem: Chapter 1: #1: Describe geometrically the sets of pointsthe complex plane defined by the fol-
lowing relations: (a)z — z1| = |z — 22| Wherezy, 29 € C; (b) 1/2 = Z; () Re(2) = 3; (d) Re(z) > ¢ (resp.,> ¢)
wherec € R.

Problem: Chapter 1: #3: Withu = se’?, wheres > 0 andy € R, solve the equation” = w in C wheren is a
natural number. How many solutions are there?

Problem: Chapter 1: #13: Suppose thats holomorphic in an open sét. Prove that in any one of the follow-
ing casesf must be constant:
(a) Re(f) is constant;
(b) Im(f) is constant;
(c) |f] is constant.

1.2 Solutions for HW#1.:
Due September 21, 2015: Chapter 1: Page 24: #1abcd, #3, #13.

Problem: Chapter 1: #1: Describe geometrically the sets of pointsthe complex plane defined by the fol-
lowing relations: (a)z — z1| = |z — 22| Wherezy, 29 € C; (b) 1/2 = Z; () Re(2) = 3; (d) Re(z) > ¢ (resp.,> ¢)
wherec € R.

Solution: (a) Whenz; # z», this is the line that perpendicularly bisects the line seginfiromz; to zo. When
z1 = 29, this is the entire complex plane.

(b)

L s =
-2 (1.1)
z 2z |7
So ) _
Tore S —ze|=1 (1.2)
z |22

This is the unit circle irC.
(c) This is the vertical linec = 3.
(d) This is the open half-plane to the right of the verticakli: = ¢ (or the closed half-plane if it i$).

Problem: Chapter 1: #3: Withu = se’?, wheres > 0 andy € R, solve the equation™ = w in C wheren is a
natural number. How many solutions are there?



Solution: Notice that ‘ ‘
w = se¥ = s ¥ T2 1y c 7, 1.3)

It's worth spending a moment or two thinking what is the bésgtice for our generic integer. Clearlyis a bad
choice as it is already used in the problem; as we oftert t@ethe imaginary part, that is out too. The most natural
is to usem (thoughk would be another fine choice); at all costs do notiise

Based on this relationship, we have

2" o= gellet2mm), (1.4)
So,
i(p+2mm)
= s/me . (1.5)
Thus, we will haven unique solutions since each choicemfe {0,1,...,n — 1} yields a different solution so

long ass # 0. Note thatn = n yields the same solution as = 0; in general, if two choices af: differ by n then
they yield the same solution, and thus it suffices to look atitepecified values af. If s = 0, then we have only
1 solution.

Problem: Chapter 1: #13: Suppose thats holomorphic in an open sét. Prove that in any one of the follow-
ing cases must be constant:
(a) Re(f) is constant;
(b) Im(f) is constant;
(c) |f] is constant.

Solution: Let f(z) = f(z,y) = u(z,y) + iv(x,y), wherez = x + iy.
(a) Since Réf) = constant,

ou ou
Fy 0, o 0. (1.6)
By the Cauchy-Riemann equations,
ov ou
oz~ oy 0. a.7)
Thus, in€2, of & 5
/ = — = —u —v = =
fi(z) = 9~ + Z@x 0+0 . (1.8)
Thusf(z) is constant.
(b) Since In{f) = constant,
ov v
Fr 0, 3y 0. (1.9)
By the Cauchy-Riemann equations,
ou  Ov
Frim e 0. (1.10)
Thus in2, 9 9 5
/ = — = —u —U = =
fi(z) = 9~ D + L 0+0 . (2.12)



Thusf is constant.

(c) We first give a mostly correct argument; the reader shpaidattention to find the difficulty. Sind¢| =

vu? 4 v? is constant,

0= B(uz-l—vz) _ 2u% + 21}%.
D0 4e?) _ o u o O (1.12)
0= oy = 2ua—y + 2va—y.
Plug in the Cauchy-Riemann equations and we get
ov ov
— — =0. 1.13
u(‘?y + v(‘?x 0 ( )
ov v
Cu= = —0. 1.14
uax + U@y 0 ( )
ov v Oov
1.14) = — = ——. 1.15
(L14) = o =~ oy (1.15)
Plug (1.15) into (1.13) and we get
2, .2
wAvion (1.16)
u Oy

SOu2+v2:Oorg—Z:O.

If 2 + v2 = 0, then, sincey, v are realy = v = 0, and thusf = 0 which is constant.

Thus we may assume + v equals a non-zero constant, and we may divide by it. We nhyblipth sides by
v and findg—Z =0, then by (1.15)2% = 0, and by Cauchy-Riemang = 0.

f,_ﬁ_@_i_.(%_

=9 o2 z% =0. (1.17)

Thusf is constant.

Why is the above only mostly a proof? The problem is we haveveidn by u, and need to make sure
everything is well-defined. Specifically, we need to knowt th# never zero. We do havg = 0 except at points
whereu = 0, but we would need to investigate that a bit more.

Let’s return to

0= 8(u2—|—v2) _ 2u% + 21}%.
D) _ o u o O (1.18)
0= oy 2ua—y + 2va—y.
Plug in the Cauchy-Riemann equations and we get
u@ + v@ = 0
oy  Oxr
ov v
—U— — = 0. 1.19
uax + v(‘)y 0 ( )



We multiply the first equatiom and the second by, and obtain

—uv—+v°— = 0. (1.20)
Adding the two yields
—+v’—= = 0, (1.21)
or equivalently
(u® +v*)— = 0. (1.22)

We now argue in a similar manner as before, except now we davée the annoying. in the denominator. |If
u? +v? = 0 thenu = v = 0, else we can divide by? + v? and findov/dy = 0. Arguing along these lines finishes
the proof. O

One additional remark: we can trivially pass from resultgpartials with respect to to those with respect to
by noting that iff = « 4 7v has constant magnitude, so too dges if = —v + iu, which essentially switches the
roles ofu andv. Though this isn’t needed for this problem, arguments sgdhia can be very useful.

The following is from Steven MillerLet’s consider another proof. [ff| = 0 the problem is trivial as then
f = 0, so we assumégf| equals a non-zero constant. A4 is constant,f|?> = ff is constant. By the quotient
rule, the ratio of two holomorphic functions is holomorphassuming the denominator is non-zero. We thus find
f =|f|?/f is holomorphic. Thug and f are holomorphic, and satisfy the Cauchy-Riemann equatiépglying

these tof = u + iv yields
ou ov  Ou ov

dr 9y 9y  Ox’
while applying tof = u + i(—v) gives
ou d(—v) Ou d(—v)

ox oy = Oy Ox
Adding these equations together yields
ou ou
2— = 2— = 0.
Ox 0 dy 0

Thusu is constant, and by part (a) this implies tlifais constant. If we didn’t want to use part (a) we could sulitrac
rather than add, and similarly find thais constant.



The following is from Craig Corsi, 2013 TAhe problem also follows from the polar form of the Cauchy-
Riemann equations.

It's worth mentioning that (a) and (b) follow immediatelyin (c). For example, assume we know the real part
of f is constant. Consider

9(z) = exp(f(2)) = exp(u(x,y)) exp(iv(z,y)).

As |g(2)| = exp(u(z,y)), we see that the real part ¢fbeing constant implies the functignhas constant magni-
tude. By part (c) this implies thatis constant, which then implies thétis constant.

Due Monday, September 28: Chapter 1. Page 24: #16abc, #24,5¢#b. Chapter 2: (#1) We proved Goursat's
theorem for triangles. Assume instead we know it holds for ap rectangle; prove it holds for any triangle. (#2)
Let v be the closed curve that is the unit circle centered at the ogin, oriented counter-clockwise. Compute
557 f(z)dz where f(z) is complex conjugation (sof (x + iy) = x — iy). Repeat the problem forﬁy f(z)"dz for
any integer n (positive or negative), and compare this answer to the restd for § 2"dz; is your answer sur-
prising? (#3) Prove that the four triangles in the subdivisbn in the proof of Goursat’s theorem are all similar
to the original triangle. (#4) In the proof of Goursat’s theorem we assumed thatf was complex differentiable
(ie, holomorphic). Would the result still hold if we only assimed f was continuous? If not, where does our
proof break down?



2 Math 372: Homework #2: Solutions by Nick Arnosti and ThomasCrawford
(2010)

Due Monday, September 28: Chapter 1: Page 24: #16abc, #24,5¢b. Chapter 2: (#1) We proved Goursat’s
theorem for triangles. Assume instead we know it holds for anrectangle; prove it holds for any triangle. (#2)
Let v be the closed curve that is the unit circle centered at the ogin, oriented counter-clockwise. Compute
557 f(z)dz where f(z) is complex conjugation (sof (x + iy) = x — iy). Repeat the problem forﬁy f(z)"dz for
any integer n (positive or negative), and compare this answer to the restd for 3% z"dz; is your answer sur-
prising? (#3) Prove that the four triangles in the subdivison in the proof of Goursat’s theorem are all similar
to the original triangle. (#4) In the proof of Goursat's theorem we assumed thatf was complex differentiable
(ie, holomorphic). Would the result still hold if we only assimed f was continuous? If not, where does our
proof break down?

Problem: Prove Goursat's theorem for triangles using only the faat ittholds for rectangles.

Note that it suffices to prove that the integral along anytrighngle is zero, since any triangle can be divided
into two right triangles by dropping an altitude.

Given a right triangle ABC, by drawing a series of rectangiesde the triangle, we can reduce the desired
integral to the integral along a seriesoftongruent triangles similar to ABC, each of which border dhiginal
hypotenuse (as shown in the figure).

Zn

ix

/|

]
o

/

o/
L

Sincef is continuous on the original triangle ABC (a compact setkwew thatf is uniformly continuous on
the region of interest.

Thus, given any > 0, there exists @ > 0 such that for any two points, y in ABC with |z — y| < ¢,
|f(x) — f(y)| < e. If his the length of the hypotenuse of ABC, choaséarge enough so that the diameter of
each small trianglek/n, is less thard. Then for any trianglél;, and any pointz;, on that triangle writef (z) =
f(zk) + (), so that

f(R)dz= | fze) +d(2)dz = | f(z)dz+ | ¥(z)dz
T, T, T,

Tk
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Sincef(z) is a constant, it has a primitive, so the first integral is z&eanwhile, since any point on triangle
Ty is within h/n of z;, and we chose to be such that/n < ¢, we know thaty(z)| = |f(z) — f(zx)| < e. Thus,
|ka P(z)dz| < perim(T}) - €. But perim(T},) < 3h/n, so the integral off (z) along triangleT}, is at mosB3he /n.
Summing over alln triangles, we see that the integral ffz) along the entire curve is at mo3te. Since this
technique works for arbitrarily smad, this implies that the integral of along any right triangle is zero, proving
the claim.

Problem: If - is a curve inC, show thatf_7 f(z)dz = — fwf(z)dz.

Parameterize by z = ¢(t) for ¢ in [a, b], and definav(t) = g(a + b — t). Thenw(t) is a parameterization of
— on the intervala, b] (note thatw(a) = g(b), w(b) = g(a)). Additionally, w’(t) = —¢'(a + b — t). It follows
that

b b
/_ f(2)dz = / flwt)w' (t)dt = — / flgla+b—1)g (a+b—t)dt.

Making the substitutions = a + b — t, we get that

b a
— | flla+b—1)g'(a+b-t)dt = _ flg(u))g (u)du

l—a u=b
b
S / o)y (w)du. (2.1)
But b
_ w))g (u)du = — 2)dz,
/u:af(g( N9 (u) Lf( )

which proves the claim.
Problem: If ~ is a circle centered at the origin, firfg 2"dz.

We start by parameterizingby z = re?, 0 < 0 < 2, sodz = ire’df. Then

2 ) ) 2T
/anz — / Tnelne(irele)de — ,L'T,TL-'rl / eZ(TL—‘rl)@de'

If n = —1, this isir? 02” df = 2mi. Otherwise, we get
27 1 2T
Z'Tn—l-l/ ol 1) g9 _ rmt it gl _ .
0 n —+ 1 0

Problem: If ~ is a circle not containing the origin, finﬂ7 2"dz.

If n # —1, the functionf(z) = 2" has a primitive (namely’;;%l), so by Theorem 3.3 in Chapter 1 of our book,
J, f(z)dz = 0.

If n = —1, we parameterize by z = 2y + e, 0 < 0 < 2, sodz = ire’?df.Then

1 27 - 10 - 27 10
[lam [T = [T
N ? o 2o+re z0 Jo 1+ —¢€

z0



Note that because our circle does not contain the origif, > r, so ]%e“’] < 1. Thus, we can write this
expression as a geometric series:

ir 27 629 ir 2

. —_r .
- i == ' —ekqp.
z0 Jo 1+ %e“’ z0 Jo kZO( 20 )

Interchanging the sum and the integral, we see that thisis ju

2w
df = 0.
0

oi(k+1)0

o0 21 o
. -r k+1/ i(k+1)0 79 _ YS!
—1q — e df = — — —
kzzo( 20 ) 0 kZZO( 20 ) k + 1

Why may we interchange? We can justify the interchange dtleetdact that the sum of the absolute values con-
verges.

Problem: If ~ is the unit circle centered at the origin, firfgz"dz.

We start by parameterizingby z = ¢/, 0 < § < 27, s0z = e~ anddz = ie’?df. Then

21 2
/z”dz :/ e_me(z’ew)dﬂ = z/ e =109
ol 0 0

If n =1, thisisi f02” df = 2mi. Otherwise, we get

2T i(1-n)0
Z/ e—z(n—l)edg _ €
0 1—n

2w
=0.
0

Note that instead of doing the algebra, we could have obdehat on the unit circle = 27!, so f7 Z"dz =
f7 27 "dz. Applying our work from Problerl2, we get the answer above.

Problem: Where in the proof of Goursat's theorem do we use the facttb®afunctionf is holomorphic? Is it
sufficient to know thaff is continuous?

Start by recapping the main ideas behind the proof. We begaaritinually splitting our triangl€” into smaller
triangles. These triangles converge to a point in the liamt we called this pointy. We then established the bound

‘/Tf(z)dz‘ < 47| f(2)dz|.

T(n)
Our goal was to show that this quantity tends to zere as zj.
To do this, we Taylor expandeflz) around the pointy : f(z) = f(20) + f'(20)(z — 20) + ¥(2)(z — 20).
Note that(z — zp) dividesy(z), soy(z) — 0 asz — zo.

f(z)dz

T(n)

<

) f(20) + f'(20)(z — 20)dz

+ [ W )l

The firstintegrand in this sum has a primitive, so the valuisfintegral is zero. Le¥/,, = max, ., |[¢(2)].
Then|y(z)| < M,, andz — z < diam(T(™). Hence, the value of the second integral is at most p@rif) -
diam(T(™) - M,,.

T(n

10



Since the perimeter and diametefldf) both decay at a rate 6f ™, we establish the bound th\afT(n) f(z)dz| <
4-"CM,, for some constant’. Hence,C'M,, is an upper-bound fo{rfT f(2)dz|, and since)(z) — 0 asz — zo,
M,, — 0 as desired.

Now let us see what happens if we don't know tlias differentiable. Using only continuity, we can approxi-
matef(z) by f(z0) + ¥ (z)(z — 20). Defining M,, as before, we can still bound our integral Gy\/,,. We want to
say that/,, tends to0, butlim. ., ¢ (z) = lim._,., Z2=LE) which may not exist ff is not differentiable (and
certainly may not tend to zero). Thus, this approach fails.

We could also try the expressigitz) = f(z0) + ¥ (=), and then)(z) — 0 asz — zo. Unfortunately, without
the factor of(z — z), our bound on [, f(z)dz| will simply be perimT™) - M,, = 2-"C'M,,. Thus, our bound
for | [ f(2)dz| is 4"27"CM,, = 2"CM,. Even thoughM/,, tends to O, the factor af* may overwhelm it, so
this approach fails. From these attempts, it seems thatikigawat f was differentiable was a fairly important step

in the proof.

HW: Due Monday October 5: Chapter 2, Page 64: #1, #8. Also do: Rapter 2: (Problems from me): (#1)
In the proof of Liouville’s theorem we assumedf was bounded. Is it possible to remove that assumption? In
other words, is it enough to assume thatf(z)| < g(z) for some real-valued, non-decreasing functioy? If
yes, how fast can we leff grow? (#2) a) Find all z where the function f(z) = 1/(1 + z*) is not holomorphic;
b) Let a, b, ¢, and d be integers such thatad — bc = 1. Find all z where the function g(z) = (az + b)/(cz + d)
is not holomorphic. (#3) Compute the power series expansioof f(z) = 1/(1 — z) about the point z = 1/2
(it might help to do the next problem first, or to write 1—z as1/2—(z—1/2)). (#4) Do Chapter 1, Page 29, #18.

11



3 Math 372: Homework #3: Carlos Dominguez, Carson Eisenactavid Gold

HW: Due Monday October 5: Chapter 2, Page 64: #1, #8. Also do: Rapter 2: (Problems from me): (#1)
In the proof of Liouville’s theorem we assumedf was bounded. Is it possible to remove that assumption? In
other words, is it enough to assume thaff(z)| < g(z) for some real-valued, non-decreasing functiory? If
yes, how fast can we leff grow? (#2) a) Find all = where the function f(z) = 1/(1 + z*) is not holomorphic;
b) Let a, b, ¢, and d be integers such thatad — bc = 1. Find all z where the function g(z) = (az + b)/(cz + d)
is not holomorphic. (#3) Compute the power series expansioof f(z) = 1/(1 — z) about the point z = 1/2
(it might help to do the next problem first, or to write 1—2z as1/2—(z—1/2)). (#4) Do Chapter 1, Page 29, #18.

1. Lety; denote the straight line along the real line from G0y, denote the eighth of a circle froR to Re'7,
and~s denote the line fronke’ to 0. Then by Cauchy’s theorem,

.2
/ e * dz=0.
Y1+72+73

_ 2 R _(piT/Ap2
—/ e ” dz:/ e (€T gim/4 gy
Y3 0
R
:em/4/ e~ gt
0

] R
— ¢/t / cos (—t?)dt + isin (—t?) dt
0

We can calculate

‘ R
S / cos (t?)dt — isin (t*) dt
0

So we can calculate the Fresnel integrals by calculaﬁwrgg‘;72 e~ dz, taking R — oo, dividing by ¢?/4,
and looking at the real and negative imaginary parts. Fiessiow the integral ovey, goes to zero:

2 7T/4 2 210 :
/ e dz / e iR d
Y2

0
/4 )
< R/ 6_R cos 260 do
0

w/4—1/Rlog R /4
_ R/ €_R2 cos 260 do + R/ €_R2 cos 260 do
0 w/4—1/Rlog R

™ 1 —R2cos(1— 2 > 1
<R _ 2 Rlog R R
= (4 RlogR) ¢ T Rlog R

™ —R2? sin(#> 1
< _R Rlog R
— 4 ¢ + log R

The @ term goes to zero aR goes to infinity. So we need to show that the first term goesrio. Adote
thatsinz > x/2 for positive z sufficiently close to 0, sincein0 = 0 and% sinz > 1/2 for sufficiently

12



smallx. So for sufficiently largeR the first term is less than or equal to

™ —R2. L _ ™ __R_
T Re B Riogr — L8R log R |

4

which goes to zero aB goes to infinity. So, a& — oo, the contribution fromy, goes to zero. And we know
that asRkR — oo, fOR e dy = V7 /2. So, finally,

el a8 ]
/Ocos(t )dt — isin (t%) dt = 2 ViRiiviz

_ Ve Ver

AR Sl

4 4
as desired.
. Sincex € R, f is holomorphic in an open circle of radidscentered atr, 0 < ¢ < 1. And by Cauchy’s
inequality,
!
(1 < Pllflle

£ @) < =g

Case 1 > 0. Forsome < e < 1,
2] < |z + €]

thus,
|f(2)] < AL+ |z +€|)" < A1+ €+ |z[)"

by both the given and the triangle inequality. And in Caushgéquality R is just. So by combining results
from above

|f(")(;v)| < n!|[fllc
o
< SRt etlaly
< %(14‘64"1“4‘6’1“)"
< 0l @D
Now let A(nl)
An =2 (1 gy
thus,

F (@)] < An(1 + |2)".

Case 2n < 0. Forsome (< € < 1,
€|z —z| > |z - 2]

by the reverse triangle inequality. When we rearrange thguality we see that

2] = [a| = [e] =[] +

13



Sincen is negative, our goal is to minimize (fizt) in order to get an upper bound. Now, by combining our
result above with the Cauchy inequality we get that:

| |
@) < S ARG
|
< 280 et o] — elaly
An!
< 6—Z(l —)"(1 + |z|)". 3.2)
Now let Aln]
A, = (:') (1— )
€
thus,
F™ ()] < An(1+ 2],
g.e.d.

1. In the proof of Liouville’s theorem, we had that

=

' (20)] <

whereB was an upper bound fgf. It only matters thaf3 is an upper bound fof in a disc of radiusk about
2o, however. LetBg be the smallest upper bound férin a disc of radiusk aboutz,. Liouville’s theorem
still holds if B — oo as long asBr/R — 0 for every choice ofg. Alternatively, we just need to grow
slower than linear; sayf(z)| is less tharC|z|!~¢ or C|z|/ log |z| or anything like this (for those who have
seen little-oh notationf(z) = o(z) suffices).

2. (@) fis holomorphic wherever its derivative exists:

423
! e
F(z) = 1+ 24
That is, wheneveg* # —1. This givesz = /™4, 37/ ¢57/4 ande™™/4, or @ + @z —@ + @z
—? - @z and@ - @z
(b) Thead — bc = 1 condition preventg from being a mostly-constant function with an undefined ®alu
atz = —d/c. (Thatis, ifad — bc = 0, thena/c = b/d, and so the function would simply collapse to
the value ofa/c.) So
cz+d)a — (az + b)c 1
g = Erda—(eztbe 2
(cz+d) (cz+d)

The function is then not holomorphic at= —d/c.

14



3. Just use the geometric series formula:

1 1
1—2z 1/2—(2-1/2)
B 2

C1-2(2-1/2)

=> 2tz —1/2)".
n=0
4. Letf(z) =) o2 yanz". Then

F(2) = an(zo0+ (2 — 20)"
n=0

nOOO m=0 .
- mzzjo(z — )™ (;nan <”>zg—m>

where R is the radius of convergence of the original poweeséor f and second limit is evaluated by noting
1< /(") < nm/™andlim, . n™™ = 1. Since the inner sum has the same radius of convergence as

the original sumg still lies in the disc of convergence in the inner sum; herictha coefficients of: — 2,
converge, and has a power series expansion abgut

Homework 4: Due Monday, October 12 (but no penalty if you handt in on Wednesday October 14): Chapter
3, Page 103: #1, #2, #5 (this is related to the Fourier transfim of the Cauchy density), #15d, #17a (hard).
Additional: Let f(z) => > .a,z"andg(z) => . _,b,2™ be the Laurent expansions for two functions
holomorphic everywhere except possibly at = 0. a) Find the residues off(z) and ¢g(z) at z = 0; b) Find the
residue of f(z) + g(z) at z = 0; c) Find the residue of f(z)g(z) at z = 0; d) Find the residue of f(z)/g(z) at

z=0.
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4 Math 372: Homework #4: Due Friday, October 12, 2015: Pham,&nsen, Kolajlu

HW: Due Due Monday, October 12 (but no penalty if you hand it inon Wednesday October 14): Chapter
3, Page 103: #1, #2, #5 (this is related to the Fourier transfim of the Cauchy density), #15d, #17a (hard).
Additional: Let f(z) =Y 77 .a,z"andg(z) = °__,b,2™ be the Laurent expansions for two functions
holomorphic everywhere except possibly at = 0. a) Find the residues off(z) and g(z) at z = 0; b) Find the
residue of f(z) + g(z) at z = 0; ¢) Find the residue of f(z)g(z) at z = 0; d) Find the residue of f(z)/g(z) at

z=0.

4.1 Chapter 3, Exercise 1

iTZ —1
—e

Exercise 4.1.Using Euler’s formulasin 7z = % show that the complex zeros s 7z are exactly the
integers, and that they are each of order 1. Calulate thed@siof—— atz = n € Z.

sinmz

Solution: To show that the complex zeros«fi 7z are exactly the integers, we will show trﬁaﬁ%ﬂo =0
if and only if 2y € Z. _ .
First prove the forward direction. We see that"5<—— = 0 gives

im0 — g7im20 (4.2)
Sincezy = x + iy with z,y € R, ‘ '
e ™ = 7MY, 4.2)
For complex numbers to be equivalent, their magnitudes beigte same. Thus,
e” ™ =¢e". (4.3)

This implies that-7y = 7y, soy = 0. The angles corresponding to Equafion 4.2 must be congmedtilo2r as
well. Thus,
mx = —mx mod 2, (4.4)

which meansrz = 0 or 7. So we have
2mx  mod 27 = 0, (4.5)

which implies that is an integer. Thus € Z. Sincey = 0, we havezy = z, implying zy € Z.
To prove the backward direction, considgre Z for z; even,

‘ iz _ g—inz
sinmwzy = 1 122,
= 5= 0. (4.6)
Similarly for zy odd,
. iz _ g—imz
STy = %
_ —1; Lo (4.7)

Thussin 7z = 0 if and only if zy € Z. So the zeros aofin 7z are exactly the integers.
Next we must show that each zero has order 1. We refer to Timebrein Stein and Shakarchi.
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Theorem 4.2. Suppose that f is holomorphic in a connected opeifiséias a zero at a pointy € €2, and does not
vanish identically ir®2. Then there exists a neighborhobdc (2 of =y, a non-vanishing holomorphic function g on
U, and a unique positive integer n such thdt) = (z — z0)"g(z) forall z € U.

Sincesin 7z is analytic, take its Taylor series abayt We add zero to write asz — zg + zo. Using properties
of the sine function, we claim

sinmz = sin7w(z 4 20 — 29) = sinm(z — 29) cos w2y + cos (2 — zp) sin 7wzp. (4.8)

Note this statement does require proof, but will follow fratandard properties of the exponential function (or
from analytic continuation). The reason some work needg tiddme is that — 2y heed not be real, but the relation
above does hold whenis real. What we are trying to do is understand the behavidhefunction near, from
knowledge neab (asz — zg is close to zero). This is a common trick, but of course whaktenahis tractable is
that we have the angle addition formula for sine.

Whenz, is an integer, we always hasin 7z = 0. If z is odd thencos 7z is -1 while if zy is even it is 1.
Thus for oddz,

: 7T w3 0
SH”TZ:—ﬁ(z—zo)l+§(Z—ZO)3—§(Z—ZO)5+M (4.9)
and for evenrg, , .
: ™ 7T T
sinmz = F(Z —z)t - g(z —20)% + y(z — )’ — - (4.10)

We thus see that all zeros are simple.
We now turn to finding the residue at= n for 1/ sin 7z. From our Taylor expansion above, we have
1 1 1 1
= = (4.11)

sinmz sinm(z —n)cosmn costnsinm(z —n)’

The problem is now solved by using the Taylor expansion of sind the geometric series. We hawe mn =
(=1)", so

L _ 1

sin 7z W(Z—Zo)—%ﬂ?’(z—zo)g’—k---
—1) 1

( n
m(z —20) 1= (g72(z — 20)% + -+ -)
_ (=1)" 1 1 2
= m<1+<gﬂ'2(z—z0)2+...>+<§ﬂ.2(z_z0)2+,..> _|_>

Note that each term in parentheses in the last line is dleigipp (» — z0)?, and thushoneof these will contribute to
the residue, which is simplf—1)" /7.

(4.12)

4.2 Chapter 3, Exercise 2

Exercise 4.3.Evaluate the integral

/°° dx
oo L+t
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Solution: Consider the functiorf(z) = 1+124. This function has poles at

1/f(2)
142 =
s = (i(Ftn3), (4.13)
Consider the contour of the semicircle in the upper half @lahradiusR, denotedy. Denote the part of the

contour along the real ling, and the part along the asg. Note that two of the poles of(z) lie inside this contour.
Thus by Cauchy’s residue theorem,

1 ) )
— j{ fdz = ReSf(e”r/4) + ReSf(eZ37r/4). (4.14)
.

21

To find the residues, write

1 1 1 1 1
zZ) = - T 37 -5 T N
/) 14 2 <2—624><z—el%><z—el%><z—e’%>

Thus
4 1 1 1
Resf(e“r/‘l) = < - T -37r> < - T <57\'> < T <77\'>
et — et elr —ett et — et
_j3m 1 1 1
= e 4 —
(i) (5) (+5)
142
= — 4.15
Wi (4.15)
and similarly
Resp(ets) = e™ <1+z‘> <1—i> <2>
1—1
= 4.16
Wi (4.16)
Thus we have
1 1+7 1—2
— d = - 4+ —
) S v R
B )
= e
T
fdz = —. (4.17)
foe = %
Now, note that
j{fdz:jé fdz = fdz+/ fdz. (4.18)
Y Y1+72 71 Y2

18



Observe that

L
dz = —d
/y1f2 /_R1+$4w

and that
S|
fdz = / ——dx
/Y2 —Rl+z4
S|
/fdz = ‘/ 4dw‘
2 _R1—|—Z
< -
- ggy}; 1—|—z4 mh
1
ot
Thus
lim /fdz < lim i =0
R—o0 72 —>ooR4—1 '

Hence, ask — oo, fy2 fdz — 0. Therefore af® — oo we get our final result;

R
1
lim ——dr + hm / fdz = T
+x 72

R—oo J_p 1 V2
> 1 s
—dr = —.
/_ool+ac4 V2

4.3 Chapter 3, Exercise 5

Exercise 4.4.Use contour integration to show thg{+°° ¢ 2mid = Z(1 + 27|¢])e~2I¢l for all ¢ real.

%)
—2miz€ —2miz€

Solution: Let f(z) = 1+22) (zfl.)Q(Z_Z.P. We see thaf (z) has poles of orde? atz = +i. Thus

res,, f(z) = lim i(Z — 20)2f(2).

zZ—2z0 A2

Alternatively, we could write our function as

__9(2)
f(Z) - (Z o 20)27
and then we need only compute the coefficient ofihez, term of g.
Now consider the residue a3 = i:

res,,—;f(z) = lim i(e‘zm’zg(z +4)72)

z2—i dz

= lim(—2mie ™% (2 + i) 72 — 272 (2 4 )73

zZ—1

1 1
= imfe%g — Zie27r5.
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Forzy = —i, we have:

od oy .
reSZO:_if(z) = )];_}rnl 5(6 27TZZE(Z _ Z) 2)
= lim (—27mife 2" (2 — )72 — 272 (5 — )73
z——1
1 1
- §m'ge—2“f + Zz’e—z’fﬁ . (4.25)

Now let us first consider the case wher: 0. We will use the contouy of a semicircle oriented counterclockwise
in the upper half-plane with radius. Call the portion ofy along the real line;; and the arc portion». Note that
there is a pole inside at zy = i. By the residue formula, we have that

1 1 1
/f(z)dz = 2mi <—m’§e27r5 - —ie27rg> = —m2ee?™  Z e, (4.26)
., 2 1 2
We also know that .
/ f(z)dz = lim / f(z)dz. (4.27)
— oo R—00 "

Along s, z = Re? anddz = iRe?df, wherez = Rcos 6 + iR sin§. Thus

™ e—27ri§Rei9iR€i9
2

Then it follows that

0 e—2m’§R cos 9627r§R sin GiReiG
< .
/ﬂy2 flz)dz| < /0 (1= R2c)2 do
™ —27m|&|Rsin 6
< / Fie— do
o | (1-R?)?
T R TR
do = : 4.29
< [ mmmr - m ey (429
Taking the limit ask goes to infinity, we have
TR
i < lim —= =0. .
A | [ TP < i gy =0 (4.30)
Thus
lim / f(z)dz=0. (4.32)
R—o0 o

Solimp_, e fV f(2) = limp_ e f71 f(2). It thus follows from Equatioh 4.26 that

400 e—27rix§ 2, o 1 ome
— T T
/_ (1+x2)2dx = —n“e +§7T€

- g (1 4 27f¢]) e~ 27l (4.32)
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Now consider¢ > 0. We will use the contouty of a semicircle oriented counterclockwise in the lower half
plane with radiusk. Call the portion ofy along the real liney; and the arc portion,. Note that there is a pole
inside~ at zo = —i. By the residue formula, we have that

1 1 1
/f(z)dz = 2mi <—m’£e‘2”§ + —ie_27r5> = —q2¢e 2™ _ Zpe 27, (4.33)
, 2 1 2
Also note that,
+o00
f(x)dx = — lim / f(z)dz. (4.34)
oo R—o0 J,

Along 7, z = Re? anddz = iRe?df, wherez = Rcos @ + iRsin 6. Thus,

0 _—2mwi§Rcos O 27r£Rsin6'R 10
€ € 11e
: f(z)dz :/ 1= ey de. (4.35)
2

/{2 f(z)dz

Accordingly,

< Lﬁﬂdwz

0 ReZW\ﬂRSinB
S /_7r (1 — R2¢i20)2 df
0
R
< -
< | la=rm®
TR
Taking the limit ask goes to infinity, we have
TR
li dz| < lim ———— =0. 4.37
am || fEde| < lim (4.37)
And thus,
Rh—?;o/ f(z)dz=0. (4.38)
72
Solimp_, s fV f(2) = limp_e f71 f(2). It thus follows from Equatioh 4.33 that
+o0 e—2m’m§ 1
R — | _r2¢,2mE _ —27€
/_OO (1+w2)2dl’ < m€e 271'6 >
= 5 (1+2nfgl)e > (4.39)
Thus for all¢ real,
+o00 e—27ri:c§ T —onle|
| trapte=garamee (449
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4.4 Chapter 3 Exercise 15d

[ For any entire functiory, let's consider the function/(®). It is an entire function and furthermore we have the
real part off is bounded so:
u—l—iv‘ _

ef = e ] < 00

Hencee’ is bounded and therefore, by Louisville’s Theorerhjs constant. It then follows that is constant .
Alternatively, we could argue as follows. We are told thd peat of f is bounded. Let’'s assume that the real

part is always at mosB — 1 in absolute value. Then if we considgtz) = 1/(B — f(z)) we have|g(z)| < 1.

To see this, note the real part Bf— f(z) is at least 1. We again have constructed a bounded, enticidonpand

again by Liouville’s theorem we can conclugéand hencef) is constant.

4.5 Chapter 3 Exercise 17a

Exercise 4.5.Let f be non-constant and holomorphic in an open set containiegctbsed unit disc. Show that if
|f(2)] = 1 whenevetz| = 1, then the image of contains the unit disc.

Solution: Supposef(z) does not have a zero in the unit didk, Then1/f(z) is holomorphic inD. Note that
since|f(z)| = 1 whenevelz| =1, [1/f(z)| = 1/|f(z)| = 1 wheneverz| = 1 as well. Butf(z) is holomorphic
in D, implying |f(z)| < 1in D by the maximum modulus principle sin¢g(z)| = 1 on the boundary ob. We
find 1 < |f(z)| < 1in the unit disk, which implies that our function is constastits modulus is constant (we
would like to use Exercise 15d, but that requires our fumctmbe entire; fortunately we can obtain constancy by
the Open Mapping Theorem), contradicting the assumptiathytis not constant!

Letwy € D. Consider the constant functigiiz) = —wy. On the unit circle)f(2)| = 1 > |wo| = |g(z)| for
all |z| = 1. Thus by Rouc#'s theorem,f(z) and f(z) + g(z) have the same number of zeroes inside the unit circle
(ie, inD). But we have shown that(z) has at least one zero, thus for some0 = f(zw) + 9(zw) = f(2w) — wo.
Thus for allwy € D, there exists,, such thatf(z,,) = wy. Thus the image of (z) contains the unit disd]

4.6 Additional Problem 1

E Let: - -
flz)= Z an 2" g(z) = Z by, 2™
n=-—>5 m=—2
1. We have:
resof =a_1 respg =b_
2. We have

-3 o)
f(z)+g(z) = Z anz" + Z (an + bp)2"

n=-—5 n=-—2

Soreso(f +g) = a—1 +b_.

IHint from Professor Miller
2Hint from Professor Miller

22



3. Wehave-1=-5+4+4=-44+3=-34+2=-24+1=-14+0=0—-1=1-2so0:

reso(fg) =a_s5by+a_4bs+a_sby+a_oby +a_1by+apb_1+ab_y

4. We have (assuminfg # 0):

f(z) D5 0n 2"

9(2) D bm 2™

1Y e pan—32"

23y by 2™

bgz 1— (=232 bypozm) (4.41)
- b_o Lum=1"m—2

As z — 0 the final quantity in parentheses tends to zero, and thus wexgzand using the geometric series
formula. We only care about the constant term of this fractas it is multiplied byl /b_,z and thus only the
constant term contributes to the pole. This is a very usdjseovation. It means that, when we expand with
the geometric series, we can drop many terms, as we only ndextp terms that contribute to the constant
term. Remember, we are not trying to find the Taylor expansfdhis function, but rather just one particular
term. We can thus write:

f(z)

9(2)

So:

HW #5: Due Monday, October 26: Chapter 5: Page 155: #6, #7, #@Xtra credit: what is the combinatorial
significance of this problem?). Chapter 3: Page 104: #10. Adiibnal Problems: (1) Find all poles of the
function f(z) = 1/(1 — 22)* and find the residues at the poles. (2) Consider the map(z) = (z —i)/(z + i).
Show that this is a 1-to-1 and onto map from the upper half plae (all z = x + iy with ¢ > 0) to the unit disk.
(3) Calculate the Weierstrass product forcos(7z) (this is also problem #10b in Chapter 5, and the answer is
listed there), and for tan(7z).
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5 Math 372: Homework #5: Due Monday October 26: Pegado, Vu

HW #5: Due Monday October 26: Chapter 5: Page 155: #6, #7, #9Xtra credit: what is the combinatorial
significance of this problem?). Chapter 3: Page 104. #10. Adlional Problems: (1) Find all poles of the
function f(z) = 1/(1 — 22)* and find the residues at the poles. (2) Consider the map(z) = (z —i)/(z + i).
Show that this is a 1-to-1 and onto map from the upper half plare (all z = x + iy with ¢ > 0) to the unit disk.
(3) Calculate the Weierstrass product forcos(7z) (this is also problem #10b in Chapter 5, and the answer is
listed there), and for tan(7z).

6. Prove Wallis’s product formula

T 2-2 4-4 2m - 2m

2 1-3 3.5 2m—1)-2m+1) "

[Hint: Use the product formula fosin z at z = 7/2.]

6. We know (from p. 142) the product formula for the sine funatie

sin:rz) T (1_2_22)

n=1

Letz = 1/2. Then,

Lo TI(-2) - ST (- )
D% - (M) 6

But this implies that

g: ﬁ ((271 +(12)n()22n— 1))’

proving the identity.

7. Establish the following properties of infinite products.
(@ Show thatif|a,|? converges, and,, # —1, then the producf (1 + a,,) converges
to a non-zero limit if and only iEa,, converges.
(b) Find an example of a sequence of complex numper$ such thatXa,, converges
but[[(1 + a,) diverges.
(c) Also find an example such thgft(1 + a,,) converges an&a,, diverges.
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7. a) Letd_ |a,|? converge withu; # —1.

(<) First assumé_ a,, converges to a nonzero limit. Without loss of generality weynassume that each
a,, satisfiesla,| < 1/2; this is clearly true in the limit (as the sum converges, tmands must tend to zero).
We assume this to facilitate expanding with logarithms. <iaer the producf[(1 + a,). Taking logs, we see
log (TI(1 +an)) = > log(1 + ay,). Settingz = —a,, and using the Taylor expansion

2 2 2t

log(l1+x) = —w+7—§+Z—'~,

we see that ) X
aTL aTL
o (T + a0)) = 3 (= G+ 5 =),

In general, notice that

k k
It R YL
k=2 k=2
or
2 2 ? 2 2 2
—lz|*(1 + |x| + |z +...)§‘—7+§—--- <lz|*(T+ |z| + |z|*+...).

If a sum > = converges to a nonzero limit, we know that converges to zero; thus we may assume (without

changing convergence) that < % Thus using the geometric expansion, we seelthatz| + [z|? +--- = 1+|m|
Becauseéz| < i, we have thatl_lw < 2. Hence we have that
2 3
X X
Oz < |[—= + = — o < 2022
o < |-G+ 5 -] <2
Recall that we were looking &tg ([](1+a,)) =3 (an — % + % —-++). Since}_ a,, converges, we know

eventually we must havg.,| < 1/2, so we can assume,,| < 1/2 without changing convergence, and thus use
the simplification involving the geometric series expangieveloped in the previous paragraph. Thus we write

log (H(l + ap))

Al
— —
) Q
3 S
N
N =}
sk
- +
N—
)
I s
|
Y
3
+
[\&)
=
3
jo

(5.2)

A QUICK WORD OF WARNING. THE ABOVE EQUATION, AND THE ONES BELO W, ARE A LIT-
TLE ODD. REMEMBER THAT OUR SEQUENCE NEED NOT BE JUST REAL NUMB ERS. AS SUCH,
WE MUST BE CAREFUL WITH THE DEFINITION OF ABSOLUTE VALUE. WE A BUSE NOTATION
A BIT — WHEN WE WRITE a < b+ ¢, THIS MEANS THE DESIRED RELATION IS TRUE UP TO A
LINEAR RESCALING. REALLY WHAT WE MEAN IS a = b UP TO AN ERROR AT MOST |c¢|. WE
REALLY SHOULD WRITE THINGS LIKE  |a — b < ¢, BUT IN A HOPEFULLY OBVIOUS ABUSE OF
NOTATION....

Since by assumption bofht a,, and>" |a,,|? converge, we must have that a,, + 2 |a,|? is finite, call it L.
Thuslog (TT(1 + a,)) < L, so[](1 + ay,) < e, which is again finite. Thus the product converges.
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(=) Nextassumg[(1-+a,,) converges to a nonzero limit. Sinf§(1+a,,) is converging to a nonzero limit, the
terms in the product must be convergind o we must havg,, | approaching zero and we can assumg < 1/2
without affecting convergence. We now write:

log ([[(1+an) = Z(an—%“r%"—---)

vV
—
3
B
N |3
s
B
w
Tw
N
v
—
S

3

|
=
3
o

|
=
3
T

|
S~—

(5.3)
As before, we substitute in using the geometric series esipan
log ([T +an) = > (an—lanl* —lanf> =)
- Z (an = lan*(1 + |an| + |an|® +--+))
> S (a0 - 2anl?) = Yan -2 fal2
(5.4)

Thus we see thabg ([](1 + an)) + 23 |an|* > 3 a,. Since[](1 + a,) and}_ |a,|* converge, we must
have thatog ([](1 + a,)) + 2 |a,|* are both finite. Thus our sui a,, is bounded by finite terms, and so the
sum must also be finite itself. Hence the shu,, must converge to a finite limit.

7 )

b) Let{a,} = {%, %, 50 75+~ }- The sum_ a, converges by the alternating series test, since the absolut
value of the terms approaches zero (one can show this by shdhat first the odd terms tend to zero in absolute
value and then that the even terms do as well).

Consider now the produgf (1 + an). For an arbitrary integelv, look at the2/N-th partial product:

[ (ew) = (o)) 0 ) (i)
< (5 )
< () ) = () () o

Thus when we evaluate at an even t&xm, we see that

(5.5)

2N
lim (1+a,)= lim (2N +1) = oo,

2N —o0 2N — 00
n=1

so the product diverges. Hence the product diverges at evers iand thus cannot converge in general.
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This was found by setting,,,1 = —ag, = b,, and then requiring’1 + b,)(1 — b,) = "T“ (we know this
product diverges). After some algebra we bjet= —1/n S0b,, = i/\/n.

c) For a trivial example, lefa, } = {1,—1,1,—1,... }. The sumy_ a,, does not converge because the limit of
the Nth partial sum asV tends to infinity does not converge; it alternates betweand1. However, the product
will clearly converge:

[[en=0+Da -1+ -1)- = D)(©0)(1)(0) =0.

For an example in which the sum diverges but the product cgaseo a nonzero limit, consider the sequence
{anlagn—1 = 1/v/n, a9, = —1/(1 + /n)}>2 . Grouping the pair&@n and2n — 1 together, we see that

Zam:Z(% 1+f> 3

n=1 n=1

We'll show that this series diverges. Notice that for every n
o0 o0
1 1
)3 =D
—in+yn 2n

n=1
and since the series on the RHS diverges, by comparisorstesipes the series on the LHS. $0a,, diverges.
However, grouping again the even and odd pair terms, for évene have

N Ny 1 1
(14 ap) = 1+ —)(1-
AL e = 1 70~y
B ]IV—/[Q( 1 1 1 )
TR~ Uns1™ Vaen
W —vatvati-1 ¢
= H(l ) H 1=
n=1 \/ﬁ—’_n n=1
and for odd N,
N 1
1+apm) =14+—
TLa+an=0+75)
which converges to 1 a¥ — oo. Thus,
H(l—i—an) =
n=1
Hence{a,} is the desired sequence. O
9. Prove that if|z| < 1, then
2 ad ok . 1
(14 2)(1+ 22 (1 + 29 (1 + 2% kHO<1+z )_1_z.
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9. Consider the produdtl + z)(1 + 22)(1 + 2*)(1 + 2%) ---. Suppose we tried to multiply this product out:
to get one term, we would need to choose eitherltbethe power ofz in each term to multiply by. For example,
one term we could get out is simpty where we would choose thein the first term and thé in every succeeding
term; another way to say this is to write= z x 1 x 1 x ---. To write out the entire product, we would have to
make sure we evaluated every possible choice of ones andpoive

But this isn’t so bad if we think of choosing terms as countimg@inary. In binary counting, a number is written
entirely in terms of Os and 1s. For any given number, each digresented a choice between the digit 0 and the
digit 1. If we think of selecting the power aof in a term as pickingl for a given digit in binary counting, and
selecting thd in a term as picking for a given digit in binary, we can identify a bijective caspondence between
integers written in binary and products from our term (whke £xception thadt00000000 - - - = 1 in our product).
For example, the binary numb@é1l = ---000101 = 22 x 1 4+ 2! x 0+ 2% x 1 = 5, and if choose the terms
(2)(1)(2*)(1)(1) - - -, we see that we get the product

To evaluate our product we must sum over all such possibleesoSince all possible binary numbers together
yield precisely the nonnegative integers, this bijectivgespondence importantly tells us that the sum over al suc

products will be the sum over all nonnegative powers of z, @rz + 22 + 23 + .... Thus we havé1l + z)(1 +
2) 1+ 21 +2%) - =14+ 2422+ 23 +.... Since|z| < 1, we can use the geometric expansion ¢d write
(14 2)(1422) (142 (1+28) - = £L, as desired.

Significance for combinatorics: notice the way in which oalution invokes combinatorics (such as seeing
how many ways we can choose our terms to make a product).

Alternatively, we can truncate the product and multiplyloy: z. Note that(1 — z)(1 + z) = (1 — 22), then
(1—-2%)(1+2%) =(1-2%,andso

1—2)1+2)(1+22)1+2Y---(1 +z2k) — -2

as|z| < 1 the latter tends to 1, and thus

k+1
2

1
1 142514+ 2Y (1422 = - - .
A2+ 420 (1+27) = 7= - —3 = 7

Chapter 3

10. Show that ifa > 0, then

/‘X’ log = p ™
———dx = —loga.
0 22+ a? 2a ®

[Hint: Use the contour in Figure 10.]

10. We will first find the residue at: and then integrate over the given contour. [fét) = logz \where we

z2+a2 1

take the branch cut of the logarithm alongb for all b € [0, c0). Furthermoreja is a zero of ordet. Finding the
residue ata, we have

logia loga =

)= —— = -t

2ia 2ia 2a

resiof = lim (z —m)l(’i _ i (Jo8#
z—ia z2 + a? z—ia 2 + 1a
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Label the contours from the portion on the positive real gxisthe larger arey, the portion on the negative real
axis~ys, and the smaller arg,. Chooses < min{a,1}a, R > max{a,1}. Parametrizey; with z(t) = ¢ from e
to R, 72 with z(t) = Re' from 0 to 7, 3 with 2(¢) = ¢ from —R to —¢, and~y, with z(t) = ee’ from 7 to 0.
Integrating over the, and taking absolute values, we have

™ log Re" it
= ————— Rie"dt
: /0 Tetp+ a2 ‘

™| log Re" it
</0 R262it+a2RZ€Z

log =z
e 224 a?

dt

™| log Re'
~ )y | R2e2it 1 o2
[T log R+t
)y | R2e%i + @2
T log R + |it]
< —=——— Rdt
—/0 |R2e2it| + |a2|
K K
:/ logR+‘tz‘dt - / logR|—i;|tdt < 7T1052;]%‘—1—2‘77
0 |ReZt| 4+ 5 0o R4 R+ 5

Rdt

Rdt

sincet,log R > 0. SinceR — oo, log R+ 7, R + ], oo, by L'Hopital,

. logR+m ) 1/R ) 1
hm 72‘ = hm W = hm W =0.
R—o0 R_i_% R—)ool_ﬁ R—)ooR_?

Thus, askR — oo, the contribution along» vanishes td. Similarly, for~4, we have

log z / log et ot
L, 22+ a? a2 (ee)? + (ee®)2 ¥ a2°

logee
= | et 1 a2 €e
B 01 logee'
— )| e2edit 1 g2
B Ol —loge +it
— | e2edit 1 g2

0o .

< / loge + |it| cdt

- [P 1]

0 —loge+1t 0—loge+t logetn
S/ﬂ mdt : / mdt S Tt
€ €

dt

edt

edt

sincet, —log e > 0. Sincee — 0, — loge + m, € + ‘“—j‘ — o0, by L'Hopital,

—1 —1 —1
lim 08T, TV g Tl g,
e—0 E—I-M e—)Ol_‘a_2| e—)Oe_m
€ € €
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Thus, as — 0, the contribution along, also vanishes t0. For the integral ovet, v3, we have

log =z R Jogt ¢ logs
/ %dZZ/ %d’”/ s
ity 20 TG e °ta _Rp $*+a
Letting s = —t, we have

1 B ogt € log—t
/ 20fz2dz:/ 7752? 2dt+/ = 7(5))%—1— S(—1)dt
M+ys ? a € a R\ a
R R
logt log —t
= ————dt ———dt
/5 t2 + a? +/E t2 + a?
B Nogt Rlogt + i
— idt—i— Mdt
. t2_|_a2 . t2_|_a2

R logt Y| R logt t|"
:2/; mdt“‘lﬂ/ﬁj mdtZQ/ﬁr 2+ 2dt+—arctana

Thus we have, aB — co, e — 0 and ases;, f = ‘82 + 7=, we have

2ia
R ogt t|® 1
lim (2/ o8 dt —|— — arctan = 2mi < oga i)
€ € (1 2
R ogt R 1 2
lim <2 / 20g dt> lim <— arctan > Toea + i
R—00,e—0 e t“+a R—00,e—0
2

R—00,e—0 t2—|— a a
a a
B ogt ] 2
lim 2/ o8l ) 4 T _Tlosa T
R—00,e—0 e t7+a a a a

R ogt 1
lim 2/ 08t ) = Tosd
R—00,e—0 . t2+a? a

> logt mloga
5 dt =
0 t?+4a? 2a

as desired. O

Additional Problems

1. Find all poles of the functiorf (z) = 1/(1 — 22)* and find the residues at the poles.

Letg(z) = 1/f(2) = (1 — 22)* = ((1 + 2)(1 — 2))*. We see that the zeros gfare+1, each with orden.

30



Hence, the residues are
1 AN . 1
resi(f) = lmm(;) R e

_ll—>16<d>3
(=

= lim ( 4)(=5)(— )( npaL
= lim "
_H1(1+z)7 Y
and
1 d\*! . 1
ves—1(f) = lim, 7=, (E) e+ D) g
o LAY
z»-16 \dz/) (z—1)
— lim (4)(5)(6)—
B (z—=1)7
g 220 =205
sl (217 =27 32
Thus we have found the desired residues. O
We sketch an alternative proof. We have
1 1
1@ = CoypETy
B 1 1
o (z-DA(z—-1+2)4
B 11 1
= (2_1)424 (1+ZT_1)4
B 11 -1 (z=1)2 (2-1)3 :
= (2_1)416<1 5 + 1 3 +-0 ) (5.6)

The difficulty is we have to expand the factor to the fourth powell enough to identify the coefficient 6f — 1)3.
A little algebra shows it i&%(z —1)3, and thus (remembering the factor 1/16) the residue isj6g82.

2. Consider the mag(z) = (z — i)/(z + 7). Show that this is a one-to-one and onto map from the uppér hal
plane (allz = = + iy with y > 0) to the unit disk.

2. First we'll show that the range gfis the unit disk. Writingz = x + iy wherex,y € R, y > 0, then we have

x+ (y—1)i
r+ (y+1)i

a2+ (y — 1)
2+ (y+1)2

[f(z +iy)| =
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and sincey > 0, \/22 + (y — 1)2 < /22 + (y + 1), f(= + iy) < 1, so the range of is the unit disk.
Now we’ll show that f is injective. Suppose fer, z, with imaginary part positivef (z1) = f(z2). Then

Z1 — ) zZ9 — 7
z21 41 - 2o +1
(1 —i)(z2+1) = (22 —i)(z1 +1)
219+ 21t — Zoyt+1 = z1z9 —z10+ 291+ 1
2i(z1 —2z2) = 0
z1 = 2o. (5.7)

Here’s another, faster way to do the algebra. We add zero:

Zl—i o Zg—i
z1+1 n 2041
z21+1— 21 B 294+1— 21
z1+1 N zo +1
U R (5.8)
21+ zo+1

it is clear that the only solution is when = z,.

Now we’ll show thatf is surjective. Given any € D, settingz = (w + 1)i/(1 — w), we see that

()i . .
f= T L et i
(tbi o . (w+1)i+ (1 —w)i

(1—w)

Now we’ll show thatz has positive imaginary part. Writing = z + iy with z, y € R, 22 + 32 < 1, we have

_Z,(ac+1) +iy =2y +i(l—y* —2?)
(-2 -y (I—2)2+y?
So the imaginary part is — (22 + y?) > 0, soz has positive imaginary part. O

3. Calculate the Weierstrass product fass(7z) (this is also problem 10b in Chapter 5, and the answer isdiste
there) and fortan(7z).

3. By the Euler formulas for sine and cosine, we see that
eiwz 4 e—iwz
2
ei%(eiﬂz + e—iwz)
21

(ezﬁr(z-i—%) _|_e—i7r(z—%))

21
eiﬂ(%—z) _ e—iﬂ(%—z)

. 1
= oF = sm(7r(§ —2))

cos(mz) =
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and since the zeros efn 7z occur only at the integers, the zeroscof 7z occur atm + % for all m € Z. Thus,

define the sequend@i,—1 = n + 3, as, = —(n + 3)}52,, which are precisely the zeros afs wz. Furthermore,
since the zeros of sine are of order 1, the zeros of cosindsreforder one. Thus we have, fog(z) = Z?Zl ZJ—J

grouping together the paifs: and2n — 1, the Weierstrauss product efs 7z is, up to a factor of"(*) for some
entire functionh,

710_:[0(1 - i)ehm(z) = g(l — ni l)(l _ _(nz+ l))n:ljl e
- E(l - (ngr %)2)6 rom1 hm (2)
- :0(1 — %)623"_1 hin(2)
Considering[ [ (1 — iy, we'll show this product converges. Note that
”i;% :ni; (2:02 +§:O:0(2n—1kl)2
Z’;% :1;(2”—1%1)2

so since the sum on the RHS is boundedq’ , % a convergent series, the series on the RHS converges as well
and as the convergence is absolute, the product converdpes. (Tip to the exponential of an entire function) the

Weierstrauss product @ebs 7z is T[> (1 — ﬁ).

Next, notice thatan(rz), has poles at odd integer multiples f and so by definition does not have a Weier-
strass product.

HW: Due Monday, November 2: (1) Evaluate [*_ cos(4z)dxz/(z* + 1). (2) Let U be conformally equivalent
to V and V conformally equivalent to W with functions f : U — V andg: V — W. Provego f (9 composed
with f) is a bijection. (3) The Riemann mapping theorem asserts thaf U and V' are simply connected
proper open subsets of the complex plane then they are confmally equivalent. Show that simply connected
is essential: find a bounded open sdt that is not simply connected and prove that it cannot be confonally
equivalent to the unit disk. (4) Chapter 8, Page 248: #4. (5) kapter 8: Page 248: #5. (6) Chapter 8: Page
251: #14.
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6 Math 372: Homework #6: Kung, Lin, Waters

HW: (1) Evaluate [~ cos(4z)dz/(z* + 1). (2) Let U be conformally equivalent to V' and V' conformally
equivalent to W with funct|ons f:U—=Vandg:V — W. Proveg o f (g composed withf) is a bijection.
(3) The Riemann mapping theorem asserts that it/ and V' are simply connected proper open subsets of the
complex plane then they are conformally equivalent. Show tht simply connected is essential: find a bounded
open setU that is not simply connected and prove that it cannot be confonally equivalent to the unit disk.
(4) Chapter 8, Page 248: #4. (5) Chapter 8: Page 248: #5. (6) &pter 8: Page 251: #14.

1. Evaluate [*_cos(4z)dz/(z* 4+ 1). Evaluate[ cos(4z)dx/(a* + 1)

First observe thatos(4z) = 3 (e'®+e~4"), sincee™ = cos(4z)+1isin(4x) ande™ 4" = cos(4x)—isin(4z).
We can rewrite this integral, then as

e’} COS(4$) 1 e’} e4im +e—4z’m 1 o] e4im [e%¢) e—4i:v
dr=- [ & "¢ _~ i £y
/_OO A1 2/_00 A1 2(/ i1 +/_oox4+1$>

and we can evaluate both halves separately.

For both halves, observe that the poles are located=at 1™, ei™, 1™ ¢i™, since those are the solutions to
z* +1 = 0. We can now choose a contour over which to integrate and applyesidue theorem. Our choice of
contour is motivated by the decay of the functions. We neemdotd in the upper half plane farxp(4iz) to decay,
and in the lower half plane farxp(—4iz) to decay.

For [ - x4+1dw consider the contouy; that traverses the semicircle of radidsn the upper half-plane and

the real axis, with standard orientiation. This contoull esiclose only the poles at= i i , SO it suffices to
find the residues at those two points in order to apply theluesiheorem.

The simplest way to compute the residues is to note that we kimple poles and we may writg(z) =
g(z)/h(z) with h(z) having simple zeros and, h holomorphic. Then the residue ¢f at a polez, is just
g(20)/h' (20). For us,g(z0) = exp(4izg), while b’ (z0) = 4z3.

At ei™ = Y2 1 ;Y2 the residue will be

exp(4iexp(mi/4)) _ exp(2i(v/2 + iv/2)) _ exp(—2v2 +i2v/2))
dexp(ir/4)3 dexp(3ir/4) —2V2+i2v2

We can compute this another way as well:

L iz e—2V2+2V2i e—2V2+2v2i
lim (2 —e1™)— dz = —— — 1 — = i~
Y <2 2*+1 (eZm — 617”)(@17” — eZm)(eZﬂ—Z — 617”) 2\/5(—1 + Z)
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At 1™ the residue will be
‘ s . iz e—2V2-2V2i e—2V2-2V2i
lim (z—-et™)g—do=—5—F——5——5 57 = <
z—>e%”i 2441 (ezm o ezm)(ezm o ezm)(ezm o ezm) 2\/5(1 + Z)
Thus, the countour integral over is equal to

6—2\/i+2\/iz‘ 6—2\/5—2\/52'
271

2v2(—1+1i) * 2v2(1 + 1)

Now let the radius R tend to infinity, and observe that theipordf gamma that is not on the real axis (i.e. the
semicircle of radius R) will make a zero contribution to theegral. In the upper half-plane, the integral is at most
the maximum value of the integrand on our contour times thgtleof the contour. Since the length of the contour
is TR, then, we have
ReRi

T
lim ———dz| =0
<L gy

4iz
lim / ———dz
R—00 /. semicircle % +1

(note we need?* — 1 and noteR* + 1 in the denominator, as the upper bound occurs when the deatoniis as
small as possible in absolute value; this happens whés negative, which occurs far = R exp(in/4)).
Only the portion of the contour integral that lies on the @a$ makes any non-zero contribution to the integral,

then, so
oo iz 6—2\/§+2\/§i 6—2\/5—2\/52‘
ozt 1 2V2(—1+1i)  2v2(1 +1)

As our denominator is non-zero and decays rapidly,@&mpd4iz) = cos(4z) + isin(4x), we see we may drop the
integral from the sine term. The reason is that this is an @uidly decaying function integrated over a symmetric
region, and thus it gives zero. We therefore find

® cosdx e 2V2H2V2 e2V2-2V2i
/ dxr = 2mi

2v/2(—1 4 1) * 2v/2(1 + )

o T+ 1

WE MAY STOP HERE! There is no need to evaluate the other contour, as it will sirgive us another
calculation of our desired integral. For completeness, weide how the calculation would go in the lower half
plane, but again, there is no need to do this!

For ffooo ij%d:n, we can repeat the same process, but we must use a differgnticoFor this functioni{%
won't vanish ask — oo for z in the upper half-plane, since4iz will have a large positive real component, but it
will vanish in the lower half-plane. Use the contowr consisting of the semicircle of radius R in the lower half-
plane and the real axif;is very important to note that we are traversing the reaisar the opposite orientation,

running fromoo to —oo. Now, with z restricted to the lower half-plane, our integrand will ageanish, so we have

e—4zz

lim dz =0,

4
R—00 /4, semi—circle # +1
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and we see that

—4diz —o0  ,—4ix 00 —4dix
e e e
Ny 25 0o TFF oo T

Our contoury; encloses the poles aip(%m') andexp(gm‘), so we need to find the residues at those two points.

At e3™  the residue will be

5. e—diz e—2V2+2V2i e—2V2+2v2i
lim (z - ezm) 1 =5 1, 5 3 -, 1 [N NS
z—)egm z* 4+ 1 (ezm o 617”)(617” o 627”)(617” o 617”) 2\/5(1 _ Z)

At ei™, the residue will be

;. e—diz e—2V2-2V2i e—2V2-2V2i
lim (z—e4d™) dz = —— —— IR — = .
z—>e%”i 24 +1 (ezm . ezm)(ezm o ezm)(ezm _ ezm) 2\/5(_1 _ Z)

The integral overy,, then, is equal to

6—2\/54-2\/5@' 6—2\/5—2\/2'
271 +
2v2(1 —i)  2v2(—1—1)

As R — o0, this equals the integral over the real line; however, rebenthat we are proceeding with the opposite
orientation, running fromx to —oo as we are using a semi-circle in the lower half plane, and wWeigaverse the
real line in the opposite orientation as usual. To fix this eegtore the correct orientation requires a minus sign,
and we find

00 —diz 6—2\/§+2\/§i 6—2\/5—2\@'
/ 1 dr = —2mi — + 5
ezt 41 2v/2(1 —i)  2v/2(—1—1)

We then argue as before, namely thab(—4ix) = cos(4x)—isin(4x), and the sine integral does not contribute
as it leads to an odd integral over a symmetric region. Aigalong these lines, we find the same answer as before.

2. Let U be conformally equivalent to V and V conformally equivalent to W with functions f : U — V
andg: V — W. Prove go f (g composed with f) is a bijection.

To prove that g fis a bijection, we need to show thabd is one-to-one and onto.

One-to-one: Consider an arbitrary, x5 in U and assume thato f(z1) = g o f(z2). We need to show that
x1 = xo. First observe that, since g is one-to-ope, f(x1) = g o f(x2) implies f(z1) = f(x2). Since fis also
one-to-one, we have thai = =5, and we are done.
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Onto: Consider an arbitrary € U. Sinceg is onto, there is some € V such thaty(v) = x. Sincef is also
onto, there is some € U such thatf(u) = v. Thereforeg o f(u) = x, Sog o f is onto.

Theng o f is one-to-one and onto, so it is a bijection. O

3. The Riemann mapping theorem asserts that if U and V are simly connected proper open subsets of the
complex plane then they are conformally equivalent. Show tht simply connected is essential. In other words,
find a bounded open set U that is not simply connected and provat it cannot be conformally equivalent to
the unit disk.

Solution: Consider the punctured unit dise,— {0}, a bounded open set that is not simply connected. Consider
function f(z)=1/z on a circle of radius 1/2. Then f(z) is hwlorphic on the set, since the origin is not included.

If a conformal mapy exists fromD to the punctured disc, then the functigitz) will map to a holomorphic
function onD, and the circle will be mapped to a closed curvedin (Technically we proved Cauchy’s theorem,
which we’ll use in a moment, only for simple, non-intersegticurves. One can show that the image of our closed
curve is also a simple, non-intersecting closed curve. itftérsected itself, that would violate the 1-1 property of
our conformal map between the two regions.)

We first computezlﬁ f|z|:1/2 f(2)dz. As f(z) = 1/z, a brute-force computation (or use the Residue Theorem)
tells us that this is just 1.

What if we look at the inverse image of the circle of radiy® in the unit disk? Let’s call the inverse image
v, 50g(y) = {z : |z| = 1/2}. Then, using the change of variables formulas, # g(w) (recall g is our assumed
conformal map fron® to the punctured disk), theix = ¢'(w)dw and

! F(2)dz = —— / Flg(w))g (w)dw.

% ‘2‘21/2 211
As f andg are holomorphic, so too i§(g(w))¢'(w). As we are integrating a holomorphic function over a closed
curve, it is just zero.
We've thus computed the integral two different ways, ggttiras well as 0. A3 # 0, we have a contradiction
and thus the unit disk and the punctured unit disk are notorordlly equivalent.

4. Chapter 8, Page 248: #4Does there exist a holomorphic surjection from the unit ¢iisthe complex plane
C?
Solution: From 8.1.1 in the book, we know that there exists a conformegh from the disc to the upper half-
plane:
11—z
Now we just map this image to the complex plane. We can do sodwng it down i units and then squaring

it. The upper half-plandl represents complex numbers with positive imaginary pax<g, y>0); however, a
better way to view this is to note that the upper half planeadiraumbers of the formr exp(i6) with » > 0 and

(6.1)
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0 < 6 < m. If we were just to square this as is, we would get every angleeed but) = 0 and every radius we
need but- = 0. The problem is that the upper half plane is an open set arglwidnclude its boundary, the real
axis. We may rectify this by mapping the image of the unit disker f, namely the upper half plane, dovnnits.
We now include the entire real line as well. While our resigitmap won'’t be 1-1, it will be ontoNow our region
includes allr > 0 and all® € [0, 7]. Squaring this gives alt > 0 and all§ € [0, 2x], as desired. Thus our next
maps are
g(z)=z—1 (6.2)
and
h(z) = 2 (6.3)
The functionsf, g, andh are all holomorphic surjections on the complex plane;@d f(z))) is a holomorphic
surjection that will maf) — H — C.

Mo = h(gliT—)

d—-z
i —1)
1+2

= T (6.4)

5. Chapter 8: Page 248: #5. Prove(z) = —%(z + z~1) gives us a conformal map from the half-disk
{z=x+1y:]|z| <1,y > 0} to the upper half plane.

First, we check thaf(z) is holomorphic. We have that'(z) = —%(1 — Z%) and so itis az # 0. We next
check that this mapping will give us a value in the upper hiahp. We take: = x + iy. Because is in the upper
half disk,y > 0. Thus,

o) = Flativt o)

B 1 ) T — 1y
= 3 <$+zy+m> .
Becauséz| < 1, we have thatz? + 42| < 1, and thus the imaginary part inside the parentheses aboegitive,
and thus becomes positive upon multiplication-by/2. Thusf(z) is in H.
We now show thaf (z) is onto. That is, givemw in the upper half plane, we must findzan the upper half disk
such thatf(z) = 5t(z + 1) = w. Thus, we have to solve

z+—- = 2w
2
2wz = 2241
Z42wz+1 = (z+w)?—(w'—1) =0
(z+w)? = w’—1 (6.5)



Therefore,

z=Vuw?—-1—w

and so provingf(z) is onto is equivalent to showing thgtw? — 1 — w is in the upper half disk whenever is in
the upper half plane. Of course, we could also have —vw? — 1 — w....

Missing step, added by Professor Miller, though if you seetéebway please let me knovhe best way | can
think to proceed is to use the general binomial theorem,dlexant part is

If jw| > 1 we write

1 1 1
\/wz—lzw\/l—l/uﬁ:w<1—2—2———--->:w———---;
w

when we subtracty the main term is-1/2w, which is in the upper half plane and less than 1 in absolutesvaVe
have great convergence because of how rapidly the coeffiailertay. Ifiw| < 1 we use

Viz—1 = iv/I—w? = Z~<1_L_L_...>;

when we subtraciy now we have — w — 1/2w?; this should be in the upper half disk....

Solution added by Aviv LipmaWe know that the imaginary part af is greater than 0 because€ H. We
know that there exists someinside the unit disc (including the boundary). The reasamas the product of the
two roots is 1, so one of the root is inside and one of the raotsiiside. Thus we can assume< 1. We need to
prove thatz is inside the upper half disk, soif= ¢, # should be in0, 7) andr < 1. We have

1/ , 1
) <re’ +rei9>
1

- 1
T2 <T<COS€+ZSIH9)+r(cos@—l—isin@))

1
w = —5(2' + 271

— —% <r(cos€+z'sin9) + %(cos&—z‘sin@) ;

and the imaginary part of that is%(r —r~1)sin@. Could|z| = 1? If it did, the imaginary part ofv is now zero,
which meanayv € R, which meansy is not in the upper half plane! As the imaginary part:ofis greater than
0, andz is inside unit disc s@ is less than 1, and thus the coefficient in frontoff is negative, we findin 6 is
positive and thug € (0, 1) as desired.

We now show thaff (z) is one-to-one. To do this, we talfda) = f(b), with a, b in the upper half disk. Thus,

we have
_1 _|_l — _1 b_|_l
2 “ a a 2 b

1 1
at+—- = b+~
a b
a®b+b = ab®+a
a’b—ab* —a+b = (a—>b)(ab—1) = 0.
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We then see that, ifab — 1) = 0, thenab = 1, soa = 1/b. Becausé is in the upper half diskjp| < 1. This
would causel/b| = |a| > 1. Because we know thatis in the upper half disk as well, this cannot be the case,
and soab — 1 # 0. This means then that— b = 0, and sou = b. Therefore,f(z) is one-to-one, and sf(z) is a
conformal map from the upper half disk to the upper half plane

6. Chapter 8: Page 251: #14. Prove all conformal maps of the ygr half plane to the unit disk are of the
form ¢ (z — B)/(z — B) for 6 real and 3 in the upper half plane.

We first see that, giveri andg two conformal maps frori to D, we then have thaj™! : D — Handf o g*
is a conformal map fron to D. That is, f o g~ ! is an automorphism db. From the book, we know thgto ¢—*
is of the forme"e% for somec in the unit disk. In order to then solve for a general form fomwe can use the
inverse of any functio : H — D. In other wordsf(z) = (f o g~* 0 g)(z). We choosg(z) = z—;j

We find

fz) = (foglog)(2)

— i & — g(Z)
1 —ag(z)
z—1
Y = T
= '—=5
1-a5
az+ai—z4+1
_ ei@ z+i
- zt+i—az+ai
z+1

oE iz al

z+1—az+ o
0 —a)z—i(l+a)
- (1—az)+i(l+a) (6.6)

We have to be a bit careful in simplifying the above. Note thalgs to get a rotation times— 3 overz — 3. We
thus need to have justzaplus or minus a constant in the numerator and denominatoth&efore pull outd — «
from the numerator andla— @ from the denominator. Note these two quantities have the serm, and thus their
ratio is of size 1. We can thus write their ratioea (i6’) for somef’, and hencexp(if) exp(i6’) = exp(if”). We
find

z—i(l+a)(l—a)!

JG) = el T

If we set
B =il+a)l—a)!
then clearly we do have
B = —i(l+a)(l—a) .
We thus have
z—=p

f(z) = eXP(””)ﬁ%
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all that remains is to show thatis in the upper half plane. This isn’'t too bad if we multiply by

Z_1+oz 1—-a  (1—l|a?) +23(a)i
l-a 1—-a@ 11— a? ’

8 =

as|a| < 1 the imaginary part o above is(1 — |«|?)/|1 — a|?> > 0, and thus3 € H.

HW: Due Monday, November 9: DO ANY FIVE OUT OF THE FOLLOWING SI X: IF YOU DO MORE,
THAT'S GOOD BUT ONLY THE FIRST FIVE WILL BE GRADED. (1) Consid er the functions f,,(x) =
n/(1 + nx?) where n is a positive integer. Prove that eachy, is uniformly continuous on the real line. Is
the family { f,: n a positive integer} equicontinuous on compact sets? (2) Ceiter a2 x 2 matrix M with
integer entries and top row (a, b) and bottom row (¢, d) such thatad — bc = 1; we denote the set of all such
matrices by SL(2,Z). Consider the map fi;(z) = (az + b)/(cz + d) with z in the upper half plane. Is the
family {fy : M € SL(2,Z)} uniformly bounded on compact sets of the upper half plane? Hit: | think
each map is bounded on compact subsets of the upper half planleut you can find a sequence of matrices
such that no bound works simultaneously. (3) Letf,,(z) = 1 — nz for 0 < = < 1/n and 0 otherwise, and let
F = {f, : n apositive integer }. Prove thatlim f, exists and determine it. (4) Consider the family from (3).
Prove it is not normal (the problem is that the convergence isiot uniform). Specifically, to be normal not
only must it converge, but given any epsilon there is aiV such that, forall n > N, |f,,(x) — f(z)| < € (or this
must hold for a subsequence). (5) Evaluat¢™_xz?dz/(z* + 22 + 1). (6) Integrate [*" df/(a + bsin §), where
a and b are real numbers. What restrictions must we place orw and b in order for this to make sense?
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7 Math 372: Homework #7: Due Monday, November 9: Thompson, Suock,
Tosteson

HW: Due Monday, November 9: DO ANY FIVE OUT OF THE FOLLOWING SI X: IF YOU DO MORE,
THAT'S GOOD BUT ONLY THE FIRST FIVE WILL BE GRADED. (1) Consid er the functions f,,(x) =
n/(1 + nx?) where n is a positive integer. Prove that eachy, is uniformly continuous on the real line. Is
the family { f,: n a positive integer} equicontinuous on compact sets? (2) Ceiter a2 x 2 matrix M with
integer entries and top row (a, b) and bottom row (¢, d) such thatad — bc = 1; we denote the set of all such
matrices by SL(2,Z). Consider the map fi;(z) = (az + b)/(cz + d) with z in the upper half plane. Is the
family {fy : M € SL(2,Z)} uniformly bounded on compact sets of the upper half plane? Hit: | think
each map is bounded on compact subsets of the upper half planleut you can find a sequence of matrices
such that no bound works simultaneously. (3) Letf,,(x) = 1 — nz for 0 < x < 1/n and 0 otherwise, and let
F = {f, : n apositive integer}. Prove thatlim f, exists and determine it. (4) Consider the family from (3).
Prove it is not normal (the problem is that the convergence isiot uniform). Specifically, to be normal not
only must it converge, but given any epsilon there is atv such that, for all n > N, |f,.(z) — f(z)| < € (or this
must hold for a subsequence). (5) Evaluaté ™ z2dz/(z* + 2% +1). (6) Integrate fOQ’T df/(a+ bsin f), where
a and b are real numbers. What restrictions must we place orw and b in order for this to make sense?

(1) Consider the functions f,,(z) = n/(1 + nz?) where n is a positive integer. Prove that eacly,, is
uniformly continuous on the real line. Is the family {f,,: n a positive integer} equicontinuous on compact
sets?

We must show that, given ary> 0 that there exists & such that, for any:, y € R and anyf,, in our family that
whenevelz — y| < d then|f,(z) — fn(y)| <e.
Supposédx — y| < §. Then, by the Mean Value Theorem,

(@) = )l = £ @]z =yl < [f(c)]d
So, all we need to show is th#t is bounded. Why? Iff’(z)| < B for all z, then the above gives
[fn(z) = fu(y)| < Blz —y| < Bé.

If we taked < ¢/(B + 1) then we see that, whenever— y| < d then|f,(z) — fn(y)| < €, as desired.
We now showf’ is bounded. We easily find that

—2n2x
TioN
f (.Z') - (1—|—TL$2)2
() = —2n? - 8n2x?
(14+nz?)?2  (1+n2?)3
Now, setting the second derivative to zero to get
1
2 —_—
v 3n
so there are at most two local extrema. Notice that
—2n2x —2n2x
. ! o . — . —
SCEI:EOO f (l’) o IEI:EOO (1 + nmz)z xEI:II:loo $4(’I’L + #)2 0,
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which implies that the maximum gof cannot occur as — +oo. Thus the maximum value gf occurs at both of
x = £1/+/3n, and this is the desired bound.
Alternatively, we could argue as follows. We have

/ — 212. L
@) =
Oncez > 1/n the denominator exceeds the numeratorjaag(1 + nx?)? is continuous or{—1/n,1/n], it is
bounded on this interval. Thy& is bounded.

(2) Consider a 2x2 matrix M with integer entries and top row (gb) and bottom row (c,d) such that ad-bc
= 1; we denote the set of all such matrices by SL(2,Z). Considéhe map fa(z) = (az + b)/(cz + d) with z
in the upper half plane. Is the family {f;: M in SL(2,2)} uniformly bounded on compact sets of the upper
half plane? Hint: | think each map is bounded on compact subss of the upper half plane, but you can find
a sequence of matrices such that no bound works simultaneolys

If we let K be an arbitrary compact subset of the upper half plane, we leachz € K has its imaginary part
bounded above and below, and similarly for the real partsshav that our family is not uniformly bounded, we
must find a sequence of matrices and points such that the mafisdato these bounds become arbitrarily large in
absolute value.

We're studying maps of the form
Far(2) = az+b
MAEI = +d

For problems like this, it is often useful to try and analypedal cases, where the algebra is simpler. Wouldn't
it be nice if the denominator were just one? Well, to get thmat satisfy the conditions, we would have to study
matrices of the form
1 n
(o)

which are in our family. These lead #a/(z) = z + n. Clearly, asu increases, this is not bounded (as the real and
imaginary parts ot are bounded, so by sending— oo we see it is unbounded.

(3) Let f,(x) = 1 — nz for 0 <= x <= 1/n and 0 otherwise, and let F = {,,: n a positive integer}. Prove
that lim f,, exists and determine it.

Let zo # 0 be a point on the positive real line. Then foralt> N, whereN > 1/|z¢|, we havef,,(z¢) = 0. This
is because
l—-nzx 0<z<i
T) = - "
ful@) {0 otherwise
and
1 1
n>— = |zg| >— = f(zo) =0.
|0 n
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So asn — oo, f, — f where

folz) = {1 x=0

0 otherwise

Of course, we haven't said anything abaiut,, f,,(0); however, as eacl,(0) = 1, itis clear that the limitis 1 as
well. Finally, what happens far negative? Well, ag,,(x) = 0 for 2 < 0 by definition, therlim,, f,,(x) = 0 for =
negative.

(4) Consider the family from (3). Prove it is not normal (the problem is that the convergence is not
uniform). Specifically, to be normal not only must it converge, but given any epsilon there is an N such that,
foralln>N, |f,(x) — f(x)| <epsilon (or this must hold for a subsequence).

Takex = ¢, y = 0. Then obviouslylz — y| < e. But for n such thatt < e

‘fn(w) - fn(y)‘ =1

So, not normal.

(5) Evaluate the integral from -00 to 00 ofz?/(z* + 22 + 1).
Using the quadratic formula we find that the equatidn- z + 1 = 0 has roots at>™/3 ande*™/3. Therefore
the functionp(z) = z* + 22 + 1 has roots at™/3, ¢>7/3, ¢*7i/3 ande® /3, Thus we can rewrite our integral as

00 12
, , . ——dx.
/—oo (1‘ _ 67”/3)(1' _ 627”/3)((£ _ 647”/3)(1' _ e57rz/3) z

For our contour we will take a semicircle in the upper halfiglaf radius R centered at the origin. In this region we
have poles at = ¢™/3 andz = ¢27/3, To find what these residues are at the poles, we recall that dan write a
function h(z) as a ratio of two entire function(z) andg(z), with ¢g(z) having a simple zero at the poigg, then
the residue of. at o is simply f(z0)/¢’(20). Using this we see the residuejf) ate™/3 is:

e2mi/3 1

= —(3—1iV3).

(ewi/3 _ e27ri/3)(e7ri/3 _ e47rz'/3)(e7ri/3 _ e57ri/3) 12

Similarly, the residue of(z) ate?™/3 is:

e47ri/3

- Lsiva).

e2mi/3 _ mif3)(e2mi/3 — eAmi[3)(2mi/3 — ¢bmi/3) T 12

The sum of the residuals is therefora/3i/6 = —i/(2v/3). We now show that the integral over the circular portion
of the contour, call ity,, contributes nothing in the limit a8 — oc. Since the length ofs is 7 R, we have:

z2 R2
[/2 mdz' < me — 0.
Therefore in the limit we have: . - )
/ T de=—i/(2V3),

o2mi J_po 2t + 2241
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which gives
& z? T
/ x4+$2+1daj:%'
—00

(6) Integrate from 0 to 2pi the function 1/ (a + b sin theta) whee a and b are real numbers. What restrictions
must we place on a and b in order for this to make sense?

/27r do
o a-+bsind

z=e"% e =1/z dz=1izdf, d) = —idz/z

/2” o / —idz B / 2dz
o a+bsing ), z(a+bz—1/2)/2i) ), 2iaz + b(z* — 1)

where~ is 9D (the circle bounding the unit disk).

The following lines are the original write-up of the solution; these are based on the previous line having a
factor of 2iaz instead of2iaz>.

This has poles at

20 = % (—aj: Va? — b2>
where the only one inside the unit circle is the plus root.sTives residue:

b
iva? — b2
/27r o 2mb
o a+bsind  VaZ — 2
as long asi? > b2

Unfortunately, the abovecannot be correct, as a simple test shows. If we doubleand b, then the original
integral decreases by a factor of 2, while our answer here deenot change. Thus theremust be an algebra
error. Below is the corrected argument.

/27r do
0o a+bsinf’

Consider the integral
Making the change of variables= ¢, e = 1/z, dz = izdf, df = —idz/z, we find

So

m de —idz 2dz
/0 a+bsing /Y 2a+b(z—1/2)/2i) /Y b(2i(a/b)z + 22 — 1)

where~ is JD (ie, «y is the unit circle centered at the origin). From the quadrimimula, we see that the integrand

has poles at
. a a2
Z°:Z<‘zi (3) —1>
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where the only one inside the unit circle is the plus root. @mpute the residue, we use the following fact: if
A(z) = B(z)/C(z) andC(z) is a holomorphic function with a simple zero atand B(z) is holomorphic, then
the residue at is just B(zy)/C’(z0). This gives a residue of

2
ib /(7 —1

So

/ZW o 2r

o a+bsind  VaZ — 2

as long as? > b? (remember that the residue formula requires the integraétmultiplied by1 /274, thus in our
case we must multiply the residue Pyi as our integral was unadorned).

Alternatively, if we factor out & from the denominator we have

1/27r do
bJo (a/b)+sinf

This is solved exactly like the problem on the midterm, exaegtead of having +sin § we now havga/b)+sin 6,
with an extra factor of /b outside. Thus the answer is just

1 2 2

b (a/b)2 — 1  VaZ — 2

Notice this solution has all the desired properties. It ddenake sense fofa| < |b|. Forb fixed anda — oo it
converges t@r/a, et cetera. It is always good to do these quick consistenegksh

7.1 Problems.
HW: Due Monday, November 16: (1) L&k(s) = [, exp(—?)z*~*dx. Find a functional equation fa#(s). Hint:
there is a nice expression f6i(s +2). (2) LetH(z) = 1+ 22 + 2%+ 2% + 2% + ... . Find an analytic continuation

for H(z). For whatz does your analytic continuation make sense? For wligit undefined? What shoulH (2)
equal? (3) Lef.(s) = [;° x*dx/(2* + 1). For whats does the integral exist? (4) Léfi(s) = > poy (—1)" 1 /n
(alt for alternating). Prove this series convergesRe(s) > 1. Show that(,(s) = ((s) — (2/2°)((s) (hint:
group the even and odd terms ¢fi;(s) together). From this deduce thats) = (1 — 2'7%)7 ¢ (s). The
importance of this exercise is that, using partial summmatane can show thag,.(s) is well-defined for alls

with Re(s) > 0. This furnishes yet another analytic continuation(¢$) (at least forRe(s) > 0). (5) Show
Jo° atdx /(1 + 2®) = (n/4)y/1 — 1/v/2. Hint: remember iff (z) = g(z)/h(z) with g, holomorphic and: having

a simple zero aty, then the residue of at 2z is g(z0)/h'(20). (6) Chapter 6, Page 175, #5: Use the fact that
['(s)I'(1 — s) = 7/ sin(ws) to prove thail'(1/2 + it)| = /27 /(exp(nt) + exp(—nt)) for ¢ real.
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8 Math 372: Homework #8: Thompson, Schrock, Tosteson

8.1 Problems.
HW: Due Monday, November 16: (1) Lét(s) = [, exp(—a?)z*~'dz. Find a functional equation fa¥(s). Hint:
there is a nice expression fof(s +2). (2) LetH(z) = 1+ 22+ 2% + 25 + 28 + .- - . Find an analytic continuation

for H(z). For whatz does your analytic continuation make sense? For whsit undefined? What shoulH (2)
equal? (3) LetL(s) = [~ z*dz/(2* + 1). For whats does the integral exist? (4) Léfi(s) = > p (—1)""!/n®
(alt for alternating). Prove this series convergesRefs) > 1. Show that(.(s) = ((s) — (2/2°)((s) (hint:
group the even and odd terms ¢fi;(s) together). From this deduce thats) = (1 — 2'7%)"1¢,:(s). The
importance of this exercise is that, using partial summatane can show thag,.(s) is well-defined for alls

with Re(s) > 0. This furnishes yet another analytic continuation(¢$) (at least forRe(s) > 0). (5) Show
JoZ atdx /(1 + a®) = (7/4)4/1 — 1/v/2. Hint: remember iff (z) = g(z)/h(z) with g, holomorphic and. having

a simple zero atg, then the residue of at zg is g(zg)/h'(29). (6) Chapter 6, Page 175, #5: Use the fact that
[(s)[(1 — s) = 7/ sin(rs) to prove thatl'(1/2 + it)| = /27 /(exp(nt) + exp(—nt)) for ¢ real.

8.2 Solutions.

The following are sketches of the solutions to the probldfngu want more details let me know.

Problem: 1 LetG(s) = [, exp(—a?)z*~dxz. Find a functional equation fa (s). Hint: there is a nice expression
for G(s + 2).

Solution: 1 If we change variables we can relate this to the Gamma fumc8pecifically, let: = 2?2 sodu = 2zdx
ordz = $u~/2du. Then

G(s) = / exp(—u)u(s_l)ﬂlu_l/zdu = 1/ exp(—uw)u®>du = lF($/2).
0 2 2 Jo 2
ThusG(s) inherits its functional equation from that bf s).

Problem: 2 Let H(z) = 1+ 2% + 2 + 2% + 28 + ... . Find an analytic continuation fa¥l (z). For whatz does
your analytic continuation make sense? For whatit undefined? What should (2) equal?

Solution: 2 Note this is a geometric series with ratie= 22, and thusH (z) = 1/(1 — z?). Itis defined so long as
z ¢ {—1,1}, andH (2) should be-1/3.

Problem: 3 Let L(s) = [~ 2*dz/(2® + 1). For whats does the integral exist?

Solution: 3 We need things to be well behaved as we go to zero and infMigyneed to decay to a power more
thanl/x asz — oo. Thus we neede(s) < 1. We must also be well-behaved (it's hyphenated, so this way |
right at least once!) ag8 — 0 from above. The denominator tends to 1, so we need the numnéodbe decaying
slower thanl /2. Thus we neede(s) > —1 to be okay at the origin, and thus combining we need the reatpa
be between -1 and 1.

Of course, it's natural to wonder if we can work with largealrpart and exploit cancellation from oscillation
from the imaginary part. Sadly, no!

glsigma_, t_, m] := Nntegrate[(x"sigma / (1 + x*2)) Cos[2 Pi t Log[x]], {x,Exp[mt] Exp[-1/(4 t)], Exp[mt] Exp[1/(4 t)]}]
h[sigma_, t_, m] := Nintegrate[(x"sigma / (1 + x"2)) Cos[2 Pi t Log[x]], {x,Exp[mt] Exp[1/(4 t)], Exp[mt] Exp[3/(4 t)]}]
g[1, 2, 100]
h[1, 2, 100]
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o[1, 2, 101]
h[1, 2, 101]

We can break into small regions where the function is of @ntstign. The maximum amplitude in these win-
dows is decreasing; however, tleagthof these windows is so large (a multiplicative size) thatttial contribution
is larger the further down you go....

Problem: 4 Let (i (s) = Yoo, (—1)"~!/n® (alt for alternating). Prove this series convergesHo(s) > 1. Show
that (e (s) = ¢(s) — (2/2%)¢(s) (hint: group the even and odd terms@f;(s) together). From this deduce that
C(s) = (1 —2'=%)~1¢.u(s). The importance of this exercise is that, using partial sation, one can show that
Cait(s) is well-defined for alls with Re(s) > 0. This furnishes yet another analytic continuatior;¢f) (at least
for Re(s) > 0).

Solution: 4 Done in class; see your notes. See

http://arxiv.org/pdf/ mth/0209393v2. pdf

for a nice article on the alternating zeta function.

Problem: 5 Show [;° z*dxz/(1 + 2%) = (7/4)/1 — 1/v/2. Hint: remember iff (z) = g(z)/h(z) with g, holo-
morphic andh having a simple zero ag, then the residue of at zg is g(z0)/h'(20).

Solution: 5 Leth(z) = 1 + 2. Note the only poles are whdn+ 28 = 0, soz = ¢™e?™*/8 for k € {0,1,...,7}.
We choose as our contour the real axis fretR to R and then a semi-circle in the upper half plane connectinggthe
extremes. Fofz| large,|1 + 28| > |2|%/2, and thus f(z)| = |z*/(1 + 2®)| is bounded by a constant ov&r on
the semi-circle. As the length of that curver®, it has a negligible contribution. The claim follows by coatipg
the residues, which is greatly aided by the observationttietesidue off at a simple zero of the denominator
(rememberf is a quotient) igy(z ) /A (2 ).

Problem: 6 Chapter 6, Page 175, #5: Use the fact thgf)I'(1 — s) = 7/ sin(ws) to prove thatl'(1/2 + it)| =
/27 /(exp(rt) + exp(—mt)) for ¢ real.
Solution: 6 This follows from noting thafl’(1/2 + it)| = [['(1/2 — it)| andsin z = (e** — e~%*) /2.

HW: Due Monday December 7: (1) Method of Stationary Phase: UsLaplace’s Method to estimatg2m—1)!! = [*_2*"(1/v/2) exp(—a”/2)dz,
the 2m-th moment of the standard normal (recall the double factoral is every other term down to2 or 1, so5!! = 5-3-1 = 15).
DO NOT convert this to a value of a Gamma function and invoke Stling; the point of this exercise is to go through the Methodof
Stationary Phase to make sure you know how to use itaProblem 2: A Poisson random variableX has densityProb(Xy = n) =
A" exp(—A)/n! for n a non-negative integer and zero otherwise, withh > 0. Calculate the Moment Generating Function ofX and
of Zx = (X — pa) /o (Wheremuy, o are the mean, standard deviation ofX, and show that asA — oo the moment generating
function of Z, converges to the moment generating function of the standardormal. What's particularly nice is that if X\, , X,
are two independent Poisson random variables with the obvigs parameters thenX,, + X, is a Poisson random variable with
parameter \; + \2; thus we can interpret our convergence ofZ, as what happens when we sum independent identically distriied
Poisson random variables and standardize. Problems 3, 4 aril Do three (3) of the following five (5) problems atht t p: / / web.
wi | lians. edu/ Mat hematics/sjm |l er/public_htn/209/HWV 209HWmy12. pdf .
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9 Math 372: Homework #9: Miller, Xiong, Webster, Wilcox

HW: Due Monday December 7: (1) Method of Stationary Phase: Us Laplace’s Method to estimate them-th moment
of the standard normal, (2m — 1)!! = [% 2™ (1/v/27) exp(—=?/2)dx, (recall the double factorial is every other term
downto2or 1,so5!! =5-3-1=15). DO NOT convert this to a value of a Gamma function and invokeStirling; the
point of this exercise is to go through the Method of Stationey Phase to make sure you know how to use itaProblem
2: A Poisson random variable X', has densityProb(X = n) = A" exp(—A\)/n! for n a non-negative integer and zero
otherwise, with A > 0. Calculate the Moment Generating Function ofX, and of Z, = (X — ux)/ox (Wheremuy, oy
are the mean, standard deviation ofX,, and show that asA\ — oo the moment generating function ofZ, converges
to the moment generating function of the standard normal. What's particularly nice is that if X,,, X, are two in-
dependent Poisson random variables with the obvious paranters then X, + X, is a Poisson random variable with
parameter A\; + A2; thus we can interpret our convergence o7, as what happens when we sum independent identically
distributed Poisson random variables and standardize. Prblems 3, 4 and 5: Do three (3) of the following five (5) prob-
lems athttp://web.w I |ians. edu/ Mat henmatics/sjm |l er/public _htm/209/ HWVW 209HWay12. pdf

Problem: 1 Method of Stationary Phase: Use Laplace’s Method to esif@an — 1)!! = [*°_22™(1/v/27) exp(—a?/2)dz,
the2m-th moment of the standard normal (recall the double faattsievery other term down tor 1, so5!! = 5-3-1 = 15).
DO NOT convert this to a value of a Gamma function and involkiig; the point of this exercise is to go through the Method
of Stationary Phase to make sure you know how to use it.

Solution: 1 While we are told we cannot convert this to a Gamma value amentimic the argument from before. We want to
replacer with some function ofn timesz. While it is natural to tryr — mu, it's better to look atr — /ma. The reason is

the exponential will be nicer now, and we don't care if we hgfie raised to them-th power. We get
(2m _ 1)” _ 1 mm /OO eleogwe—me/dex _ 1 mm+1/2 /OO e—m(12/2—10g1).
V2T —o V2T —o0

So if we write the integrand asp(—m®(z)) ¥ (z), then®(z) = 22/2 — logx and¥(x) = 1. We find®'(z) = z — 1/x and
®”(x) = 1/2%. Thus, while the derivatives @ (z) are good, the critical pointis = 0 and®(0) # 0. Thus we want to look
at a slight change, and we need to subtract the valdg@f which is 1/2.
Thus let’s try
1 e 2

2m — 1 !!—mmem/Q/ e~ m(@7/2=1/2=log x) 1.

( o .
Now we take

O(z) =2%/2-1/2—logz, V(z) = 1.

We find®(1) = 0, (1) = 0 and®”(x) = 1/22. We see the conditions of the theorem are met, and the reswlfailows
by substituting into the formula from the appendix in the koo

Problem: 2 A Poisson random variabl&, has densityProb(X, = n) = A" exp(—A)/n! for n a non-negative integer and
zero otherwise, with\ > 0. Calculate the Moment Generating Function’df and of Z, = (X — ux)/ox (Wheremuy, oy
are the mean, standard deviationXf, and show that a8 — oo the moment generating function &f, converges to the
moment generating function of the standard normal. Whatr§qularly nice is that ifX,,, X, are two independent Poisson
random variables with the obvious parameters than + X, is a Poisson random variable with parameter+ \o; thus
we can interpret our convergence{ as what happens when we sum independent identically digtdoPoisson random
variables and standardize.

Solution: 2 We have

Mx(t) = E[e¥] = Zet")\"e_k/n! = e_kz (Xe)" /nl = e e = exp (A" —1)).
n=0 n=0
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To find the mean and variance we can take derivatives or we @gorfexpand; | prefer the latter as it highlights some of the
methods we used in finding residues. Nete- 1 = ¢ + ¢t%/2 + O(t*), and since we only need up té to find the first two
moments we find

Mx(t) T4+ Ae! — 1)+ X2(e' = 1)2/2 + O(t?)
= 1+ At +t2/24+01)) + X2 (t2 + O(t?)) /2! + O(?)

L4+ A+ (A4 A2 /2 4+ O(#%);

thus the mean ig and the second momentis+ \2. Aso? = E[X?] — E[X]? we geto? = A oro = V.

We now use
Mxia(t) = /" Mx(t/b),
and since
Zy = (Xa—pa)/oa = (Xa—A)/VA
we find

Mz(t) = eﬂﬁtMXA (t/VX) = eV exp (/\exp(t/\/X) - 1).

Taking logarithms gives
log Mz, (t) = —VAt+ A (et/ﬁ — 1) .

We now Taylor expand, and note any cube terms will be nedégithen multiplied by\ as they will involve at least

(t/vlambda)?, finding
log Mz,(t) = —VXt+A (et/\/X - 1) = —VAt+ A (% + % +0 (/\L;—?;2>) = 12/2+ 03 /VN),

and thus 2
Mg, — et/

Laplace Questions:
Question 1 (40 points) : Find the Laplace Transforms of: (&ps(2t); (2) 4t” — 113 + 1; (3) t2e3; (4)
cosh(t) = %

Solution: 1 By direct integration we get (3)/(4 + s2), (2) (20160 — 66s* + s7)/s%, (3)2/(s — 3)? for s > 3, (4)
s/(s*—1) fors > 0.

Question 2 (30 points) : Find the Inverse Laplace Transform of the following (theléah the book or on-
line at
http://en.w ki pedi a. org/wi ki / Lapl ace_t ransf or ns#Tabl e_of
_sel ected_Lapl ace_t ransf or ms might be useful): (1)F(s) = =2+; (2) F(s) = === (3) F(s) =
8s2—4s+12
s(s2+4)
Solution: 2 (1) 2 sin(2t), (2) 2 exp(—4t)(—1 + exp(5t)), (3) 3 + 5 cos(2t) — 2sin(2¢t). Can use the command

| nver seLapl aceTransforn]{ (8 s*2 - 4 s + 12)/(s (s*2 + 4)), s, t]
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for example.

Question 3 (10 points) : Use the Laplace transform to soly& — ' — 6y = 0 with y(0) = 1, /(0) = —1.

Solution: 3 1f Y (s) is the Laplace Transform gf(t) then the Laplace Transform ¢f*) is sY (s)—>_1_, " FyE=1)(0).
Thus
(Y () = 5y(0) = ¢/ (0)) — (sY (5) —(0)) — 6Y (s) = 0.
We now substitute in and find
(2 —5-6)Y(s) = s —2
and therefore

Y(s) = or y(t) =  exp(~20)(4 -+ exp(5)

s2—5—6’
(used the Mathematica command
I nver seLapl aceTransforn{(s - 2)/(s”"2 - s - 6), s, t]

to find the solution, but could also use a table. Checking byebiiorce we find our answer is correct.

Question 4 (10 points) : Use the Laplace transform to soly&” — 4y = 0 with y(0) = 1, v/(0) = 0,
y"”(0) = 2 andy”’(0) = 0. (NOTE: for those looking for additional problems, #17 fr&action 6.2 is a good one.)

Solution: 4 The problem proceeds similarly as above, and we obtain

% exp(—v/2t) <1 + eXp(Qﬂt)> .

Question 5 (10 points) : Solvey” +y = f(t), wheref(t) = 1for 0 < t < 37 and0 if 37 <t < oo and
subject to the initial conditiong(0) = 0 andy’(0) = 1.
Solution: 5 The Laplace transform of(¢) is (1 — exp(—3ns))/s. Thus

(s2Y (s) — sy(0) — ¢/ (0)) + Y (s) = M’

and then
(24 1)V (s) = 14 LSR8
After algebraic simplification we apply the Inverse Lapldcansform
I nverseLapl aceTransfornf (1 + ((1 - Exp[-3 Pi s])/s))/(s""2 + 1), s, t]
and find
1 - Cos[t] - (1 + Cos[t]) HeavisideTheta[-3 \[Pi] + t] + Sin[t]

(checking by brute force differentiation gives this is eut).
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