
Math 372: Fall 2017: Solutions to Homework

Steven Miller

November 28, 2017

Abstract

Below are detailed solutions to the homework problems from Math 372 Complex Analysis (Williams College,
Fall 2017, Professor Steven J. Miller, sjm1@williams.edu). The course homepage is

http://www.williams.edu/Mathematics/sjmiller/public_html/372Fa17

and the textbook isComplex Analysisby Stein and Shakarchi (ISBN13: 978-0-691-11385-2). Note to students:
it’s nice to include the statement of the problems, but I leave that up to you.
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1 Math 372: Homework #1: Yuzhong (Jeff) Meng and Liyang Zhang(2010)

1.1 Problems for HW#1: Due September 15, 2017

Due September 15: Chapter 1: Page 24: #1abcd, #3, #13.

Problem: Chapter 1: #1: Describe geometrically the sets of pointsz in the complex plane defined by the fol-
lowing relations: (a)|z − z1| = |z − z2| wherez1, z2 ∈ C; (b) 1/z = z; (c) Re(z) = 3; (d) Re(z) > c (resp.,≥ c)
wherec ∈ R.

Problem: Chapter 1: #3: Withω = seiϕ, wheres ≥ 0 andϕ ∈ R, solve the equationzn = ω in C wheren is a
natural number. How many solutions are there?

Problem: Chapter 1: #13: Suppose thatf is holomorphic in an open setΩ. Prove that in any one of the follow-
ing casesf must be constant:
(a) Re(f ) is constant;
(b) Im(f ) is constant;
(c) |f | is constant.

1.2 Solutions for HW#1:

Due September 15, 2017: Chapter 1: Page 24: #1abcd, #3, #13.

Problem: Chapter 1: #1: Describe geometrically the sets of pointsz in the complex plane defined by the fol-
lowing relations: (a)|z − z1| = |z − z2| wherez1, z2 ∈ C; (b) 1/z = z; (c) Re(z) = 3; (d) Re(z) > c (resp.,≥ c)
wherec ∈ R.

Solution: (a) Whenz1 6= z2, this is the line that perpendicularly bisects the line segment fromz1 to z2. When
z1 = z2, this is the entire complex plane.
(b)

1

z
=

z

zz
=

z

|z|2 . (1.1)

So
1

z
= z ⇔ z

|z|2 = z ⇔ |z| = 1. (1.2)

This is the unit circle inC.
(c) This is the vertical linex = 3.
(d) This is the open half-plane to the right of the vertical linex = c (or the closed half-plane if it is≥).

Problem: Chapter 1: #3: Withω = seiϕ, wheres ≥ 0 andϕ ∈ R, solve the equationzn = ω in C wheren is a
natural number. How many solutions are there?
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Solution: Notice that
ω = seiϕ = sei(ϕ+2πm),m ∈ Z. (1.3)

It’s worth spending a moment or two thinking what is the best choice for our generic integer. Clearlyn is a bad
choice as it is already used in the problem; as we often uset for the imaginary part, that is out too. The most natural
is to usem (thoughk would be another fine choice); at all costs do not usei!

Based on this relationship, we have
zn = sei(ϕ+2πm). (1.4)

So,

z = s1/ne
i(ϕ+2πm)

n . (1.5)

Thus, we will haven unique solutions since each choice ofm ∈ {0, 1, . . . , n − 1} yields a different solution so
long ass 6= 0. Note thatm = n yields the same solution asm = 0; in general, if two choices ofm differ by n then
they yield the same solution, and thus it suffices to look at then specified values ofm. If s = 0, then we have only
1 solution.

Problem: Chapter 1: #13: Suppose thatf is holomorphic in an open setΩ. Prove that in any one of the follow-
ing casesf must be constant:
(a) Re(f ) is constant;
(b) Im(f ) is constant;
(c) |f | is constant.

Solution: Let f(z) = f(x, y) = u(x, y) + iv(x, y), wherez = x+ iy.
(a) Since Re(f) = constant,

∂u

∂x
= 0,

∂u

∂y
= 0. (1.6)

By the Cauchy-Riemann equations,
∂v

∂x
= −∂u

∂y
= 0. (1.7)

Thus, inΩ,

f ′(z) =
∂f

∂x
=
∂u

∂x
+ i

∂v

∂x
= 0 + 0 = 0. (1.8)

Thusf(z) is constant.

(b) Since Im(f) = constant,
∂v

∂x
= 0,

∂v

∂y
= 0. (1.9)

By the Cauchy-Riemann equations,
∂u

∂x
=
∂v

∂y
= 0. (1.10)

Thus inΩ,

f ′(z) =
∂f

∂x
=
∂u

∂x
+ i

∂v

∂x
= 0 + 0 = 0. (1.11)
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Thusf is constant.

(c) We first give a mostly correct argument; the reader shouldpay attention to find the difficulty. Since|f | =√
u2 + v2 is constant,

{

0 = ∂(u2+v2)
∂x = 2u∂u

∂x + 2v ∂v
∂x .

0 = ∂(u2+v2)
∂y = 2u∂u

∂y + 2v ∂v
∂y .

(1.12)

Plug in the Cauchy-Riemann equations and we get

u
∂v

∂y
+ v

∂v

∂x
= 0. (1.13)

− u
∂v

∂x
+ v

∂v

∂y
= 0. (1.14)

(1.14) ⇒ ∂v

∂x
=
v

u

∂v

∂y
. (1.15)

Plug (1.15) into (1.13) and we get
u2 + v2

u

∂v

∂y
= 0. (1.16)

Sou2 + v2 = 0 or ∂v
∂y = 0.

If u2 + v2 = 0, then, sinceu, v are real,u = v = 0, and thusf = 0 which is constant.
Thus we may assumeu2 + v2 equals a non-zero constant, and we may divide by it. We multiply both sides by

u and find∂v
∂y = 0, then by (1.15),∂v∂x = 0, and by Cauchy-Riemann,∂u∂x = 0.

f ′ =
∂f

∂x
=
∂u

∂x
+ i

∂v

∂x
= 0. (1.17)

Thusf is constant.

Why is the above only mostly a proof? The problem is we have a division by u, and need to make sure
everything is well-defined. Specifically, we need to know that u is never zero. We do havef ′ = 0 except at points
whereu = 0, but we would need to investigate that a bit more.

Let’s return to
{

0 = ∂(u2+v2)
∂x = 2u∂u

∂x + 2v ∂v
∂x .

0 = ∂(u2+v2)
∂y = 2u∂u

∂y + 2v ∂v
∂y .

(1.18)

Plug in the Cauchy-Riemann equations and we get

u
∂v

∂y
+ v

∂v

∂x
= 0

−u∂v
∂x

+ v
∂v

∂y
= 0. (1.19)
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We multiply the first equationu and the second byv, and obtain

u2
∂v

∂y
+ uv

∂v

∂x
= 0

−uv ∂v
∂x

+ v2
∂v

∂y
= 0. (1.20)

Adding the two yields

u2
∂v

∂y
+ v2

∂v

∂y
= 0, (1.21)

or equivalently

(u2 + v2)
∂v

∂y
= 0. (1.22)

We now argue in a similar manner as before, except now we don’thave the annoyingu in the denominator. If
u2+ v2 = 0 thenu = v = 0, else we can divide byu2+ v2 and find∂v/∂y = 0. Arguing along these lines finishes
the proof. 2

One additional remark: we can trivially pass from results onpartials with respect tov to those with respect tou
by noting that iff = u+ iv has constant magnitude, so too doesg = if = −v+ iu, which essentially switches the
roles ofu andv. Though this isn’t needed for this problem, arguments such as this can be very useful.

The following is from Steven Miller.Let’s consider another proof. If|f | = 0 the problem is trivial as then
f = 0, so we assume|f | equals a non-zero constant. As|f | is constant,|f |2 = ff is constant. By the quotient
rule, the ratio of two holomorphic functions is holomorphic, assuming the denominator is non-zero. We thus find
f = |f |2/f is holomorphic. Thusf andf are holomorphic, and satisfy the Cauchy-Riemann equations. Applying
these tof = u+ iv yields

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
,

while applying tof = u+ i(−v) gives

∂u

∂x
=

∂(−v)
∂y

,
∂u

∂y
= −∂(−v)

∂x
.

Adding these equations together yields

2
∂u

∂x
= 0, 2

∂u

∂y
= 0.

Thusu is constant, and by part (a) this implies thatf is constant. If we didn’t want to use part (a) we could subtract
rather than add, and similarly find thatv is constant.
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The following is from Craig Corsi, 2013 TA.The problem also follows from the polar form of the Cauchy-
Riemann equations.

It’s worth mentioning that (a) and (b) follow immediately from (c). For example, assume we know the real part
of f is constant. Consider

g(z) = exp(f(z)) = exp(u(x, y)) exp(iv(x, y)).

As |g(z)| = exp(u(x, y)), we see that the real part off being constant implies the functiong has constant magni-
tude. By part (c) this implies thatg is constant, which then implies thatf is constant.

Due Friday, September 22: Chapter 1: Page 24: #16abc, #24, #25ab. Chapter 2: (#1) We proved Goursat’s
theorem for triangles. Assume instead we know it holds for any rectangle; prove it holds for any triangle. (#2)
Let γ be the closed curve that is the unit circle centered at the origin, oriented counter-clockwise. Compute
∮

γ f(z)dz wheref(z) is complex conjugation (sof(x+ iy) = x− iy). Repeat the problem for
∮

γ f(z)
ndz for

any integern (positive or negative), and compare this answer to the results for
∮

γ z
ndz; is your answer sur-

prising? (#3) Prove that the four triangles in the subdivision in the proof of Goursat’s theorem are all similar
to the original triangle. (#4) In the proof of Goursat’s theorem we assumed thatf was complex differentiable
(ie, holomorphic). Would the result still hold if we only assumed f was continuous? If not, where does our
proof break down?
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2 Math 372: Homework #2: Solutions by Nick Arnosti and ThomasCrawford
(2010)

Due Friday, September 22: Chapter 1: Page 24: #16abc, #24, #25ab. Chapter 2: (#1) We proved Goursat’s
theorem for triangles. Assume instead we know it holds for any rectangle; prove it holds for any triangle. (#2)
Let γ be the closed curve that is the unit circle centered at the origin, oriented counter-clockwise. Compute
∮

γ f(z)dz wheref(z) is complex conjugation (sof(x+ iy) = x− iy). Repeat the problem for
∮

γ f(z)
ndz for

any integern (positive or negative), and compare this answer to the results for
∮

γ z
ndz; is your answer sur-

prising? (#3) Prove that the four triangles in the subdivision in the proof of Goursat’s theorem are all similar
to the original triangle. (#4) In the proof of Goursat’s theorem we assumed thatf was complex differentiable
(ie, holomorphic). Would the result still hold if we only assumed f was continuous? If not, where does our
proof break down?

Problem: Prove Goursat’s theorem for triangles using only the fact that it holds for rectangles.

Note that it suffices to prove that the integral along any right triangle is zero, since any triangle can be divided
into two right triangles by dropping an altitude.

Given a right triangle ABC, by drawing a series of rectanglesinside the triangle, we can reduce the desired
integral to the integral along a series ofn congruent triangles similar to ABC, each of which border theoriginal
hypotenuse (as shown in the figure).

Sincef is continuous on the original triangle ABC (a compact set) weknow thatf is uniformly continuous on
the region of interest.

Thus, given anyε > 0, there exists aδ > 0 such that for any two pointsx, y in ABC with |x − y| < δ,
|f(x) − f(y)| < ε. If h is the length of the hypotenuse of ABC, choosen large enough so that the diameter of
each small triangle,h/n, is less thanδ. Then for any triangleTk and any pointzk on that triangle writef(z) =
f(zk) + ψ(z), so that

∫

Tk

f(z)dz =

∫

Tk

f(zk) + ψ(z)dz =

∫

Tk

f(zk)dz +

∫

Tk

ψ(z)dz
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Sincef(zk) is a constant, it has a primitive, so the first integral is zero. Meanwhile, since any point on triangle
Tk is within h/n of zk, and we chosen to be such thath/n < δ, we know that|ψ(z)| = |f(z)− f(zk)| < ε. Thus,
|
∫

Tk
ψ(z)dz| < perim(Tk) · ε. But perim(Tk) < 3h/n, so the integral off(z) along triangleTk is at most3hε/n.

Summing over alln triangles, we see that the integral off(z) along the entire curve is at most3hε. Since this
technique works for arbitrarily smallε, this implies that the integral off along any right triangle is zero, proving
the claim.
Problem: If γ is a curve inC, show that

∫

−γ f(z)dz = −
∫

γ f(z)dz.

Parameterizeγ by z = g(t) for t in [a, b], and definew(t) = g(a + b − t). Thenw(t) is a parameterization of
−γ on the interval[a, b] (note thatw(a) = g(b), w(b) = g(a)). Additionally, w′(t) = −g′(a + b − t). It follows
that

∫

−γ
f(z)dz =

∫ b

a
f(w(t))w′(t)dt = −

∫ b

a
f(g(a+ b− t))g′(a+ b− t)dt.

Making the substitutionu = a+ b− t, we get that

−
∫ b

t=a
f(g(a+ b− t))g′(a+ b− t)dt =

∫ a

u=b
f(g(u))g′(u)du

= −
∫ b

u=a
f(g(u))g′(u)du. (2.1)

But

−
∫ b

u=a
f(g(u))g′(u)du = −

∫

γ
f(z)dz,

which proves the claim.
Problem: If γ is a circle centered at the origin, find

∫

γ z
ndz.

We start by parameterizingγ by z = reiθ, 0 ≤ θ < 2π, sodz = ireiθdθ. Then
∫

γ
zndz =

∫ 2π

0
rneinθ(ireiθ)dθ = irn+1

∫ 2π

0
ei(n+1)θdθ.

If n = −1, this isir0
∫ 2π
0 dθ = 2πi. Otherwise, we get

irn+1

∫ 2π

0
ei(n+1)θdθ =

rn+1

n+ 1
ei(n+1)θ

∣

∣

∣

∣

2π

0

= 0.

Problem: If γ is a circle not containing the origin, find
∫

γ z
ndz.

If n 6= −1, the functionf(z) = zn has a primitive (namelyz
n+1

n+1 ), so by Theorem 3.3 in Chapter 1 of our book,
∫

γ f(z)dz = 0.

If n = −1, we parameterizeγ by z = z0 + reiθ, 0 ≤ θ < 2π, sodz = ireiθdθ.Then

∫

γ

1

z
dz =

∫ 2π

0

ireiθ

z0 + reiθ
dθ =

ir

z0

∫ 2π

0

eiθ

1 + r
z0
eiθ
dθ.
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Note that because our circle does not contain the origin,|z0| > r, so | rz0 e
iθ| < 1. Thus, we can write this

expression as a geometric series:

ir

z0

∫ 2π

0

eiθ

1 + r
z0
eiθ
dθ =

ir

z0

∫ 2π

0
eiθ

∞
∑

k=0

(
−r
z0
eiθ)kdθ.

Interchanging the sum and the integral, we see that this is just

−i
∞
∑

k=0

(
−r
z0

)k+1

∫ 2π

0
ei(k+1)θdθ = −

∞
∑

k=0

(
−r
z0

)k+1 e
i(k+1)θ

k + 1

∣

∣

∣

∣

2π

0

dθ = 0.

Why may we interchange? We can justify the interchange due tothe fact that the sum of the absolute values con-
verges.

Problem: If γ is the unit circle centered at the origin, find
∫

γ z̄
ndz.

We start by parameterizingγ by z = eiθ, 0 ≤ θ < 2π, soz̄ = e−iθ anddz = ieiθdθ. Then
∫

γ
z̄ndz =

∫ 2π

0
e−inθ(ieiθ)dθ = i

∫ 2π

0
e−i(n−1)θdθ.

If n = 1, this isi
∫ 2π
0 dθ = 2πi. Otherwise, we get

i

∫ 2π

0
e−i(n−1)θdθ =

ei(1−n)θ

1− n

∣

∣

∣

∣

2π

0

= 0.

Note that instead of doing the algebra, we could have observed that on the unit circlēz = z−1, so
∫

γ z̄
ndz =

∫

γ z
−ndz. Applying our work from Problem 2, we get the answer above.

Problem: Where in the proof of Goursat’s theorem do we use the fact thatthe functionf is holomorphic? Is it
sufficient to know thatf is continuous?

Start by recapping the main ideas behind the proof. We began by continually splitting our triangleT into smaller
triangles. These triangles converge to a point in the limit,and we called this pointz0. We then established the bound

∣

∣

∫

T
f(z)dz

∣

∣ ≤ 4n
∣

∣

∫

T (n)
f(z)dz

∣

∣.

Our goal was to show that this quantity tends to zero asz → z0.
To do this, we Taylor expandedf(z) around the pointz0 : f(z) = f(z0) + f ′(z0)(z − z0) + ψ(z)(z − z0).

Note that(z − z0) dividesψ(z), soψ(z) → 0 asz → z0.
∣

∣

∣

∣

∫

T (n)

f(z)dz

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

T (n)

f(z0) + f ′(z0)(z − z0)dz

∣

∣

∣

∣

+

∫

T (n)

|ψ(z)(z − z0)|dz

The first integrand in this sum has a primitive, so the value ofthis integral is zero. LetMn = maxz onT (n) |ψ(z)|.
Then |ψ(z)| ≤ Mn, andz − z0 ≤ diam(T (n)). Hence, the value of the second integral is at most perim(T (n)) ·
diam(T (n)) ·Mn.
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Since the perimeter and diameter ofT (n) both decay at a rate of2−n, we establish the bound that
∣

∣

∫

T (n) f(z)dz
∣

∣ ≤
4−nCMn for some constantC. Hence,CMn is an upper-bound for

∣

∣

∫

T f(z)dz
∣

∣, and sinceψ(z) → 0 asz → z0,
Mn → 0 as desired.

Now let us see what happens if we don’t know thatf is differentiable. Using only continuity, we can approxi-
matef(z) by f(z0) + ψ(z)(z − z0). DefiningMn as before, we can still bound our integral byCMn. We want to
say thatMn tends to0, but limz→z0 ψ(z) = limz→z0

f(z)−f(z0)
z−z0

, which may not exist iff is not differentiable (and
certainly may not tend to zero). Thus, this approach fails.

We could also try the expressionf(z) = f(z0) + ψ(z), and thenψ(z) → 0 asz → z0. Unfortunately, without
the factor of(z− z0), our bound on|

∫

T (n) f(z)dz| will simply be perim(T (n)) ·Mn = 2−nCMn. Thus, our bound
for |

∫

T (n) f(z)dz| is 4n2−nCMn = 2nCMn. Even thoughMn tends to 0, the factor of2n may overwhelm it, so
this approach fails. From these attempts, it seems that knowing thatf was differentiable was a fairly important step
in the proof.

HW #3: Due Friday September 29: Chapter 2, Page 64: #1, #8. Also do: Chapter 2: (Problems from me):
(#1) In the proof of Liouville’s theorem we assumedf was bounded. Is it possible to remove that assumption?
In other words, is it enough to assume that|f(z)| < g(z) for some real-valued, non-decreasing functiong? If
yes, how fast can we letf grow? (#2) a) Find all z where the function f(z) = 1/(1 + z4) is not holomorphic;
b) Let a, b, c, and d be integers such thatad− bc = 1. Find all z where the functiong(z) = (az + b)/(cz + d)
is not holomorphic. (#3) Compute the power series expansionof f(z) = 1/(1 − z) about the point z = 1/2
(it might help to do the next problem first, or to write 1−z as1/2−(z−1/2)). (#4) Do Chapter 1, Page 29, #18.
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3 Math 372: Homework #3: Carlos Dominguez, Carson Eisenach,David Gold

HW: Due Friday September 29: Chapter 2, Page 64: #1, #8. Also do: Chapter 2: (Problems from me): (#1)
In the proof of Liouville’s theorem we assumedf was bounded. Is it possible to remove that assumption? In
other words, is it enough to assume that|f(z)| < g(z) for some real-valued, non-decreasing functiong? If
yes, how fast can we letf grow? (#2) a) Find all z where the function f(z) = 1/(1 + z4) is not holomorphic;
b) Let a, b, c, and d be integers such thatad− bc = 1. Find all z where the functiong(z) = (az + b)/(cz + d)
is not holomorphic. (#3) Compute the power series expansionof f(z) = 1/(1 − z) about the point z = 1/2
(it might help to do the next problem first, or to write 1−z as1/2−(z−1/2)). (#4) Do Chapter 1, Page 29, #18.

1. Letγ1 denote the straight line along the real line from 0 toR, γ2 denote the eighth of a circle fromR toRei
π
4 ,

andγ3 denote the line fromRei
π
4 to 0. Then by Cauchy’s theorem,

∫

γ1+γ2+γ3

e−z2 dz = 0.

We can calculate

−
∫

γ3

e−z2 dz =

∫ R

0
e−(eiπ/4t)2eiπ/4 dt

= eiπ/4
∫ R

0
e−it2 dt

= eiπ/4
∫ R

0
cos (−t2)dt+ i sin (−t2) dt

= eiπ/4
∫ R

0
cos (t2)dt− i sin (t2) dt

So we can calculate the Fresnel integrals by calculating
∫

γ1+γ2
e−z2 dz, takingR → ∞, dividing by eiπ/4,

and looking at the real and negative imaginary parts. First we show the integral overγ2 goes to zero:

∣

∣

∣

∣

∫

γ2

e−z2 dz

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ π/4

0
e−R2e2iθ iReiθ dθ

∣

∣

∣

∣

∣

≤ R

∫ π/4

0
e−R2 cos 2θ dθ

= R

∫ π/4−1/R logR

0
e−R2 cos 2θ dθ +R

∫ π/4

π/4−1/R logR
e−R2 cos 2θ dθ

≤ R

(

π

4
− 1

R logR

)

e
−R2 cos

(

π
2
− 2

R logR

)

+R · 1

R logR

≤ π

4
Re

−R2 sin
(

2
R logR

)

+
1

logR

The 1
logR term goes to zero asR goes to infinity. So we need to show that the first term goes to zero. Note

that sinx ≥ x/2 for positivex sufficiently close to 0, sincesin 0 = 0 and d
dx sinx ≥ 1/2 for sufficiently

12



smallx. So for sufficiently largeR the first term is less than or equal to

π

4
Re−R2· 1

R logR =
π

4
elogR− R

logR ,

which goes to zero asR goes to infinity. So, asR→ ∞, the contribution fromγ2 goes to zero. And we know
that asR→ ∞,

∫ R
0 e−x2

dx =
√
π/2. So, finally,

∫ ∞

0
cos (t2)dt− i sin (t2) dt =

√
π

2
· 1√

2/2 + i
√
2/2

=

√
2π

4
−

√
2π

4
i

as desired.

8. Sincex ∈ R, f is holomorphic in an open circle of radiusǫ centered atx, 0 < ǫ < 1. And by Cauchy’s
inequality,

|f (n)(x)| ≤ n!||f ||C
Rn

Case 1:η ≥ 0. For some 0< ǫ < 1,
|z| ≤ |x+ ǫ|

thus,
|f(z)| ≤ A(1 + |x+ ǫ|)η ≤ A(1 + ǫ+ |x|)η

by both the given and the triangle inequality. And in Cauchy’s inequality R is justǫ. So by combining results
from above

|f (n)(x)| ≤ n!||f ||C
ǫn

≤ An!

ǫn
(1 + ǫ+ |x|)η

≤ An!

ǫn
(1 + ǫ+ |x|+ ǫ|x|)η

≤ An!

ǫn
(1 + ǫ)η(1 + |x|)η . (3.1)

Now let

An =
A(n!)

ǫn
(1 + ǫ)η

thus,
|f (n)(x)| ≤ An(1 + |x|)η.

Case 2:η < 0. For some 0< ǫ < 1,
ǫ ≥ |x− z| ≥ |x| − |z|

by the reverse triangle inequality. When we rearrange the inequality we see that

|z| ≥ |x| − |ǫ| = |x|+ ǫ

13



Sinceη is negative, our goal is to minimize (1+|z|) in order to get an upper bound. Now, by combining our
result above with the Cauchy inequality we get that:

|f (n)(x)| ≤ n!||f ||C
ǫn

≤ An!

ǫn
(1− ǫ+ |x|)η

≤ An!

ǫn
(1− ǫ+ |x| − ǫ|x|)η

≤ An!

ǫn
(1− ǫ)η(1 + |x|)η . (3.2)

Now let

An =
A(n!)

ǫn
(1− ǫ)η

thus,
|f (n)(x)| ≤ An(1 + |x|)η.

q.e.d.

1. In the proof of Liouville’s theorem, we had that

|f ′(z0)| ≤
B

R

whereB was an upper bound forf . It only matters thatB is an upper bound forf in a disc of radiusR about
z0, however. LetBR be the smallest upper bound forf in a disc of radiusR aboutz0. Liouville’s theorem
still holds ifBR → ∞ as long asBR/R → 0 for every choice ofz0. Alternatively, we just needf to grow
slower than linear; say|f(z)| is less thanC|z|1−ǫ or C|z|/ log |z| or anything like this (for those who have
seen little-oh notation,f(z) = o(z) suffices).

2. (a) f is holomorphic wherever its derivative exists:

f ′(z) = − 4z3

1 + z4

That is, wheneverz4 6= −1. This givesz = eiπ/4, e3iπ/4, e5iπ/4, ande7iπ/4, or
√
2
2 +

√
2
2 i, −

√
2
2 +

√
2
2 i,

−
√
2
2 −

√
2
2 i, and

√
2
2 −

√
2
2 i.

(b) Thead − bc = 1 condition preventsg from being a mostly-constant function with an undefined value
at z = −d/c. (That is, ifad − bc = 0, thena/c = b/d, and so the function would simply collapse to
the value ofa/c.) So

g′(z) =
(cz + d)a− (az + b)c

(cz + d)2
=

1

(cz + d)2

The function is then not holomorphic atz = −d/c.

14



3. Just use the geometric series formula:

1

1− z
=

1

1/2− (z − 1/2)

=
2

1− 2(z − 1/2)

=

∞
∑

n=0

2n+1(z − 1/2)n.

4. Letf(z) =
∑∞

n=0 anz
n. Then

f(z) =
∞
∑

n=0

an(z0 + (z − z0))
n

=

∞
∑

n=0

an

[

n
∑

m=0

(

n

m

)

(z − z0)
mzn−m

0

]

=

∞
∑

m=0

(z − z0)
m

( ∞
∑

n=m

an

(

n

m

)

zn−m
0

)

.

The inner sum converges by the root test:

lim sup
n→∞

n

√

an

(

n

m

)

=
1

R
lim
n→∞

n

√

(

n

m

)

=
1

R

where R is the radius of convergence of the original power series forf and second limit is evaluated by noting

1 ≤ n

√

(n
m

)

≤ nm/n and limn→∞ nm/n = 1. Since the inner sum has the same radius of convergence as
the original sum,z0 still lies in the disc of convergence in the inner sum; hence all the coefficients ofz − z0
converge, andf has a power series expansion aboutz0.

Homework 4: Due Friday, October 6 (if Mountain Day happens then it’s due on Monday, October 9): Chap-
ter 3, Page 103: #1, #2, #5 (this is related to the Fourier transform of the Cauchy density), #15d, #17a (hard).
Additional: Let f(z) =

∑∞
n=−5 anz

n and g(z) =
∑∞

m=−2 bmz
m be the Laurent expansions for two functions

holomorphic everywhere except possibly atz = 0. a) Find the residues off(z) and g(z) at z = 0; b) Find the
residue off(z) + g(z) at z = 0; c) Find the residue off(z)g(z) at z = 0; d) Find the residue of f(z)/g(z) at
z = 0.
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4 Math 372: Homework #4: Due Friday, October 6, 2015: Pham, Jensen, Kolŏglu

HW: Due Friday, October 6 (if Mountain Day happens then it’s due on Monday, October 9): Chapter 3, Page
103: #1, #2, #5 (this is related to the Fourier transform of the Cauchy density), #15d, #17a (hard). Additional:
Let f(z) =

∑∞
n=−5 anz

n and g(z) =
∑∞

m=−2 bmz
m be the Laurent expansions for two functions holomorphic

everywhere except possibly atz = 0. a) Find the residues off(z) and g(z) at z = 0; b) Find the residue of
f(z) + g(z) at z = 0; c) Find the residue off(z)g(z) at z = 0; d) Find the residue off(z)/g(z) at z = 0.

4.1 Chapter 3, Exercise 1

Exercise 4.1.Using Euler’s formulasinπz = eiπz−e−iπz

2i , show that the complex zeros ofsinπz are exactly the
integers, and that they are each of order 1. Calulate the residue of 1

sinπz at z = n ∈ Z.

Solution: To show that the complex zeros ofsinπz are exactly the integers, we will show thateiπz0−e−iπz0

2i = 0
if and only if z0 ∈ Z.

First prove the forward direction. We see thateiπz0−e−iπz0

2i = 0 gives

eiπz0 = e−iπz0 . (4.1)

Sincez0 = x+ iy with x, y ∈ R,
eiπxe−πy = e−iπxeπy. (4.2)

For complex numbers to be equivalent, their magnitudes mustbe the same. Thus,

e−πy = eπy. (4.3)

This implies that−πy = πy, soy = 0. The angles corresponding to Equation 4.2 must be congruentmodulo2π as
well. Thus,

πx ≡ −πx mod 2π, (4.4)

which meansπx ≡ 0 or π. So we have
2πx mod 2π ≡ 0, (4.5)

which implies thatx is an integer. Thusx ∈ Z. Sincey = 0, we havez0 = x, implying z0 ∈ Z.
To prove the backward direction, considerz0 ∈ Z for z0 even,

sinπz0 =
eiπz − e−iπz

2i

=
1− 1

2i
= 0. (4.6)

Similarly for z0 odd,

sinπz0 =
eiπz − e−iπz

2i

=
−1 + 1

2i
= 0. (4.7)

Thussinπz0 = 0 if and only if z0 ∈ Z. So the zeros ofsinπz are exactly the integers.
Next we must show that each zero has order 1. We refer to Theorem 1.1 in Stein and Shakarchi.
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Theorem 4.2. Suppose that f is holomorphic in a connected open setΩ, has a zero at a pointz0 ∈ Ω, and does not
vanish identically inΩ. Then there exists a neighborhoodU ⊂ Ω of z0, a non-vanishing holomorphic function g on
U, and a unique positive integer n such thatf(z) = (z − z0)

ng(z) for all z ∈ U .

Sincesinπz is analytic, take its Taylor series aboutz0. We add zero to writez asz − z0 + z0. Using properties
of the sine function, we claim

sinπz = sinπ(z + z0 − z0) = sinπ(z − z0) cos πz0 + cos π(z − z0) sinπz0. (4.8)

Note this statement does require proof, but will follow fromstandard properties of the exponential function (or
from analytic continuation). The reason some work needs to be done is thatz− z0 need not be real, but the relation
above does hold whenz is real. What we are trying to do is understand the behavior ofthe function nearz0 from
knowledge near0 (asz − z0 is close to zero). This is a common trick, but of course what makes this tractable is
that we have the angle addition formula for sine.

Whenz0 is an integer, we always havesinπz0 = 0. If z0 is odd thencos πz0 is -1 while if z0 is even it is 1.
Thus for oddz0,

sinπz = − π

1!
(z − z0)

1 +
π3

3!
(z − z0)

3 − π5

5!
(z − z0)

5 + · · · (4.9)

and for evenz0,

sinπz =
π

1!
(z − z0)

1 − π3

3!
(z − z0)

3 +
π5

5!
(z − z0)

5 − · · · . (4.10)

We thus see that all zeros are simple.
We now turn to finding the residue atz = n for 1/ sin πz. From our Taylor expansion above, we have

1

sinπz
=

1

sinπ(z − n) cos πn
=

1

cos πn

1

sinπ(z − n)
. (4.11)

The problem is now solved by using the Taylor expansion of sine and the geometric series. We havecos πn =
(−1)n, so

1

sinπz
= (−1)n

1

π(z − z0)− 1
3!π

3(z − z0)3 + · · ·

=
(−1)n

π(z − z0)

1

1−
(

1
3!π

2(z − z0)2 + · · ·
)

=
(−1)n

π(z − z0)

(

1 +

(

1

3!
π2(z − z0)

2 + · · ·
)

+

(

1

3!
π2(z − z0)

2 + · · ·
)2

+ · · ·
)

.

(4.12)

Note that each term in parentheses in the last line is divisible by (z− z0)
2, and thusnoneof these will contribute to

the residue, which is simply(−1)n/π.

4.2 Chapter 3, Exercise 2

Exercise 4.3.Evaluate the integral
∫ ∞

−∞

dx

1 + x4
.
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Solution: Consider the functionf(z) = 1
1+z4 . This function has poles at

1/f(z) = 0

1 + z4 = 0

z = ei(
π
4
+nπ

2 ). (4.13)

Consider the contour of the semicircle in the upper half plane of radiusR, denotedγ. Denote the part of the
contour along the real lineγ1 and the part along the arcγ2. Note that two of the poles off(z) lie inside this contour.
Thus by Cauchy’s residue theorem,

1

2πi

∮

γ
fdz = Resf (e

iπ/4) + Resf (e
i3π/4). (4.14)

To find the residues, write

f(z) =
1

1 + z4
=

(

1

z − ei
π
4

)(

1

z − ei
3π
4

)(

1

z − ei
5π
4

)(

1

z − ei
7π
4

)

.

Thus

Resf (e
iπ/4) =

(

1

ei
π
4 − ei

3π
4

)(

1

ei
π
4 − ei

5π
4

)(

1

ei
π
4 − ei

7π
4

)

= e−i 3π
4

(

1

1− i

)(

1

2

)(

1

1 + i

)

= −1 + i

4
√
2

(4.15)

and similarly

Resf (e
i 3π

4 ) = e−i 9π
4

(

1

1 + i

)(

1

1− i

)(

1

2

)

=
1− i

4
√
2

(4.16)

Thus we have

1

2πi

∮

γ
fdz = −1 + i

4
√
2
+

1− i

4
√
2

= − i

2
√
2

∮

γ
fdz =

π√
2
. (4.17)

Now, note that
∮

γ
fdz =

∮

γ1+γ2

fdz =

∫

γ1

fdz +

∫

γ2

fdz. (4.18)
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Observe that
∫

γ1

fdz =

∫ R

−R

1

1 + x4
dx

and that
∫

γ2

fdz =

∫ R

−R

1

1 + z4
dx

∣

∣

∣

∣

∫

γ2

fdz

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ R

−R

1

1 + z4
dx

∣

∣

∣

∣

≤ max
z∈γ2

∣

∣

∣

∣

1

1 + z4

∣

∣

∣

∣

πR

=
1

R4 − 1
πR. (4.19)

Thus

lim
R→∞

∣

∣

∣

∣

∫

γ2

fdz

∣

∣

∣

∣

≤ lim
R→∞

πR

R4 − 1
= 0. (4.20)

Hence, asR→ ∞,
∫

γ2
fdz → 0. Therefore asR→ ∞ we get our final result;

lim
R→∞

∫ R

−R

1

1 + x4
dx+ lim

R→∞

∫

γ2

fdz =
π√
2

∫ ∞

−∞

1

1 + x4
dx =

π√
2
. (4.21)

4.3 Chapter 3, Exercise 5

Exercise 4.4.Use contour integration to show that
∫ +∞
−∞

e−2πixξ

(1+x2)2
dx = π

2 (1 + 2π|ξ|)e−2π|ξ| for all ξ real.

Solution: Let f(z) = e−2πizξ

(1+z2)2
= e−2πizξ

(z+i)2(z−i)2
. We see thatf(z) has poles of order2 atz = ±i. Thus

resz0f(z) = lim
z→z0

d

dz
(z − z0)

2f(z). (4.22)

Alternatively, we could write our function as

f(z) =
g(z)

(z − z0)2
, (4.23)

and then we need only compute the coefficient of thez − z0 term ofg.
Now consider the residue atz0 = i:

resz0=if(z) = lim
z→i

d

dz
(e−2πizξ(z + i)−2)

= lim
z→i

(−2πiξe−2πizξ(z + i)−2 − 2e−2πizξ(z + i)−3)

=
1

2
πiξe2πξ − 1

4
ie2πξ. (4.24)
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Forz0 = −i, we have:

resz0=−if(z) = lim
z→i

d

dz
(e−2πizξ(z − i)−2)

= lim
z→−i

(−2πiξe−2πizξ(z − i)−2 − 2e−2πizξ(z − i)−3)

=
1

2
πiξe−2πξ +

1

4
ie−2πξ. (4.25)

Now let us first consider the case whenξ < 0. We will use the contourγ of a semicircle oriented counterclockwise
in the upper half-plane with radiusR. Call the portion ofγ along the real lineγ1 and the arc portionγ2. Note that
there is a pole insideγ atz0 = i. By the residue formula, we have that

∫

γ
f(z)dz = 2πi

(

1

2
πiξe2πξ − 1

4
ie2πξ

)

= −π2ξe2πξ + 1

2
πe2πξ. (4.26)

We also know that
∫ +∞

−∞
f(x)dx = lim

R→∞

∫

γ1

f(z)dz. (4.27)

Along γ2, z = Reiθ anddz = iReiθdθ, wherez = R cos θ + iR sin θ. Thus

∫

γ2

f(z)dz =

∫ π

0

e−2πiξReiθ iReiθ

(1−R2ei2θ)2
dθ. (4.28)

Then it follows that
∣

∣

∣

∣

∫

γ2

f(z)dz

∣

∣

∣

∣

≤
∫ π

0

∣

∣

∣

∣

e−2πiξR cos θe2πξR sin θiReiθ

(1−R2ei2θ)2

∣

∣

∣

∣

dθ

≤
∫ π

0

∣

∣

∣

∣

∣

Re−2π|ξ|R sin θ

(1−R2)2

∣

∣

∣

∣

∣

dθ

≤
∫ π

0

R

(1−R2)2
dθ =

πR

(R2 − 1)2
. (4.29)

Taking the limit asR goes to infinity, we have

lim
R→∞

∣

∣

∣

∣

∫

γ2

f(z)dz

∣

∣

∣

∣

≤ lim
R→∞

πR

(R2 − 1)2
= 0. (4.30)

Thus

lim
R→∞

∫

γ2

f(z)dz = 0. (4.31)

SolimR→∞
∫

γ f(z) = limR→∞
∫

γ1
f(z). It thus follows from Equation 4.26 that

∫ +∞

−∞

e−2πixξ

(1 + x2)2
dx = −π2ξe2πξ + 1

2
πe2πξ

=
π

2
(1 + 2π|ξ|) e−2π|ξ| (4.32)

20



Now considerξ ≥ 0. We will use the contourγ of a semicircle oriented counterclockwise in the lower half-
plane with radiusR. Call the portion ofγ along the real lineγ1 and the arc portionγ2. Note that there is a pole
insideγ atz0 = −i. By the residue formula, we have that

∫

γ
f(z)dz = 2πi

(

1

2
πiξe−2πξ +

1

4
ie−2πξ

)

= −π2ξe−2πξ − 1

2
πe−2πξ . (4.33)

Also note that,
∫ +∞

−∞
f(x)dx = − lim

R→∞

∫

γ1

f(z)dz. (4.34)

Along γ2, z = Reiθ anddz = iReiθdθ, wherez = R cos θ + iR sin θ. Thus,

∫

γ2

f(z)dz =

∫ 0

−π

e−2πiξR cos θe2πξR sin θiReiθ

(1−R2ei2θ)2
dθ. (4.35)

Accordingly,
∣

∣

∣

∣

∫

γ2

f(z)dz

∣

∣

∣

∣

≤
∫

γ2

|f(z)|dz

≤
∫ 0

−π

∣

∣

∣

∣

∣

Re2π|ξ|R sin θ

(1−R2ei2θ)2

∣

∣

∣

∣

∣

dθ

≤
∫ 0

−π

∣

∣

∣

∣

R

(1−R2)2

∣

∣

∣

∣

dθ

=
πR

(1−R2)2
(4.36)

Taking the limit asR goes to infinity, we have

lim
R→∞

∣

∣

∣

∣

∫

γ2

f(z)dz

∣

∣

∣

∣

≤ lim
R→∞

πR

(R2 − 1)2
= 0. (4.37)

And thus,

lim
R→∞

∫

γ2

f(z)dz = 0. (4.38)

SolimR→∞
∫

γ f(z) = limR→∞
∫

γ1
f(z). It thus follows from Equation 4.33 that

∫ +∞

−∞

e−2πixξ

(1 + x2)2
dx = −

(

−π2ξe−2πξ − 1

2
πe−2πξ

)

=
π

2
(1 + 2π|ξ|) e−2π|ξ| (4.39)

Thus for allξ real,
∫ +∞

−∞

e−2πixξ

(1 + x2)2
dx =

π

2
(1 + 2π|ξ|) e−2π|ξ| (4.40)

21



4.4 Chapter 3 Exercise 15d
1 For any entire functionf , let’s consider the functionef(x). It is an entire function and furthermore we have the
real part off is bounded so:

|ef | = |eu+iv| = |eu| ≤ ∞
Henceef is bounded and therefore, by Louisville’s Theorem,ef is constant. It then follows thatf is constant .

Alternatively, we could argue as follows. We are told the real part of f is bounded. Let’s assume that the real
part is always at mostB − 1 in absolute value. Then if we considerg(z) = 1/(B − f(z)) we have|g(z)| ≤ 1.
To see this, note the real part ofB − f(z) is at least 1. We again have constructed a bounded, entire function, and
again by Liouville’s theorem we can concludeg (and hencef ) is constant.

4.5 Chapter 3 Exercise 17a

Exercise 4.5.Let f be non-constant and holomorphic in an open set containing the closed unit disc. Show that if
|f(z)| = 1 whenever|z| = 1, then the image off contains the unit disc.

Solution: Supposef(z) does not have a zero in the unit disc,D. Then1/f(z) is holomorphic inD. Note that
since|f(z)| = 1 whenever|z| = 1, |1/f(z)| = 1/|f(z)| = 1 whenever|z| = 1 as well. Butf(z) is holomorphic
in D, implying |f(z)| ≤ 1 in D by the maximum modulus principle since|f(z)| = 1 on the boundary ofD. We
find 1 ≤ |f(z)| ≤ 1 in the unit disk, which implies that our function is constantas its modulus is constant (we
would like to use Exercise 15d, but that requires our function to be entire; fortunately we can obtain constancy by
the Open Mapping Theorem), contradicting the assumption that f is not constant!

Let w0 ∈ D. Consider the constant functiong(z) = −w0. On the unit circle,|f(z)| = 1 > |w0| = |g(z)| for
all |z| = 1. Thus by Rouch́e’s theorem,f(z) andf(z) + g(z) have the same number of zeroes inside the unit circle
(ie, inD). But we have shown thatf(z) has at least one zero, thus for somezw, 0 = f(zw)+ g(zw) = f(zw)−w0.
Thus for allw0 ∈ D, there existszw such thatf(zw) = w0. Thus the image off(z) contains the unit disc.�

4.6 Additional Problem 1
2 Let:

f(z) =

∞
∑

n=−5

an z
n g(z) =

∞
∑

m=−2

bm z
m

1. We have:
res0f = a−1 res0g = b−1

2. We have

f(z) + g(z) =

−3
∑

n=−5

anz
n +

∞
∑

n=−2

(an + bn)z
n

Sores0(f + g) = a−1 + b−1.

1Hint from Professor Miller
2Hint from Professor Miller
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3. We have−1 = −5 + 4 = −4 + 3 = −3 + 2 = −2 + 1 = −1 + 0 = 0− 1 = 1− 2 so:

res0(f g) = a−5 b4 + a−4 b3 + a−3 b2 + a−2 b1 + a−1 b0 + a0 b−1 + a1 b−2

4. We have (assumingb2 6= 0):

f(z)

g(z)
=

∑∞
n=−5 an z

n

∑∞
m=−2 bm z

m

=
1

z3

∑∞
n=−2 an−3 z

n

∑∞
m=−2 bm z

m

=
1

b−2z

∑∞
n=−2 an−3 z

n

1− (− 1
b−2

∑∞
m=1 bm−2 zm)

. (4.41)

As z → 0 the final quantity in parentheses tends to zero, and thus we can expand using the geometric series
formula. We only care about the constant term of this fraction, as it is multiplied by1/b−2z and thus only the
constant term contributes to the pole. This is a very useful observation. It means that, when we expand with
the geometric series, we can drop many terms, as we only need to keep terms that contribute to the constant
term. Remember, we are not trying to find the Taylor expansionof this function, but rather just one particular
term. We can thus write:

f(z)

g(z)
=

1

b−2z
(

∞
∑

n=−2

an−3 z
n)

∞
∑

k=0

(

− 1

b−2

∞
∑

m=1

bm−2 z
m)

)k

=
1

b−2z

[

(a−5z
−2)

(−1

b−2
(b0z

2 + · · · ) + 1

b2−2

(b2−1z
2 + · · · ) + · · ·

)

+(a−4z
−1)

(−1

b−2
(b−1z

1 + · · · ) + · · ·
)

+ (a−3z
0) (1 + · · · ) + · · · .

]

(4.42)

So:

res0(
f

g
) =

1

b−2

[

a−5(−
b0
b−2

+
b−1

b2−2

) + a−4(−
b−1

b−2
) + a−3

]

.

Can also write it as
a−5z

−5

b−2z−2

1 + (a−4/a−5)z + · · ·
1 + (b−1/b−2)z + · · · =

1

z3
a−5

b−2

p(z)

q(z)
,

and thus we just need thez2 term in the expansion ofh(z) = p(z)/q(z). We can do this by using the quotient rule
twice, ash(z) = h(0) + h′(0)z + h′′(0)z2/2! + · · · . Fortunately we only need to keep up to thez2 terms in the
numerator and denominator, as when we setz = 0 anythingz3 and higher will be zero (even after two derivatives).
Here are the Mathematica commands to take the first and secondderivatives and setz = 0; it’s good to know how
to do this.
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p[z_] := 1 + p1 z + p2 z^2 ;
q[z_] := 1 + q1 z + q2 z^2 ;
f[z_] := p[z]/q[z];
D[p[z]/q[z], z]
Derivative[{2}][f][{z}]
Derivative[{2}][f][{0}]

Can also use Mathematica to take the second derivative of thepolynomial
HW #5: Due Friday, October 27: Chapter 5: Page 155: #6, #7, #9 (extra credit: what is the combinatorial
significance of this problem?). Chapter 3: Page 104: #10. Additional Problems: (1) Find all poles of the
function f(z) = 1/(1 − z2)4 and find the residues at the poles. (2) Consider the mapf(z) = (z − i)/(z + i).
Show that this is a 1-to-1 and onto map from the upper half plane (all z = x+ iy with y > 0) to the unit disk.
(3) Calculate the Weierstrass product forcos(πz) (this is also problem #10b in Chapter 5, and the answer is
listed there), and for tan(πz).
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5 Math 372: Homework #5: Due Monday October 26: Pegado, Vu

HW #5: Due Monday October 26: Chapter 5: Page 155: #6, #7, #9 (extra credit: what is the combinatorial
significance of this problem?). Chapter 3: Page 104: #10. Additional Problems: (1) Find all poles of the
function f(z) = 1/(1 − z2)4 and find the residues at the poles. (2) Consider the mapf(z) = (z − i)/(z + i).
Show that this is a 1-to-1 and onto map from the upper half plane (all z = x+ iy with y > 0) to the unit disk.
(3) Calculate the Weierstrass product forcos(πz) (this is also problem #10b in Chapter 5, and the answer is
listed there), and for tan(πz).

6. Prove Wallis’s product formula

π

2
=

2 · 2
1 · 3 · 4 · 4

3 · 5 . . .
2m · 2m

(2m− 1) · (2m+ 1)
. . . .

[Hint: Use the product formula forsin z at z = π/2.]

6. We know (from p. 142) the product formula for the sine function is

sin(πz)

π
= z

∞
∏

n=1

(

1− z2

n2

)

.

Let z = 1/2. Then,
sin(π/2)

π
=

1

2

∞
∏

n=1

(

1− (1/2)2

n2

)

.

Usingsin(π/2) = 1, we simplify this equation:

1

π
=

∞
∏

n=1

(

1− z2

n2

)

=
1

2

∞
∏

n=1

(

1− 1

(2n)2

)

2

π
=

∞
∏

n=1

(

(2n)2 − 1

(2n)2

)

=

∞
∏

n=1

(

(2n + 1)(2n − 1)

(2n)2

)

. (5.1)

But this implies that
π

2
=

∞
∏

n=1

(

(2n)2

(2n + 1)(2n − 1)

)

,

proving the identity.

7. Establish the following properties of infinite products.
(a) Show that ifΣ|an|2 converges, andan 6= −1, then the product

∏

(1 + an) converges
to a non-zero limit if and only ifΣan converges.

(b) Find an example of a sequence of complex numbers{an} such thatΣan converges
but
∏

(1 + an) diverges.
(c) Also find an example such that

∏

(1 + an) converges andΣan diverges.
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7. a) Let
∑

|an|2 converge witha1 6= −1.
(⇐) First assume

∑

an converges to a nonzero limit. Without loss of generality we may assume that each
an satisfies|an| ≤ 1/2; this is clearly true in the limit (as the sum converges, the summands must tend to zero).
We assume this to facilitate expanding with logarithms. Consider the product

∏

(1 + an). Taking logs, we see
log
(
∏

(1 + an)
)

=
∑

log(1 + an). Settingx = −an and using the Taylor expansion

log(1 + x) = −x+
x2

2
− x3

3
+
x4

4
− · · · ,

we see that

log
(

∏

(1 + an)
)

=
∑

(

an − a2n
2

+
a3n
3

− · · ·
)

.

In general, notice that
∞
∑

k=2

−|x|k ≤
∣

∣

∣

∣

−x
2

2
+
x3

3
− · · ·

∣

∣

∣

∣

≤
∞
∑

k=2

|x|k,

or

−|x|2(1 + |x|+ |x|2 + . . . ) ≤
∣

∣

∣

∣

−x
2

2
+
x3

3
− · · ·

∣

∣

∣

∣

≤ |x|2(1 + |x|+ |x|2 + . . . ).

If a sum
∑

x converges to a nonzero limit, we know that|x| converges to zero; thus we may assume (without
changing convergence) that|x| ≤ 1

2 . Thus using the geometric expansion, we see that1 + |x|+ |x|2 + · · · = 1
1−|x| .

Because|x| ≤ 1
2 , we have that 1

1−|x| ≤ 2. Hence we have that

−2|x|2 ≤
∣

∣

∣

∣

−x
2

2
+
x3

3
− · · ·

∣

∣

∣

∣

≤ 2|x|2.

Recall that we were looking atlog
(
∏

(1+ an)
)

=
∑
(

an − a2n
2 + a3n

3 − · · ·
)

. Since
∑

an converges, we know
eventually we must have|an| < 1/2, so we can assume|an| < 1/2 without changing convergence, and thus use
the simplification involving the geometric series expansion developed in the previous paragraph. Thus we write

log
(

∏

(1 + an)
)

=
∑

(

an − a2n
2

+
a3n
3

− · · ·
)

≤
∑

(

an + 2|an|2
)

=
∑

an + 2
∑

|an|2.
(5.2)

A QUICK WORD OF WARNING. THE ABOVE EQUATION, AND THE ONES BELO W, ARE A LIT-
TLE ODD. REMEMBER THAT OUR SEQUENCE NEED NOT BE JUST REAL NUMB ERS. AS SUCH,
WE MUST BE CAREFUL WITH THE DEFINITION OF ABSOLUTE VALUE. WE A BUSE NOTATION
A BIT – WHEN WE WRITE a ≤ b + c, THIS MEANS THE DESIRED RELATION IS TRUE UP TO A
LINEAR RESCALING. REALLY WHAT WE MEAN IS a = b UP TO AN ERROR AT MOST |c|. WE
REALLY SHOULD WRITE THINGS LIKE |a − b| ≤ c, BUT IN A HOPEFULLY OBVIOUS ABUSE OF
NOTATION....

Since by assumption both
∑

an and
∑

|an|2 converge, we must have that
∑

an + 2
∑

|an|2 is finite, call itL.
Thuslog

(
∏

(1 + an)
)

≤ L, so
∏

(1 + an) ≤ eL, which is again finite. Thus the product converges.
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(⇒) Next assume
∏

(1+an) converges to a nonzero limit. Since
∏

(1+an) is converging to a nonzero limit, the
terms in the product must be converging to1, so we must have|an| approaching zero and we can assume|an| < 1/2
without affecting convergence. We now write:

log
(

∏

(1 + an)
)

=
∑

(

an − a2n
2

+
a3n
3

− · · ·
)

≥
∑

(

an − |an|2
2

− |an|3
3

− · · ·
)

≥
∑

(

an − |an|2 − |an|3 − · · ·
)

.

(5.3)

As before, we substitute in using the geometric series expansion:

log
(

∏

(1 + an)
)

≥
∑

(

an − |an|2 − |an|3 − · · ·
)

=
∑

(

an − |an|2(1 + |an|+ |an|2 + · · · )
)

≥
∑

(

an − 2|an|2
)

=
∑

an − 2
∑

|an|2.
(5.4)

Thus we see thatlog
(
∏

(1 + an)
)

+ 2
∑ |an|2 ≥ ∑

an. Since
∏

(1 + an) and
∑ |an|2 converge, we must

have thatlog
(
∏

(1 + an)
)

+ 2
∑ |an|2 are both finite. Thus our sum

∑

an is bounded by finite terms, and so the
sum must also be finite itself. Hence the sum

∑

an must converge to a finite limit.

b) Let{an} = { i√
1
, −1√

1
, i√

2
, −i√

2
, . . . }. The sum

∑

an converges by the alternating series test, since the absolute
value of the terms approaches zero (one can show this by showing that first the odd terms tend to zero in absolute
value and then that the even terms do as well).

Consider now the product
∏
(

1 + an
)

. For an arbitrary integerN , look at the2N -th partial product:

2N
∏

n=1

(

1 + an

)

=

(

1 +
i√
1

)(

1− i√
1

)

· · ·
(

1 +
i√
2N

)(

1− i√
2N

)

=

(

1− i2√
12

)

· · ·
(

1− i2
√

(2N)2

)

=

(

1 +
1

1

)

· · ·
(

1 +
1

2N

)

=

(

2

1

)

· · ·
(

2N + 1

2N

)

= 2N + 1.

(5.5)

Thus when we evaluate at an even term2N , we see that

lim
2N→∞

2N
∏

n=1

(1 + an) = lim
2N→∞

(2N + 1) = ∞,

so the product diverges. Hence the product diverges at even terms and thus cannot converge in general.
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This was found by settinga2n+1 = −a2n = bn, and then requiring(1 + bn)(1 − bn) = n+1
n (we know this

product diverges). After some algebra we getb2n = −1/n sobn = i/
√
n.

c) For a trivial example, let{an} = {1,−1, 1,−1, . . . }. The sum
∑

an does not converge because the limit of
theN th partial sum asN tends to infinity does not converge; it alternates between0 and1. However, the product
will clearly converge:

∏

an = (1 + 1)(1 − 1)(1 + 1)(1 − 1) · · · = (1)(0)(1)(0) · · · = 0.

For an example in which the sum diverges but the product converges to a nonzero limit, consider the sequence
{an|a2n−1 = 1/

√
n, a2n = −1/(1 +

√
n)}∞n=1. Grouping the pairs2n and2n− 1 together, we see that

∞
∑

m=1

am =

∞
∑

n=1

(

1√
n
− 1

1 +
√
n

)

=

∞
∑

n=1

1

n+
√
n

.

We’ll show that this series diverges. Notice that for every n,

∞
∑

n=1

1

n+
√
n
≥

∞
∑

n=1

1

2n

and since the series on the RHS diverges, by comparison test,so does the series on the LHS. So
∑

an diverges.
However, grouping again the even and odd pair terms, for evenN , we have

N
∏

m=1

(1 + am) =

N/2
∏

n=1

(1 +
1√
n
)(1 − 1√

n+ 1
)

=

N/2
∏

n=1

(1 +
1√
n
− 1√

n+ 1
− 1√

n+ n
)

=

N/2
∏

n=1

(1− −√
n+

√
n+ 1− 1√

n+ n
) =

N/2
∏

n=1

1 = 1

and for odd N,
N
∏

m=1

(1 + am) = (1 +
1√
N

)

which converges to 1 asN → ∞. Thus,
∞
∏

n=1

(1 + an) = 1.

Hence{an} is the desired sequence.
9. Prove that if|z| < 1, then

(1 + z)(1 + z2)(1 + z4)(1 + z8) · · · =
∞
∏

k=0

(

1 + z2
k
)

=
1

1− z
.
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9. Consider the product(1 + z)(1 + z2)(1 + z4)(1 + z8) · · · . Suppose we tried to multiply this product out:
to get one term, we would need to choose either the1 or the power ofz in each term to multiply by. For example,
one term we could get out is simplyz, where we would choose thez in the first term and the1 in every succeeding
term; another way to say this is to writez = z × 1 × 1 × · · · . To write out the entire product, we would have to
make sure we evaluated every possible choice of ones and powers of z.

But this isn’t so bad if we think of choosing terms as countingin binary. In binary counting, a number is written
entirely in terms of 0s and 1s. For any given number, each digit represented a choice between the digit 0 and the
digit 1. If we think of selecting the power ofz in a term as picking1 for a given digit in binary counting, and
selecting the1 in a term as picking0 for a given digit in binary, we can identify a bijective correspondence between
integers written in binary and products from our term (with the exception that000000000 · · · = 1 in our product).
For example, the binary number101 = · · · 000101 = 22 × 1 + 21 × 0 + 20 × 1 = 5, and if choose the terms
(z)(1)(z4)(1)(1) · · · , we see that we get the productz5.

To evaluate our product we must sum over all such possible choices. Since all possible binary numbers together
yield precisely the nonnegative integers, this bijective correspondence importantly tells us that the sum over all such
products will be the sum over all nonnegative powers of z, or1 + z + z2 + z3 + . . . . Thus we have(1 + z)(1 +
z2)(1 + z4)(1 + z8) · · · = 1 + z + z2 + z3 + . . . . Since|z| < 1, we can use the geometric expansion ofz to write
(1 + z)(1 + z2)(1 + z4)(1 + z8) · · · = 1

1−z , as desired.
Significance for combinatorics: notice the way in which our solution invokes combinatorics (such as seeing

how many ways we can choose our terms to make a product).
Alternatively, we can truncate the product and multiply by1 − z. Note that(1 − z)(1 + z) = (1 − z2), then

(1− z2)(1 + z2) = (1− z4), and so

(1− z)(1 + z)(1 + z2)(1 + z4) · · · (1 + z2
k
) = 1− z2

k+1
;

as|z| < 1 the latter tends to 1, and thus

(1 + z)(1 + z2)(1 + z4) · · · (1 + z2
k
) =

1

1− z
− z2

k+1

z − 1
→ 1

1− z
.

Chapter 3

10. Show that ifa > 0, then
∫ ∞

0

log x

x2 + a2
dx =

π

2a
log a.

[Hint: Use the contour in Figure 10.]

10. We will first find the residue atia and then integrate over the given contour. Letf(z) = log z
z2+a2

, where we
take the branch cut of the logarithm along−ib for all b ∈ [0,∞). Furthermore,ia is a zero of order1. Finding the
residue atia, we have

resiaf = lim
z→ia

(z − ia)
log z

z2 + a2
= lim

z→ia
(
log z

z + ia
) =

log ia

2ia
=

log a

2ia
+

π

2a
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Label the contours from the portion on the positive real axisγ1, the larger arcγ2, the portion on the negative real
axisγ3, and the smaller arcγ4. Chooseǫ < min{a, 1}a, R > max{a, 1}. Parametrizeγ1 with z(t) = t from ǫ
to R, γ2 with z(t) = Reit from 0 to π, γ3 with z(t) = t from −R to −ǫ, andγ4 with z(t) = ǫeit from π to 0.
Integrating over theγ2 and taking absolute values, we have

∣

∣

∣

∣

∫

γ2

log z

z2 + a2
dz

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ π

0

logReit

(Reit)2 + a2
Rieitdt

∣

∣

∣

∣

≤
∫ π

0

∣

∣

∣

∣

logReit

R2e2it + a2
Rieit

∣

∣

∣

∣

dt

=

∫ π

0

∣

∣

∣

∣

logReit

R2e2it + a2

∣

∣

∣

∣

Rdt

=

∫ π

0

∣

∣

∣

∣

logR+ it

R2e2it + a2

∣

∣

∣

∣

Rdt

≤
∫ π

0

logR+ |it|
|R2e2it|+ |a2|Rdt

=

∫ π

0

logR+ t

|Re2it|+ |a2|
R

dt ≤
∫ π

0

logR+ t

R+ |a2|
R

dt ≤ π
logR+ π

R+ |a2|
R

sincet, logR > 0. SinceR→ ∞, logR+ π,R+ |a2|
R → ∞, by L’Hopital,

lim
R→∞

logR+ π

R+ |a2|
R

= lim
R→∞

1/R

1− |a2|
R2

= lim
R→∞

1

R− |a2|
R

= 0.

Thus, asR→ ∞, the contribution alongγ2 vanishes to0. Similarly, forγ4, we have
∣

∣

∣

∣

∫

γ4

log z

z2 + a2
dz

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 0

π

log ǫeit

(ǫeit)2 + a2
ǫeitdt

∣

∣

∣

∣

≤
∫ 0

π

∣

∣

∣

∣

log ǫeit

ǫ2e2it + a2
ǫeit
∣

∣

∣

∣

dt

=

∫ 0

π

∣

∣

∣

∣

log ǫeit

ǫ2e2it + a2

∣

∣

∣

∣

ǫdt

=

∫ 0

π

∣

∣

∣

∣

− log ǫ+ it

ǫ2e2it + a2

∣

∣

∣

∣

ǫdt

≤
∫ 0

π

− log ǫ+ |it|
|ǫ2e2it|+ |a2|ǫdt

≤
∫ 0

π

− log ǫ+ t

|ǫe2it|+ |a2|
ǫ

dt ≤
∫ 0

π

− log ǫ+ t

ǫ+ |a2|
ǫ

dt ≤ π
− log ǫ+ π

ǫ+ |a2|
ǫ

dt

sincet,− log ǫ > 0. Sinceǫ→ 0, − log ǫ+ π, ǫ+ |a2|
ǫ → ∞, by L’Hopital,

lim
ǫ→0

− log ǫ+ π

ǫ+ |a2|
ǫ

= lim
ǫ→0

−1/ǫ

1− |a2|
ǫ2

= lim
ǫ→0

−1

ǫ− |a2|
ǫ

= 0.
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Thus, asǫ → 0, the contribution alongγ4 also vanishes to0. For the integral overγ1, γ3, we have

∫

γ1+γ3

log z

z2 + a2
dz =

∫ R

ǫ

log t

t2 + a2
dt+

∫ −ǫ

−R

log s

s2 + a2
ds.

Letting s = −t, we have

∫

γ1+γ3

log z

z2 + a2
dz =

∫ R

ǫ

log t

t2 + a2
dt+

∫ ǫ

R

log−t
(−t)2 + a2

(−1)dt

=

∫ R

ǫ

log t

t2 + a2
dt+

∫ R

ǫ

log−t
t2 + a2

dt

=

∫ R

ǫ

log t

t2 + a2
dt+

∫ R

ǫ

log t+ iπ

t2 + a2
dt

= 2

∫ R

ǫ

log t

t2 + a2
dt+ iπ

∫ R

ǫ

1

t2 + a2
dt = 2

∫ R

ǫ

log t

t2 + a2
dt+

iπ

a
arctan

t

a

∣

∣

∣

∣

R

ǫ

Thus we have, asR→ ∞, ǫ→ 0 and asresiaf = log a
2ia + π

2a , we have

lim
R→∞,ǫ→0

(

2

∫ R

ǫ

log t

t2 + a2
dt+

iπ

a
arctan

t

a

∣

∣

∣

∣

R

ǫ

)

= 2πi

(

log a

2ia
+

π

2a

)

lim
R→∞,ǫ→0

(

2

∫ R

ǫ

log t

t2 + a2
dt

)

+ lim
R→∞,ǫ→0

(

iπ

a
arctan

t

a

∣

∣

∣

∣

R

ǫ

)

=
π log a

a
+
iπ2

a

lim
R→∞,ǫ→0

(

2

∫ R

ǫ

log t

t2 + a2
dt

)

+
iπ2

a
=
π log a

a
+
iπ2

a

lim
R→∞,ǫ→0

(

2

∫ R

ǫ

log t

t2 + a2
dt

)

=
π log a

a
∫ ∞

0

log t

t2 + a2
dt =

π log a

2a

as desired.

Additional Problems

1. Find all poles of the functionf(z) = 1/(1 − z2)4 and find the residues at the poles.

Let g(x) = 1/f(z) = (1 − z2)4 = ((1 + z)(1 − z))4. We see that the zeros ofg are±1, each with order4.
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Hence, the residues are

res1(f) = lim
z→1

1

(4− 1)!

(

d

dz

)4−1

(z − 1)4
1

(1− z2)4

= lim
z→1

1

6

(

d

dz

)3 1

(1 + z)4

= lim
z→1

1

6
(−4)(−5)(−6)

1

(1 + z)7

= lim
z→1

−20

(1 + z)7
=

−20

27
=

−5

32

and

res−1(f) = lim
z→−1

1

(4− 1)!

(

d

dz

)4−1

(z + 1)4
1

(1− z2)4

= lim
z→−1

1

6

(

d

dz

)3 1

(z − 1)4

= lim
z→−1

1

6
(4)(5)(6)

−1

(z − 1)7

= lim
z→−1

−20

(z − 1)7
=

−20

−27
=

5

32

Thus we have found the desired residues.
We sketch an alternative proof. We have

f(z) =
1

(z − 1)4
1

(z + 1)4

=
1

(z − 1)4
1

(z − 1 + 2)4

=
1

(z − 1)4
1

24
1

(1 + z−1
2 )4

=
1

(z − 1)4
1

16

(

1− z − 1

2
+

(z − 1)2

4
− (z − 1)3

8
+ · · ·

)4

. (5.6)

The difficulty is we have to expand the factor to the fourth power well enough to identify the coefficient of(z−1)3.
A little algebra shows it is−5

2(z − 1)3, and thus (remembering the factor 1/16) the residue is just−5/32.

2. Consider the mapf(z) = (z − i)/(z + i). Show that this is a one-to-one and onto map from the upper half
plane (allz = x+ iy with y > 0) to the unit disk.

2. First we’ll show that the range off is the unit disk. Writingz = x+ iy wherex, y ∈ R, y > 0, then we have

|f(x+ iy)| =
∣

∣

∣

∣

x+ (y − 1)i

x+ (y + 1)i

∣

∣

∣

∣

=

√

x2 + (y − 1)2
√

x2 + (y + 1)2
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and sincey > 0,
√

x2 + (y − 1)2 <
√

x2 + (y + 1)2, f(x+ iy) < 1, so the range off is the unit disk.
Now we’ll show that f is injective. Suppose forz1, z2 with imaginary part positive,f(z1) = f(z2). Then

z1 − i

z1 + i
=

z2 − i

z2 + i

(z1 − i)(z2 + i) = (z2 − i)(z1 + i)

z1Z2 + z1i− Z2i+ 1 = z1z2 − z1i+ z2i+ 1

2i(z1 − z2) = 0

z1 = z2. (5.7)

Here’s another, faster way to do the algebra. We add zero:

z1 − i

z1 + i
=

z2 − i

z2 + i
z1 + i− 2i

z1 + i
=

z2 + i− 2i

z2 + i

1− 2i

z1 + i
= 1− 2i

z2 + 1
; (5.8)

it is clear that the only solution is whenz1 = z2.

Now we’ll show thatf is surjective. Given anyw ∈ D, settingz = (w + 1)i/(1 − w), we see that

f(z) =

(w+1)i
(1−w) − i

(w+1)i
(1−w) + i

=
(w + 1)i− (1− w)i

(w + 1)i+ (1− w)i
= w.

Now we’ll show thatz has positive imaginary part. Writingw = x+ iy with x, y ∈ R, x2 + y2 < 1, we have

z = i
(x+ 1) + iy

(1− x)− iy
=

−2y + i(1− y2 − x2)

(1− x)2 + y2
.

So the imaginary part is1− (x2 + y2) > 0, soz has positive imaginary part.

3. Calculate the Weierstrass product forcos(πz) (this is also problem 10b in Chapter 5, and the answer is listed
there) and fortan(πz).

3. By the Euler formulas for sine and cosine, we see that

cos(πz) =
eiπz + e−iπz

2

=
ei

π
2 (eiπz + e−iπz)

2i

=
(eiπ(z+

1
2
) + e−iπ(z− 1

2
))

2i

=
eiπ(

1
2
−z) − e−iπ( 1

2
−z)

2i
= sin(π(

1

2
− z))
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and since the zeros ofsinπz occur only at the integers, the zeros ofcos πz occur atm + 1
2 for all m ∈ Z. Thus,

define the sequence{a2n−1 = n+ 1
2 , a2n = −(n+ 1

2 )}∞n=1, which are precisely the zeros ofcos πz. Furthermore,

since the zeros of sine are of order 1, the zeros of cosine are also of order one. Thus we have, forhk(z) =
∑k

j=1
zj

j ,

grouping together the pairs2n and2n − 1, the Weierstrauss product ofcos πz is, up to a factor ofeh(z) for some
entire functionh,

∞
∏

m=0

(1− z

am
)ehm(z) =

∞
∏

n=0

(1− z

n+ 1
2

)(1− z

−(n+ 1
2 )

)

∞
∏

m=1

ehm(z)

=
∞
∏

n=0

(1− z2

(n+ 1
2)

2
)e

∑

∞

m=1 hm(z)

=

∞
∏

n=0

(1− 4z2

(2n+ 1)2
)e

∑

∞

m=1 hm(z).

Considering
∏∞

n=0(1− 4z2

(2n+1)2
), we’ll show this product converges. Note that

∞
∑

n=1

1

n2
=

∞
∑

n=1

1

(2n)2
+

∞
∑

n=0

1

(2n + 1)2

3

4

∞
∑

n=1

1

n2
=

∞
∑

n=0

1

(2n+ 1)2

so since the sum on the RHS is bounded
∑∞

n=1
1
n2 , a convergent series, the series on the RHS converges as well,

and as the convergence is absolute, the product converges. Thus (up to the exponential of an entire function) the
Weierstrauss product ofcos πz is

∏∞
n=0(1− 4z2

(2n+1)2
).

Next, notice thattan(πz), has poles at odd integer multiples ofπ
2 , and so by definition does not have a Weier-

strass product.

HW: Due Friday, November 3: (1) Evaluate
∫∞
−∞ cos(4x)dx/(x4 +1). (2) Let U be conformally equivalent to

V and V conformally equivalent toW with functions f : U → V and g : V → W . Proveg ◦ f (g composed
with f ) is a bijection. (3) The Riemann mapping theorem asserts that if U and V are simply connected
proper open subsets of the complex plane then they are conformally equivalent. Show that simply connected
is essential: find a bounded open setU that is not simply connected and prove that it cannot be conformally
equivalent to the unit disk. (4) Chapter 8, Page 248: #4. (5) Chapter 8: Page 248: #5. (6) Chapter 8: Page
251: #14.
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6 Math 372: Homework #6: Kung, Lin, Waters: Due Friday, November 3

HW: Due Friday, November 3: (1) Evaluate
∫∞
−∞ cos(4x)dx/(x4 +1). (2) Let U be conformally equivalent to

V and V conformally equivalent toW with functions f : U → V and g : V → W . Proveg ◦ f (g composed
with f ) is a bijection. (3) The Riemann mapping theorem asserts that if U and V are simply connected
proper open subsets of the complex plane then they are conformally equivalent. Show that simply connected
is essential: find a bounded open setU that is not simply connected and prove that it cannot be conformally
equivalent to the unit disk. (4) Chapter 8, Page 248: #4. (5) Chapter 8: Page 248: #5. (6) Chapter 8: Page
251: #14.

1. Evaluate
∫∞
−∞ cos(4x)dx/(x4 + 1). Evaluate

∫∞
−∞ cos(4x)dx/(x4 + 1)

First observe thatcos(4x) = 1
2(e

4ix+e−4ix), sincee4ix = cos(4x)+i sin(4x) ande−4ix = cos(4x)−i sin(4x).
We can rewrite this integral, then, as

∫ ∞

−∞

cos(4x)

x4 + 1
dx =

1

2

∫ ∞

−∞

e4ix + e−4ix

x4 + 1
=

1

2

(
∫ ∞

−∞

e4ix

x4 + 1
dx+

∫ ∞

−∞

e−4ix

x4 + 1
dx

)

and we can evaluate both halves separately.

For both halves, observe that the poles are located atz = e
1
4
πi, e

3
4
πi, e

5
4
πi, e

7
4
πi, since those are the solutions to

z4 + 1 = 0. We can now choose a contour over which to integrate and applythe residue theorem. Our choice of
contour is motivated by the decay of the functions. We need towork in the upper half plane forexp(4iz) to decay,
and in the lower half plane forexp(−4iz) to decay.

For
∫∞
−∞

e4ix

x4+1
dx, consider the contourγ1 that traverses the semicircle of radiusR in the upper half-plane and

the real axis, with standard orientiation. This contour will enclose only the poles atz = e
1
4
πi, e

3
4
πi, so it suffices to

find the residues at those two points in order to apply the residue theorem.
The simplest way to compute the residues is to note that we have simple poles and we may writef(z) =

g(z)/h(z) with h(z) having simple zeros andg, h holomorphic. Then the residue off at a polez0 is just
g(z0)/h

′(z0). For us,g(z0) = exp(4iz0), while h′(z0) = 4z30 .

At e
1
4
πi =

√
2
2 + i

√
2
2 , the residue will be

exp(4i exp(πi/4))

4 exp(iπ/4)3
=

exp(2i(
√
2 + i

√
2))

4 exp(3iπ/4)
=

exp(−2
√
2 + i2

√
2))

−2
√
2 + i2

√
2

.

We can compute this another way as well:

lim
z→e

1
4πi

(z − e
1
4
πi)

e4iz

z4 + 1
dz =

e−2
√
2+2

√
2i

(e
1
4
πi − e

3
4
πi)(e

1
4
πi − e

5
4
πi)(e

1
4
πi − e

7
4
πi)

=
e−2

√
2+2

√
2i

2
√
2(−1 + i)

.
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At e
3
4
πi, the residue will be

lim
z→e

3
4πi

(z − e
3
4
πi)

e4iz

z4 + 1
dz =

e−2
√
2−2

√
2i

(e
3
4
πi − e

1
4
πi)(e

3
4
πi − e

5
4
πi)(e

3
4
πi − e

7
4
πi)

=
e−2

√
2−2

√
2i

2
√
2(1 + i)

.

Thus, the countour integral overγ1 is equal to

2πi

(

e−2
√
2+2

√
2i

2
√
2(−1 + i)

+
e−2

√
2−2

√
2i

2
√
2(1 + i)

)

.

Now let the radius R tend to infinity, and observe that the portion of gamma that is not on the real axis (i.e. the
semicircle of radius R) will make a zero contribution to the integral. In the upper half-plane, the integral is at most
the maximum value of the integrand on our contour times the length of the contour. Since the length of the contour
is πR, then, we have

∣

∣

∣
lim

R→∞

∫

γ1,semicircle

e4iz

z4 + 1
dz
∣

∣

∣
<
∣

∣

∣
lim

R→∞
πReRi

R4 − 1
dx
∣

∣

∣
= 0

(note we needR4 − 1 and noteR4 + 1 in the denominator, as the upper bound occurs when the denominator is as
small as possible in absolute value; this happens whenz4 is negative, which occurs forz = R exp(iπ/4)).

Only the portion of the contour integral that lies on the realaxis makes any non-zero contribution to the integral,
then, so

∫ ∞

−∞

e4ix

x4 + 1
dx = 2πi

(

e−2
√
2+2

√
2i

2
√
2(−1 + i)

+
e−2

√
2−2

√
2i

2
√
2(1 + i)

)

.

As our denominator is non-zero and decays rapidly, andexp(4ix) = cos(4x) + i sin(4x), we see we may drop the
integral from the sine term. The reason is that this is an odd,rapidly decaying function integrated over a symmetric
region, and thus it gives zero. We therefore find

∫ ∞

−∞

cos 4x

x4 + 1
dx = 2πi

(

e−2
√
2+2

√
2i

2
√
2(−1 + i)

+
e−2

√
2−2

√
2i

2
√
2(1 + i)

)

.

WE MAY STOP HERE! There is no need to evaluate the other contour, as it will simply give us another
calculation of our desired integral. For completeness, we include how the calculation would go in the lower half
plane, but again, there is no need to do this!

For
∫∞
−∞

e−4ix

x4+1dx, we can repeat the same process, but we must use a different contour. For this function,e
−4iz

z4+1
won’t vanish asR → ∞ for z in the upper half-plane, since−4iz will have a large positive real component, but it
will vanish in the lower half-plane. Use the contourγ2 consisting of the semicircle of radius R in the lower half-
plane and the real axis;it is very important to note that we are traversing the real axis in the opposite orientation,
running from∞ to−∞. Now, withz restricted to the lower half-plane, our integrand will again vanish, so we have

lim
R→∞

∫

γ2,semi−circle

e−4iz

z4 + 1
dz = 0,
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and we see that
∫

γ2

e−4iz

z4 + 1
dz =

∫ −∞

∞

e−4ix

x4 + 1
dx = −

∫ ∞

−∞

e−4ix

x4 + 1
dx.

Our contourγ2 encloses the poles atexp(54πi) andexp(74πi), so we need to find the residues at those two points.

At e
5
4
πi, the residue will be

lim
z→e

5
4πi

(z − e
5
4
πi)

e−4iz

z4 + 1
dz =

e−2
√
2+2

√
2i

(e
5
4
πi − e

1
4
πi)(e

5
4
πi − e

3
4
πi)(e

1
4
πi − e

7
4
πi)

=
e−2

√
2+2

√
2i

2
√
2(1− i)

.

At e
7
4
πi, the residue will be

lim
z→e

7
4πi

(z − e
7
4
πi)

e−4iz

z4 + 1
dz =

e−2
√
2−2

√
2i

(e
7
4
πi − e

1
4
πi)(e

7
4
πi − e

3
4
πi)(e

7
4
πi − e

5
4
πi)

=
e−2

√
2−2

√
2i

2
√
2(−1− i)

.

The integral overγ2, then, is equal to

2πi

(

e−2
√
2+2

√
2i

2
√
2(1− i)

+
e−2

√
2−2

√
2i

2
√
2(−1− i)

)

.

AsR→ ∞, this equals the integral over the real line; however, remember that we are proceeding with the opposite
orientation, running from∞ to −∞ as we are using a semi-circle in the lower half plane, and thuswe traverse the
real line in the opposite orientation as usual. To fix this andrestore the correct orientation requires a minus sign,
and we find

∫ ∞

−∞

e−4ix

x4 + 1
dx = −2πi

(

e−2
√
2+2

√
2i

2
√
2(1− i)

+
e−2

√
2−2

√
2i

2
√
2(−1− i)

)

.

We then argue as before, namely thatexp(−4ix) = cos(4x)−i sin(4x), and the sine integral does not contribute
as it leads to an odd integral over a symmetric region. Arguing along these lines, we find the same answer as before.

2. Let U be conformally equivalent to V and V conformally equivalent to W with functions f : U → V
and g : V →W . Prove g◦ f (g composed with f) is a bijection.

To prove that g◦ f is a bijection, we need to show that g◦ f is one-to-one and onto.

One-to-one: Consider an arbitraryx1, x2 in U and assume thatg ◦ f(x1) = g ◦ f(x2). We need to show that
x1 = x2. First observe that, since g is one-to-one,g ◦ f(x1) = g ◦ f(x2) impliesf(x1) = f(x2). Since f is also
one-to-one, we have thatx1 = x2, and we are done.
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Onto: Consider an arbitraryx ∈ U . Sinceg is onto, there is somev ∈ V such thatg(v) = x. Sincef is also
onto, there is someu ∈ U such thatf(u) = v. Therefore,g ◦ f(u) = x, sog ◦ f is onto.

Theng ◦ f is one-to-one and onto, so it is a bijection.

3. The Riemann mapping theorem asserts that if U and V are simply connected proper open subsets of the
complex plane then they are conformally equivalent. Show that simply connected is essential. In other words,
find a bounded open set U that is not simply connected and provethat it cannot be conformally equivalent to
the unit disk.

Solution: Consider the punctured unit disc,D−{0}, a bounded open set that is not simply connected. Consider
function f(z)=1/z on a circle of radius 1/2. Then f(z) is holomorphic on the set, since the origin is not included.

If a conformal mapg exists fromD to the punctured disc, then the functionf(z) will map to a holomorphic
function onD, and the circle will be mapped to a closed curve inD. (Technically we proved Cauchy’s theorem,
which we’ll use in a moment, only for simple, non-intersecting curves. One can show that the image of our closed
curve is also a simple, non-intersecting closed curve. If itintersected itself, that would violate the 1-1 property of
our conformal mapg between the two regions.)

We first compute 1
2πi

∫

|z|=1/2 f(z)dz. As f(z) = 1/z, a brute-force computation (or use the Residue Theorem)
tells us that this is just 1.

What if we look at the inverse image of the circle of radius1/2 in the unit disk? Let’s call the inverse image
γ, sog(γ) = {z : |z| = 1/2}. Then, using the change of variables formulas, ifz = g(w) (recallg is our assumed
conformal map fromD to the punctured disk), thendz = g′(w)dw and

1

2πi

∫

|z|=1/2
f(z)dz =

1

2πi

∫

γ
f(g(w))g′(w)dw.

As f andg are holomorphic, so too isf(g(w))g′(w). As we are integrating a holomorphic function over a closed
curve, it is just zero.

We’ve thus computed the integral two different ways, getting 1 as well as 0. As1 6= 0, we have a contradiction
and thus the unit disk and the punctured unit disk are not conformally equivalent.

4. Chapter 8, Page 248: #4.Does there exist a holomorphic surjection from the unit discto the complex plane
C?

Solution: From 8.1.1 in the book, we know that there exists a conformal map from the disc to the upper half-
plane:

f(z) = i
1− z

1 + z
(6.1)

Now we just map this image to the complex plane. We can do so by moving it down i units and then squaring
it. The upper half-planeH represents complex numbers with positive imaginary part (z=x+iy, y>0); however, a
better way to view this is to note that the upper half plane areall numbers of the formr exp(iθ) with r > 0 and
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0 < θ < π. If we were just to square this as is, we would get every angle we need butθ = 0 and every radius we
need butr = 0. The problem is that the upper half plane is an open set and does not include its boundary, the real
axis. We may rectify this by mapping the image of the unit diskunderf , namely the upper half plane, downi units.
We now include the entire real line as well. While our resulting map won’t be 1-1, it will be onto.Nowour region
includes allr ≥ 0 and allθ ∈ [0, π]. Squaring this gives allr ≥ 0 and allθ ∈ [0, 2π], as desired. Thus our next
maps are

g(z) = z − i (6.2)

and
h(z) = z2 (6.3)

The functionsf , g, andh are all holomorphic surjections on the complex plane, soh(g(f(z))) is a holomorphic
surjection that will mapD → H → C.

h(g(f(z))) = h(g(i
1 − z

1 + z
))

= h(i
1 − z

1 + z
− i)

= h(i(
1 − z

1 + z
− 1))

= h(−i 2z

1 + z
)

= − 4z2

(1 + z)2
. (6.4)

5. Chapter 8: Page 248: #5. Provef(z) = −1
2(z + z−1) gives us a conformal map from the half-disk

{z = x+ iy : |z| < 1, y > 0} to the upper half plane.
First, we check thatf(z) is holomorphic. We have thatf ′(z) = −1

2(1 − 1
z2 ) and so it is asz 6= 0. We next

check that this mapping will give us a value in the upper half plane. We takez = x+ iy. Becausez is in the upper
half disk,y > 0. Thus,

f(z) =
−1

2
(x+ iy +

1

x+ iy
)

= −1

2

(

x+ iy +
x− iy

x2 + y2

)

.

Because|z| < 1, we have that|x2 + y2| < 1, and thus the imaginary part inside the parentheses above isnegative,
and thus becomes positive upon multiplication by−1/2. Thusf(z) is inH.

We now show thatf(z) is onto. That is, givenw in the upper half plane, we must find az in the upper half disk
such thatf(z) = −1

2 (z + 1
z ) = w. Thus, we have to solve

z +
1

z
= −2w

−2wz = z2 + 1

z2 + 2wz + 1 = (z + w)2 − (w2 − 1) = 0

(z + w)2 = w2 − 1. (6.5)
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Therefore,
z =

√

w2 − 1−w

and so provingf(z) is onto is equivalent to showing that
√
w2 − 1 − w is in the upper half disk wheneverw is in

the upper half plane. Of course, we could also havez = −
√
w2 − 1− w....

Missing step, added by Professor Miller, though if you see a better way please let me know!The best way I can
think to proceed is to use the general binomial theorem, the relevant part is

√

1− x2 = 1− x2

2
− x4

8
− x6

16
− 5x8

128
− · · · .

If |w| > 1 we write
√

w2 − 1 = w
√

1− 1/w2 = w

(

1− 1

2w2
− 1

8w4
− · · ·

)

= w − 1

2w
− · · · ;

when we subtractw the main term is−1/2w, which is in the upper half plane and less than 1 in absolute value. We
have great convergence because of how rapidly the coefficients decay. If|w| < 1 we use

√

w2 − 1 = i
√

1− w2 = i

(

1− 1

2w2
− 1

8w4
− · · ·

)

;

when we subtractw now we havei− w − 1/2w2; this should be in the upper half disk....
Solution added by Aviv Lipman:We know that the imaginary part ofw is greater than 0 becausew ∈ H. We

know that there exists somez inside the unit disc (including the boundary). The reason isthat the product of the
two roots is 1, so one of the root is inside and one of the roots is outside. Thus we can assume|z| ≤ 1. We need to
prove thatz is inside the upper half disk, so ifz = reiθ, θ should be in(0, π) andr < 1. We have

w = −1

2
(z + z−1)

= −1

2

(

reiθ +
1

reiθ

)

= −1

2

(

r(cos θ + i sin θ) +
1

r(cos θ + i sin θ)

)

= −1

2

(

r(cos θ + i sin θ) +
1

r
(cos θ − i sin θ)

)

,

and the imaginary part of that is−1
2(r − r−1) sin θ. Could |z| = 1? If it did, the imaginary part ofw is now zero,

which meansw ∈ R, which meansw is not in the upper half plane! As the imaginary part ofw is greater than
0, andz is inside unit disc sor is less than 1, and thus the coefficient in front ofsin θ is negative, we findsin θ is
positive and thusθ ∈ (0, 1) as desired.

We now show thatf(z) is one-to-one. To do this, we takef(a) = f(b), with a, b in the upper half disk. Thus,
we have

−1

2

(

a+
1

a

)

= −1

2

(

b+
1

b

)

a+
1

a
= b+

1

b

a2b+ b = ab2 + a

a2b− ab2 − a+ b = (a− b)(ab− 1) = 0.
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We then see that, if(ab − 1) = 0, thenab = 1, soa = 1/b. Becauseb is in the upper half disk,|b| < 1. This
would cause|1/b| = |a| > 1. Because we know thata is in the upper half disk as well, this cannot be the case,
and soab− 1 6= 0. This means then thata− b = 0, and soa = b. Therefore,f(z) is one-to-one, and sof(z) is a
conformal map from the upper half disk to the upper half plane.

6. Chapter 8: Page 251: #14. Prove all conformal maps of the upper half plane to the unit disk are of the
form eiθ(z − β)/(z − β) for θ real and β in the upper half plane.

We first see that, givenf andg two conformal maps fromH to D, we then have thatg−1 : D → H andf ◦ g−1

is a conformal map fromD to D. That is,f ◦ g−1 is an automorphism ofD. From the book, we know thatf ◦ g−1

is of the formeiθ α−z
1−αz for someα in the unit disk. In order to then solve for a general form forf , we can use the

inverse of any functiong : H → D. In other words,f(z) = (f ◦ g−1 ◦ g)(z). We chooseg(z) = z−i
z+i .

We find

f(z) = (f ◦ g−1 ◦ g)(z)

= eiθ
α− g(z)

1− αg(z)

= eiθ
α− z−i

z+i

1− α z−i
z+i

= eiθ
αz+αi−z+i

z+i
z+i−αz+αi

z+i

= eiθ
z − i− αz − αi

z + i− αz + αi

= eiθ
(1− α)z − i(1 + α)

(1− αz) + i(1 + α)
. (6.6)

We have to be a bit careful in simplifying the above. Note the goal is to get a rotation timesz−β overz−β. We
thus need to have just az plus or minus a constant in the numerator and denominator. Wetherefore pull out a1−α
from the numerator and a1−α from the denominator. Note these two quantities have the same norm, and thus their
ratio is of size 1. We can thus write their ratio asexp(iθ′) for someθ′, and henceexp(iθ) exp(iθ′) = exp(iθ′′). We
find

f(z) = exp(iθ′′)
z − i(1 + α)(1 − α)−1

z + i(1 + α)(1− α)−1
.

If we set
β = i(1 + α)(1 − α)−1

then clearly we do have
β = −i(1 + α)(1− α)−1.

We thus have

f(z) = exp(iθ′′)
z − β

z − β
;
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all that remains is to show thatβ is in the upper half plane. This isn’t too bad if we multiply by1:

β = i
1 + α

1− α
· 1− α

1− α
= i

(1 − |α|2) + 2ℑ(α)i
|1− α|2 ;

as|α| < 1 the imaginary part ofβ above is(1− |α|2)/|1 − α|2 > 0, and thusβ ∈ H.

HW: Due Friday, November 10: DO ANY FIVE OUT OF THE FOLLOWING S IX: IF YOU DO MORE,
THAT’S GOOD BUT ONLY THE FIRST FIVE WILL BE GRADED. (1) Consid er the functions fn(x) =
n/(1 + nx2) where n is a positive integer. Prove that eachfn is uniformly continuous on the real line. Is
the family {fn: n a positive integer} equicontinuous on compact sets? (2) Consider a 2 × 2 matrix M with
integer entries and top row(a, b) and bottom row (c, d) such that ad − bc = 1; we denote the set of all such
matrices by SL(2,Z). Consider the mapfM(z) = (az + b)/(cz + d) with z in the upper half plane. Is the
family {fM : M ∈ SL(2,Z)} uniformly bounded on compact sets of the upper half plane? Hint: I think
each map is bounded on compact subsets of the upper half plane, but you can find a sequence of matrices
such that no bound works simultaneously. (3) Letfn(x) = 1 − nx for 0 ≤ x ≤ 1/n and 0 otherwise, and let
F = {fn : n a positive integer}. Prove that lim fn exists and determine it. (4) Consider the family from (3).
Prove it is not normal (the problem is that the convergence isnot uniform). Specifically, to be normal not
only must it converge, but given any epsilon there is anN such that, for all n > N , |fn(x)− f(x)| < ǫ (or this
must hold for a subsequence). (5) Evaluate

∫∞
−∞ x2dx/(x4 +x2+1). (6) Integrate

∫ 2π
0 dθ/(a+ b sin θ), where

a and b are real numbers. What restrictions must we place ona and b in order for this to make sense?
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7 Math 372: Homework #7: Due Friday, November 10: Thompson, Schrock,
Tosteson

HW: Due Friday, November 10: DO ANY FIVE OUT OF THE FOLLOWING S IX: IF YOU DO MORE,
THAT’S GOOD BUT ONLY THE FIRST FIVE WILL BE GRADED. (1) Consid er the functions fn(x) =
n/(1 + nx2) where n is a positive integer. Prove that eachfn is uniformly continuous on the real line. Is
the family {fn: n a positive integer} equicontinuous on compact sets? (2) Consider a 2 × 2 matrix M with
integer entries and top row(a, b) and bottom row (c, d) such that ad − bc = 1; we denote the set of all such
matrices by SL(2,Z). Consider the mapfM(z) = (az + b)/(cz + d) with z in the upper half plane. Is the
family {fM : M ∈ SL(2,Z)} uniformly bounded on compact sets of the upper half plane? Hint: I think
each map is bounded on compact subsets of the upper half plane, but you can find a sequence of matrices
such that no bound works simultaneously. (3) Letfn(x) = 1 − nx for 0 ≤ x ≤ 1/n and 0 otherwise, and let
F = {fn : n a positive integer}. Prove that lim fn exists and determine it. (4) Consider the family from (3).
Prove it is not normal (the problem is that the convergence isnot uniform). Specifically, to be normal not
only must it converge, but given any epsilon there is anN such that, for all n > N , |fn(x)− f(x)| < ǫ (or this
must hold for a subsequence). (5) Evaluate

∫∞
−∞ x2dx/(x4 +x2+1). (6) Integrate

∫ 2π
0 dθ/(a+ b sin θ), where

a and b are real numbers. What restrictions must we place ona and b in order for this to make sense?

(1) Consider the functionsfn(x) = n/(1 + nx2) where n is a positive integer. Prove that eachfn is
uniformly continuous on the real line. Is the family {fn: n a positive integer} equicontinuous on compact
sets?

We must show that, given anyǫ > 0 that there exists aδ such that, for anyx, y ∈ R and anyfn in our family that
whenever|x− y| < δ then|fn(x)− fn(y)| < ǫ.

Suppose|x− y| < δ. Then, by the Mean Value Theorem,

|fn(x)− fn(y)| = |f ′(c)||x− y| < |f ′(c)|δ

So, all we need to show is thatf ′ is bounded. Why? If|f ′(x)| ≤ B for all x, then the above gives

|fn(x)− fn(y)| < B|x− y| < Bδ.

If we takeδ < ǫ/(B + 1) then we see that, whenever|x− y| < δ then|fn(x)− fn(y)| < ǫ, as desired.
We now showf ′ is bounded. We easily find that

f ′(x) =
−2n2x

(1 + nx2)2

f ′′(x) =
−2n2

(1 + nx2)2
− 8n2x2

(1 + nx2)3

Now, setting the second derivative to zero to get

x2 =
1

3n

so there are at most two local extrema. Notice that

lim
x→±∞

f ′(x) = lim
x→±∞

−2n2x

(1 + nx2)2
= lim

x→±∞
−2n2x

x4(n+ 1
x2 )2

= 0,
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which implies that the maximum off ′ cannot occur asx→ ±∞. Thus the maximum value off ′ occurs at both of
x = ±1/

√
3n, and this is the desired bound.

Alternatively, we could argue as follows. We have

|f ′(x)| = 2n2 · |x|
(1 + nx2)2

.

Oncex ≥ 1/n the denominator exceeds the numerator; as|x|/(1 + nx2)2 is continuous on[−1/n, 1/n], it is
bounded on this interval. Thusf ′ is bounded.

(2) Consider a 2x2 matrix M with integer entries and top row (a,b) and bottom row (c,d) such that ad-bc
= 1; we denote the set of all such matrices by SL(2,Z). Consider the map fM (z) = (az + b)/(cz + d) with z
in the upper half plane. Is the family {fM : M in SL(2,Z)} uniformly bounded on compact sets of the upper
half plane? Hint: I think each map is bounded on compact subsets of the upper half plane, but you can find
a sequence of matrices such that no bound works simultaneously.

If we letK be an arbitrary compact subset of the upper half plane, we know eachz ∈ K has its imaginary part
bounded above and below, and similarly for the real parts. Toshow that our family is not uniformly bounded, we
must find a sequence of matrices and points such that the maps applied to these bounds become arbitrarily large in
absolute value.

We’re studying maps of the form

fM(z) =
az + b

cz + d

For problems like this, it is often useful to try and analyze special cases, where the algebra is simpler. Wouldn’t
it be nice if the denominator were just one? Well, to get that and satisfy the conditions, we would have to study
matrices of the form

(

1 n
0 1

)

,

which are in our family. These lead tofM (z) = z + n. Clearly, asn increases, this is not bounded (as the real and
imaginary parts ofz are bounded, so by sendingn→ ∞ we see it is unbounded.

(3) Let fn(x) = 1 − nx for 0 <= x <= 1/n and 0 otherwise, and let F = {fn: n a positive integer}. Prove
that lim fn exists and determine it.

Let x0 6= 0 be a point on the positive real line. Then for alln > N , whereN > 1/|x0|, we havefn(x0) = 0. This
is because

fn(x) =

{

1− nx 0 ≤ x ≤ 1
n

0 otherwise

and

n >
1

|x0|
⇒ |x0| >

1

n
⇒ f(x0) = 0.
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So asn→ ∞, fn → f where

fn(x) =

{

1 x=0

0 otherwise

Of course, we haven’t said anything aboutlimn fn(0); however, as eachfn(0) = 1, it is clear that the limit is 1 as
well. Finally, what happens forx negative? Well, asfn(x) = 0 for x < 0 by definition, thenlimn fn(x) = 0 for x
negative.

(4) Consider the family from (3). Prove it is not normal (the problem is that the convergence is not
uniform). Specifically, to be normal not only must it converge, but given any epsilon there is an N such that,
for all n > N, |fn(x)− f(x)| < epsilon (or this must hold for a subsequence).

Takex = ǫ, y = 0. Then obviously|x− y| ≤ ǫ. But forn such that1n < ǫ:

|fn(x)− fn(y)| = 1.

So, not normal.

(5) Evaluate the integral from -oo to oo ofx2/(x4 + x2 + 1).
Using the quadratic formula we find that the equationz2 + z + 1 = 0 has roots ate2πi/3 ande4πi/3. Therefore

the functionp(z) = z4 + z2 + 1 has roots ateπi/3, e2πi/3, e4πi/3 ande5πi/3. Thus we can rewrite our integral as
∫ ∞

−∞

x2

(x− eπi/3)(x− e2πi/3)(x− e4πi/3)(x− e5πi/3)
dx.

For our contour we will take a semicircle in the upper halfplane of radius R centered at the origin. In this region we
have poles atz = eπi/3 andz = e2πi/3. To find what these residues are at the poles, we recall that ifwe can write a
functionh(z) as a ratio of two entire functionsf(z) andg(z), with g(z) having a simple zero at the pointz0, then
the residue ofh at z0 is simplyf(z0)/g′(z0). Using this we see the residue ofp(z) ateπi/3 is:

e2πi/3

(eπi/3 − e2πi/3)(eπi/3 − e4πi/3)(eπi/3 − e5πi/3)
=

1

12
(3− i

√
3).

Similarly, the residue ofp(z) ate2πi/3 is:

e4πi/3

e2πi/3 − eπi/3)(e2πi/3 − e4πi/3)(e2πi/3 − e5πi/3)
=

1

12
(−3− i

√
3).

The sum of the residuals is therefore−
√
3i/6 = −i/(2

√
3). We now show that the integral over the circular portion

of the contour, call itγ2, contributes nothing in the limit asR→ ∞. Since the length ofγ2 is πR, we have:
∣

∣

∣

∣

∫

γ2

z2

z4 + z2 + 1
dz

∣

∣

∣

∣

≤ πR
R2

R4 −R2 − 1
→ 0.

Therefore in the limit we have:
1

2πi

∫ ∞

−∞

x2

x4 + x2 + 1
dx = −i/(2

√
3),
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which gives
∫ ∞

−∞

x2

x4 + x2 + 1
dx =

π√
3
.

(6) Integrate from 0 to 2pi the function 1 / (a + b sin theta) where a and b are real numbers. What restrictions
must we place on a and b in order for this to make sense?

∫ 2π

0

dθ

a+ b sin θ

z = eiθ, e−iθ = 1/z, dz = izdθ, dθ = −idz/z
∫ 2π

0

dθ

a+ b sin θ
=

∫

γ

−idz
z(a+ b(z − 1/z)/2i)

=

∫

γ

2dz

2iaz + b(z2 − 1)

whereγ is ∂D (the circle bounding the unit disk).
The following lines are the original write-up of the solution; these are based on the previous line having a

factor of 2iaz instead of2iaz2.
This has poles at

z0 =
i

b

(

−a±
√

a2 − b2
)

where the only one inside the unit circle is the plus root. This gives residue:

b

i
√
a2 − b2

So
∫ 2π

0

dθ

a+ b sin θ
=

2πb√
a2 − b2

as long asa2 > b2.
Unfortunately, the abovecannot be correct, as a simple test shows. If we doublea and b, then the original

integral decreases by a factor of 2, while our answer here does not change. Thus theremust be an algebra
error. Below is the corrected argument.

Consider the integral
∫ 2π

0

dθ

a+ b sin θ
.

Making the change of variablesz = eiθ, e−iθ = 1/z, dz = izdθ, dθ = −idz/z, we find

∫ 2π

0

dθ

a+ b sin θ
=

∫

γ

−idz
z(a+ b(z − 1/z)/2i)

=

∫

γ

2dz

b(2i(a/b)z + z2 − 1)

whereγ is ∂D (ie, γ is the unit circle centered at the origin). From the quadratic formula, we see that the integrand
has poles at

z0 = i

(

−a
b
±
√

(a

b

)2
− 1

)
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where the only one inside the unit circle is the plus root. To compute the residue, we use the following fact: if
A(z) = B(z)/C(z) andC(z) is a holomorphic function with a simple zero atz0 andB(z) is holomorphic, then
the residue atz0 is justB(z0)/C

′(z0). This gives a residue of

2

ib
√

(ab )
2 − 1

So
∫ 2π

0

dθ

a+ b sin θ
=

2π√
a2 − b2

as long asa2 > b2 (remember that the residue formula requires the integral tobe multiplied by1/2πi, thus in our
case we must multiply the residue by2πi as our integral was unadorned).

Alternatively, if we factor out ab from the denominator we have

1

b

∫ 2π

0

dθ

(a/b) + sin θ
.

This is solved exactly like the problem on the midterm, except instead of havinga+sin θ we now have(a/b)+sin θ,
with an extra factor of1/b outside. Thus the answer is just

1

b
· 2π
√

(a/b)2 − 1
=

2π√
a2 − b2

.

Notice this solution has all the desired properties. It doesn’t make sense for|a| < |b|. For b fixed anda → ∞ it
converges to2π/a, et cetera. It is always good to do these quick consistency checks.

7.1 Problems.

HW: Due Monday, November 16: (1) LetG(s) =
∫∞
0 exp(−x2)xs−1dx. Find a functional equation forG(s). Hint:

there is a nice expression forG(s+2). (2) LetH(z) = 1+ z2 + z4 + z6 + z8 + · · · . Find an analytic continuation
for H(z). For whatz does your analytic continuation make sense? For whatz is it undefined? What shouldH(2)
equal? (3) LetL(s) =

∫∞
0 xsdx/(x2 +1). For whats does the integral exist? (4) Letζalt(s) =

∑∞
n=1(−1)n−1/ns

(alt for alternating). Prove this series converges forRe(s) > 1. Show thatζalt(s) = ζ(s) − (2/2s)ζ(s) (hint:
group the even and odd terms ofζalt(s) together). From this deduce thatζ(s) = (1 − 21−s)−1ζalt(s). The
importance of this exercise is that, using partial summation, one can show thatζalt(s) is well-defined for alls
with Re(s) > 0. This furnishes yet another analytic continuation ofζ(s) (at least forRe(s) > 0). (5) Show
∫∞
0 x4dx/(1 + x8) = (π/4)

√

1− 1/
√
2. Hint: remember iff(z) = g(z)/h(z) with g, holomorphic andh having

a simple zero atz0, then the residue off at z0 is g(z0)/h′(z0). (6) Chapter 6, Page 175, #5: Use the fact that
Γ(s)Γ(1− s) = π/ sin(πs) to prove that|Γ(1/2 + it)| =

√

2π/(exp(πt) + exp(−πt)) for t real.
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7.2 Problems.

HW: Due Friday, November 17: (1) LetG(s) =
∫∞
0 exp(−x2)xs−1dx. Find a functional equation forG(s). Hint:

there is a nice expression forG(s+2). (2) LetH(z) = 1+ z2 + z4 + z6 + z8 + · · · . Find an analytic continuation
for H(z). For whatz does your analytic continuation make sense? For whatz is it undefined? What shouldH(2)
equal? (3) LetL(s) =

∫∞
0 xsdx/(x2 +1). For whats does the integral exist? (4) Letζalt(s) =

∑∞
n=1(−1)n−1/ns

(alt for alternating). Prove this series converges forRe(s) > 1. Show thatζalt(s) = ζ(s) − (2/2s)ζ(s) (hint:
group the even and odd terms ofζalt(s) together). From this deduce thatζ(s) = (1 − 21−s)−1ζalt(s). The
importance of this exercise is that, using partial summation, one can show thatζalt(s) is well-defined for alls
with Re(s) > 0. This furnishes yet another analytic continuation ofζ(s) (at least forRe(s) > 0). (5) Show
∫∞
0 x4dx/(1 + x8) = (π/4)

√

1− 1/
√
2. Hint: remember iff(z) = g(z)/h(z) with g, holomorphic andh having

a simple zero atz0, then the residue off at z0 is g(z0)/h′(z0). (6) Chapter 6, Page 175, #5: Use the fact that
Γ(s)Γ(1− s) = π/ sin(πs) to prove that|Γ(1/2 + it)| =

√

2π/(exp(πt) + exp(−πt)) for t real.
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8 Math 372: Homework #8: Thompson, Schrock, Tosteson

8.1 Problems.

HW: Due Friday, November 17: (1) LetG(s) =
∫∞
0 exp(−x2)xs−1dx. Find a functional equation forG(s). Hint:

there is a nice expression forG(s+2). (2) LetH(z) = 1+ z2 + z4 + z6 + z8 + · · · . Find an analytic continuation
for H(z). For whatz does your analytic continuation make sense? For whatz is it undefined? What shouldH(2)
equal? (3) LetL(s) =

∫∞
0 xsdx/(x2 +1). For whats does the integral exist? (4) Letζalt(s) =

∑∞
n=1(−1)n−1/ns

(alt for alternating). Prove this series converges forRe(s) > 1. Show thatζalt(s) = ζ(s) − (2/2s)ζ(s) (hint:
group the even and odd terms ofζalt(s) together). From this deduce thatζ(s) = (1 − 21−s)−1ζalt(s). The
importance of this exercise is that, using partial summation, one can show thatζalt(s) is well-defined for alls
with Re(s) > 0. This furnishes yet another analytic continuation ofζ(s) (at least forRe(s) > 0). (5) Show
∫∞
0 x4dx/(1 + x8) = (π/4)

√

1− 1/
√
2. Hint: remember iff(z) = g(z)/h(z) with g, holomorphic andh having

a simple zero atz0, then the residue off at z0 is g(z0)/h′(z0). (6) Chapter 6, Page 175, #5: Use the fact that
Γ(s)Γ(1− s) = π/ sin(πs) to prove that|Γ(1/2 + it)| =

√

2π/(exp(πt) + exp(−πt)) for t real.

8.2 Solutions.

The following are sketches of the solutions to the problems.If you want more details let me know.
Problem: 1 LetG(s) =

∫∞
0 exp(−x2)xs−1dx. Find a functional equation forG(s). Hint: there is a nice expression

for G(s + 2).
Solution: 1 If we change variables we can relate this to the Gamma function. Specifically, letu = x2 sodu = 2xdx
or dx = 1

2u
−1/2du. Then

G(s) =

∫ ∞

0
exp(−u)u(s−1)/2 1

2
u−1/2du =

1

2

∫ ∞

0
exp(−u)us/2−1du =

1

2
Γ(s/2).

ThusG(s) inherits its functional equation from that ofΓ(s).

Problem: 2 LetH(z) = 1 + z2 + z4 + z6 + z8 + · · · . Find an analytic continuation forH(z). For whatz does
your analytic continuation make sense? For whatz is it undefined? What shouldH(2) equal?
Solution: 2 Note this is a geometric series with ratior = x2, and thusH(z) = 1/(1 − z2). It is defined so long as
z 6∈ {−1, 1}, andH(2) should be−1/3.

Problem: 3 LetL(s) =
∫∞
0 xsdx/(x2 + 1). For whats does the integral exist?

Solution: 3 We need things to be well behaved as we go to zero and infinity.We need to decay to a power more
than1/x asx → ∞. Thus we needRe(s) < 1. We must also be well-behaved (it’s hyphenated, so this way I’m
right at least once!) asx → 0 from above. The denominator tends to 1, so we need the numerator to be decaying
slower than1/x. Thus we needRe(s) > −1 to be okay at the origin, and thus combining we need the real part to
be between -1 and 1.

Of course, it’s natural to wonder if we can work with larger real part and exploit cancellation from oscillation
from the imaginary part. Sadly, no!

g[sigma_, t_, m_] := NIntegrate[(x^sigma / (1 + x^2)) Cos[2 Pi t Log[x]], {x,Exp[m/t] Exp[-1/(4 t)], Exp[m/t] Exp[1/(4 t)]}]
h[sigma_, t_, m_] := NIntegrate[(x^sigma / (1 + x^2)) Cos[2 Pi t Log[x]], {x,Exp[m/t] Exp[1/(4 t)], Exp[m/t] Exp[3/(4 t)]}]
g[1, 2, 100]
h[1, 2, 100]
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g[1, 2, 101]
h[1, 2, 101]

We can break into small regions where the function is of constant sign. The maximum amplitude in these win-
dows is decreasing; however, thelengthof these windows is so large (a multiplicative size) that thetotal contribution
is larger the further down you go....

Problem: 4 Let ζalt(s) =
∑∞

n=1(−1)n−1/ns (alt for alternating). Prove this series converges forRe(s) > 1. Show
that ζalt(s) = ζ(s) − (2/2s)ζ(s) (hint: group the even and odd terms ofζalt(s) together). From this deduce that
ζ(s) = (1 − 21−s)−1ζalt(s). The importance of this exercise is that, using partial summation, one can show that
ζalt(s) is well-defined for alls with Re(s) > 0. This furnishes yet another analytic continuation ofζ(s) (at least
for Re(s) > 0).
Solution: 4 Done in class; see your notes. See

http://arxiv.org/pdf/math/0209393v2.pdf

for a nice article on the alternating zeta function.

Problem: 5 Show
∫∞
0 x4dx/(1 + x8) = (π/4)

√

1− 1/
√
2. Hint: remember iff(z) = g(z)/h(z) with g, holo-

morphic andh having a simple zero atz0, then the residue off atz0 is g(z0)/h′(z0).
Solution: 5 Leth(z) = 1 + z8. Note the only poles are when1 + z8 = 0, soz = eiπe2πik/8 for k ∈ {0, 1, . . . , 7}.
We choose as our contour the real axis from−R toR and then a semi-circle in the upper half plane connecting these
extremes. For|z| large,|1 + z8| > |z|8/2, and thus|f(z)| = |z4/(1 + z8)| is bounded by a constant overR4 on
the semi-circle. As the length of that curve isπR, it has a negligible contribution. The claim follows by computing
the residues, which is greatly aided by the observation thatthe residue off at a simple zero of the denominator
(rememberf is a quotient) isg(zk)/h′(zk).

Problem: 6 Chapter 6, Page 175, #5: Use the fact thatΓ(s)Γ(1 − s) = π/ sin(πs) to prove that|Γ(1/2 + it)| =
√

2π/(exp(πt) + exp(−πt)) for t real.
Solution: 6 This follows from noting that|Γ(1/2 + it)| = |Γ(1/2 − it)| andsin z = (eiz − e−iz)/2.

HW: Due Friday December 1: (1) Method of Stationary Phase: Use Laplace’s Method to estimate(2m−1)!! =
∫

∞

−∞
x2m(1/

√
2π) exp(−x2/2)dx,

the 2m-th moment of the standard normal (recall the double factorial is every other term down to2 or 1, so5!! = 5 · 3 · 1 = 15).
DO NOT convert this to a value of a Gamma function and invoke Stirling; the point of this exercise is to go through the Methodof
Stationary Phase to make sure you know how to use it.̆aProblem 2: A Poisson random variableXλ has densityProb(Xλ = n) =
λn exp(−λ)/n! for n a non-negative integer and zero otherwise, withλ > 0. Calculate the Moment Generating Function ofXλ and
of Zλ = (Xλ − µλ)/σλ (wheremuλ, σλ are the mean, standard deviation ofXλ, and show that asλ → ∞ the moment generating
function of Zλ converges to the moment generating function of the standardnormal. What’s particularly nice is that if Xλ1

, Xλ2

are two independent Poisson random variables with the obvious parameters thenXλ1
+ Xλ2

is a Poisson random variable with
parameter λ1 + λ2; thus we can interpret our convergence ofZλ as what happens when we sum independent identically distributed
Poisson random variables and standardize. Problems 3, 4 and5: Do three (3) of the following five (5) problems athttp://web.
williams.edu/Mathematics/sjmiller/public_html/209/HW/209HWmay12.pdf .
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9 Math 372: Homework #9: Miller, Xiong, Webster, Wilcox

HW: Due Friday December 1: (1) Method of Stationary Phase: Use Laplace’s Method to estimate the2m-th moment
of the standard normal, (2m− 1)!! =

∫∞
−∞ x2m(1/

√
2π) exp(−x2/2)dx, (recall the double factorial is every other term

down to 2 or 1, so5!! = 5 · 3 · 1 = 15). DO NOT convert this to a value of a Gamma function and invokeStirling; the
point of this exercise is to go through the Method of Stationary Phase to make sure you know how to use it.̆aProblem
2: A Poisson random variableXλ has densityProb(Xλ = n) = λn exp(−λ)/n! for n a non-negative integer and zero
otherwise, with λ > 0. Calculate the Moment Generating Function ofXλ and of Zλ = (Xλ − µλ)/σλ (wheremuλ, σλ
are the mean, standard deviation ofXλ, and show that asλ → ∞ the moment generating function ofZλ converges
to the moment generating function of the standard normal. What’s particularly nice is that if Xλ1

, Xλ2
are two in-

dependent Poisson random variables with the obvious parameters thenXλ1
+Xλ2

is a Poisson random variable with
parameterλ1+λ2; thus we can interpret our convergence ofZλ as what happens when we sum independent identically
distributed Poisson random variables and standardize. Problems 3, 4 and 5: Do three (3) of the following five (5) prob-
lems athttp://web.williams.edu/Mathematics/sjmiller/public_html/209/HW/209HWmay12.pdf
.

Problem: 1 Method of Stationary Phase: Use Laplace’s Method to estimate (2m− 1)!! =
∫∞
−∞ x2m(1/

√
2π) exp(−x2/2)dx,

the2m-th moment of the standard normal (recall the double factorial is every other term down to2 or 1, so5!! = 5 ·3 ·1 = 15).
DO NOT convert this to a value of a Gamma function and invoke Stirling; the point of this exercise is to go through the Method
of Stationary Phase to make sure you know how to use it.
Solution: 1 While we are told we cannot convert this to a Gamma value, we can mimic the argument from before. We want to
replacex with some function ofm timesx. While it is natural to tryx 7→ mx, it’s better to look atx 7→ √

mx. The reason is
the exponential will be nicer now, and we don’t care if we have

√
m raised to the2m-th power. We get

(2m− 1)!! =
1√
2π
mm

∫ ∞

−∞
e2m log xe−mx2/2

√
mdx =

1√
2π
mm+1/2

∫ ∞

−∞
e−m(x2/2−log x).

So if we write the integrand asexp(−mΦ(x))Ψ(x), thenΦ(x) = x2/2− log x andΨ(x) = 1. We findΦ′(x) = x− 1/x and
Φ′′(x) = 1/x2. Thus, while the derivatives ofΦ(x) are good, the critical point isx = 0 andΦ(0) 6= 0. Thus we want to look
at a slight change, and we need to subtract the value ofΦ(0) which is 1/2.

Thus let’s try

(2m− 1)!!
1√
2π
mmem/2

∫ ∞

−∞
e−m(x2/2−1/2−log x) · 1dx.

Now we take
Φ(x) = x2/2− 1/2− log x, Ψ(x) = 1.

We findΦ(1) = 0, Φ′(1) = 0 andΦ′′(x) = 1/x2. We see the conditions of the theorem are met, and the result now follows
by substituting into the formula from the appendix in the book.

Problem: 2 A Poisson random variableXλ has densityProb(Xλ = n) = λn exp(−λ)/n! for n a non-negative integer and
zero otherwise, withλ > 0. Calculate the Moment Generating Function ofXλ and ofZλ = (Xλ − µλ)/σλ (wheremuλ, σλ
are the mean, standard deviation ofXλ, and show that asλ → ∞ the moment generating function ofZλ converges to the
moment generating function of the standard normal. What’s particularly nice is that ifXλ1

, Xλ2
are two independent Poisson

random variables with the obvious parameters thenXλ1
+ Xλ2

is a Poisson random variable with parameterλ1 + λ2; thus
we can interpret our convergence ofZλ as what happens when we sum independent identically distributed Poisson random
variables and standardize.
Solution: 2 We have

MX(t) = E[etX ] =

∞
∑

n=0

etnλne−λ/n! = e−λ
∞
∑

n=0

(

λet
)n
/n! = e−λeλe

t

= exp
(

λ(et − 1)
)

.
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To find the mean and variance we can take derivatives or we can Taylor expand; I prefer the latter as it highlights some of the
methods we used in finding residues. Noteet − 1 = t + t2/2 + O(t3), and since we only need up tot2 to find the first two
moments we find

MX(t) = 1 + λ(et − 1) + λ2(et − 1)2/2! +O(t3)

= 1 + λ(t+ t2/2 +O(t3)) + λ2(t2 +O(t3))/2! +O(t3)

= 1 + λt+ (λ+ λ2)t2/2 +O(t3);

thus the mean isλ and the second moment isλ+ λ2. Asσ2 = E[X2]− E[X ]2 we getσ2 = λ or σ =
√
λ.

We now use
MX+a

b

(t) = eat/bMX(t/b),

and since
Zλ = (Xλ − µλ)/σλ = (Xλ − λ)/

√
λ

we find
MZ(t) = e−

√
λtMXλ

(t/
√
λ) = e−

√
λt exp

(

λ exp(t/
√
λ)− 1

)

.

Taking logarithms gives

logMZλ
(t) = −

√
λt+ λ

(

et/
√
λ − 1

)

.

We now Taylor expand, and note any cube terms will be negligible when multiplied byλ as they will involve at least(t/
√
λ)3,

finding

logMZλ
(t) = −

√
λt+ λ

(

et/
√
λ − 1

)

= −
√
λt+ λ

(

t√
λ
+
t2

2λ
+O

(

t3

λ3/2

))

= t2/2 +O(t3/
√
λ),

and thus
MZλ

→ et
2/2.

Laplace Questions:
Question 1 (40 points) : Find the Laplace Transforms of: (1)cos(2t); (2) 4t7 − 11t3 + 1; (3) t2e3t; (4)

cosh(t) = et+e−t

2 .

Solution: 1 By direct integration we get (1)s/(4 + s2), (2) (20160 − 66s4 + s7)/s8, (3) 2/(s − 3)3 for s > 3, (4)
s/(s2 − 1) for s > 0.

Question 2 (30 points) : Find the Inverse Laplace Transform of the following (the table in the book or on-
line at
http://en.wikipedia.org/wiki/Laplace transforms#Table of
selected Laplace transforms might be useful): (1)F (s) = 3

s2+4
; (2) F (s) = 2

s2+3s−4
; (3) F (s) =

8s2−4s+12
s(s2+4) .

Solution: 2 (1) 3
2 sin(2t), (2) 2

5 exp(−4t)(−1 + exp(5t)), (3) 3 + 5 cos(2t)− 2 sin(2t). Can use the command

InverseLaplaceTransform[(8 s^2 - 4 s + 12)/(s (s^2 + 4)), s, t]
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for example.

Question 3 (10 points) : Use the Laplace transform to solvey′′ − y′ − 6y = 0 with y(0) = 1, y′(0) = −1.

Solution: 3 If Y (s) is the Laplace Transform ofy(t) then the Laplace Transform ofy(n) issnY (s)−∑n
k=1 s

n−ky(k−1)(0).
Thus

(

s2Y (s)− sy(0)− y′(0)
)

− (sY (s)− y(0)) − 6Y (s) = 0.

We now substitute in and find
(s2 − s− 6)Y (s) = s− 2

and therefore

Y (s) =
s− 2

s2 − s− 6
, or y(t) =

1

5
exp(−2t)(4 + exp(5t))

(used the Mathematica command

InverseLaplaceTransform[(s - 2)/(s^2 - s - 6), s, t]

to find the solution, but could also use a table. Checking by brute force we find our answer is correct.

Question 4 (10 points) : Use the Laplace transform to solvey′′′′ − 4y = 0 with y(0) = 1, y′(0) = 0,
y′′(0) = 2 andy′′′(0) = 0. (NOTE: for those looking for additional problems, #17 fromSection 6.2 is a good one.)

Solution: 4 The problem proceeds similarly as above, and we obtain

1

2
exp(−

√
2t)
(

1 + exp(2
√
2t)
)

.

Question 5 (10 points) : Solvey′′ + y = f(t), wheref(t) = 1 for 0 ≤ t < 3π and0 if 3π ≤ t < ∞ and
subject to the initial conditionsy(0) = 0 andy′(0) = 1.
Solution: 5 The Laplace transform off(t) is (1− exp(−3πs))/s. Thus

(

s2Y (s)− sy(0)− y′(0)
)

+ Y (s) =
1− exp(−3πs)

s
,

and then

(s2 + 1)Y (s) = 1 +
1− exp(−3πs)

s
.

After algebraic simplification we apply the Inverse LaplaceTransform

InverseLaplaceTransform[(1 + ((1 - Exp[-3 Pi s])/s))/(s^2 + 1), s, t]

and find

1 - Cos[t] - (1 + Cos[t]) HeavisideTheta[-3 \[Pi] + t] + Sin[t]

(checking by brute force differentiation gives this is correct).
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