Sequences
(2.2.1) Sequence. A sequence is a function whose domain is N.

(2.2.3) Convergence of a Sequence. A sequence (a,) converges to a real number a if, for every € >0,
there exists an N € N such that whenever n 2 N, it follows that |a,-a| < €.

(2.2.3B) Convergence of a Sequence, Topological Characterization. A sequence (a,) converges to a if,
given any & -neighborhood V' (a) of a, there exists a point in the sequence after which all of the terms
areinV (a) < every V (a) contains all but a finite number of terms of (a,).

(2.2.7) Uniqueness of Limits. The limit of a sequence, when it exists, must be unique.

(2.2.9) Divergence. A sequence that does not converge is said to diverge.

(2.3.1) Bounded. A sequence (x,) is bounded if 3 M >0 such that |[xn| <M foralln € N.

(2.3.2) Every convergent sequence is bounded.

(2.3.3) Algebraic Limit Theorem. Let lim a, = a and lim b, = b. Then, (i) lim(ca,) = ca for all ¢ € R; (ii)
lim(a, + b,) = a + b; (iii) lim(a,b,) = ab; (iv) lim(a,/b,) = a/b provided b # 0.

(2.3.4) Order Limit Theorem. Assume lim a, = a and lim b, = b. Then, (i) if a, 2 0 for all n € N, then
a20; (i) ifa, 2 b, for every n € N, then a 2 b; (iii) If there exists c € R for whichc<a, foralln € N,
thenc<a.

(2.4.3) Convergence of a Series. Let (b,) be a sequence, and define the corresponding sequence of
partial sums (s, ) of the series 2 b, wheres_=b, +b,+...+b_ . The series 2. b, converges to B if the

sequence (s, ) converges to B. Thus, Zb_=B.

(2.4.6) Cauchy Condensation Test. Suppose (b,) is decreasing and satisfies b, 2 0 for alln € N. Then,
the series 2 b, converges if and only if the series 2.2"b,, = b, + 2b, + 4b, + 8b, + ... converges.

(2.4.7) The series 2.1/n” converges if and only if p > 1.

(2.5.1) Subsequences. Let (a,) be a sequence of real numbers, and letn, <n,<n,<....bean
increasing sequence of natural numbers. Then the sequence (a,,, a,,, a,, ...) is called a subsequence
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of (a,) and is denoted by (a,,), where k € N indexes the subsequence.
(2.5.2) Subsequence of a convergent sequence converge to the same limit as the original sequence.

(2.5.5) Bolzano-Weierstrass Theorem. Every bounded sequence contains a convergent subsequence.



(2.6.1) Cauchy Sequence. A sequence (a,) is called a Cauchy sequence if, for every & >0, there exists
an N € N such that whenever m, n 2 N, it follows that |a,-a, | < €.

(2.6.2) Every convergent sequence is a Cauchy sequence.

(2.6.3) Cauchy sequences are bounded.

(2.6.4) Cauchy Criterion. A sequence converges if and only if it is a Cauchy sequence.
Series

(2.7.1) Algebraic Limit Theorem for Series. If 2a, = A and 2 b, = B, then (i) Zca, = cAforallc € R
and (i) Z(a,+ b,) =A +B.

(2.7.2) Cauchy Criterion for Series. The series 2 a, converges if and only if, given € >0, there exists
an N € N such that whenever n>m 2 N, it follows that |a,,, +a, ,,+...+0,| < €.

(2.7.3) If the series 2 a, converges, then the sequence (a,) converges to 0.

(2.7.4) Comparison Test. Assume (a,) and (b,) are sequences satisfying0< a, < b, V k € N. Then, (i) if
2 b, converges, then 2 a, converges and (ii) if 2 a, diverges, then 2 b, diverges.

(2.7.6) Absolute Convergence Test. If the series 2 |a,| converges, then 2 a, converges as well.
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(2.7.7) Alternating Series Test. Let (a,) be a sequence satisfying (i)a,20,2...20,2a,,, 2... and (ii)
(a,) converges to 0. Then, the alternating series > (-1)""a, converges.

Topology of The Reals

(3.2.1) Open. A set O is open if for all points a € O, there existsa V (a) & O.

(3.2.3) (i) The union of an arbitrary collection of open sets is open. (ii) The intersection of a finite
collection of open sets is open.

(3.2.4) Limit Point. A point x is a limit point of a set A if every V (x) intersects the set A at some point
other than x.

(3.2.5) A point x is a limit point of a set A if and only if x = lim a, for some sequence (a,) contained in A
satisfying a, # xforalln € N.

(3.2.6) Isolated Point. A point a € A is an isolated point of A if it is not a limit point of A.



(3.2.7) Closed. A set F S Ris closed if it contains its limit points.

(3.2.8) Aset F S Ris closed if and only if every Cauchy sequence contained in F has a limit that is also
an element of F.

(3.2.10) Density of Q in R. For every y € R, there exists a sequence of rational numbers that
converges to y.

(3.2.11) Closure. Given a set A € R, let L be the set of all limit points of A. The closure of A is defined
tobe Cl(A)=A U L.

(3.2.12) For any A € R, the closure of A is a closed set and is the smallest closed set containing A.
(3.2.13) Aset Ois open if and only if O°is closed.

(3.2.14) (i) The union of a finite collection of closed sets is closed. (ii) The intersection of an arbitrary
collection of closed sets is closed.

(3.3.1) Compactness. A set K S R is compact if every sequence in K has a subsequence that converges
to a limit that is also in K.

(3.3.3) Bounded. A set A & Ris bounded if there exists M >0 such that |a| < M foralla € A.

(3.3.4) Characterization of Compactness in R. A set K S R is compact if and only if it is closed and
bounded.

(3.3.5) If K, 2 K, 2 K; 2 ... is a nested sequence of nonempty compact sets, then the intersection
NK_ is not empty.

(3.3.6) Open Cover. Let A < R. An open cover for A is a (possibly infinite) collection of open sets {0, :
d € D} whose union contains the set A. A finite subcover isa a finite sub collection of open sets from
the original open cover whose union still manages to completely contain A.

(3.3.8) Heine-Borel Theorem. Let K be a subset of R. All of the following statements are equivalent in
the sense that any one of them implies the two others: (i) K is compact; (ii) K is closed and bounded,;
(iii) Every open over for K has a finite subcover.

Functional Limits

(4.2.1) Functional Limit. Let f be defined on A, and let c be the limit point of A. Then, lim__,_f(x) =L
provided that forall >0, 3 >0 suchthat whenever0< |x-c| < it follows that |f(x)- L] <



(4.2.1B) Functional Limit - Topological Characterization. Let ¢ be the limit point of the domain of f.
We say lim,_,_f(x) = L provided that, for every V (L) of L, there exists a V (c) such that forallx € V (c)
it follows that f(x) € V (L).

(4.2.3) Sequential Criterion for Functional Limits. Given a function f defined on A and a limit point c of
A, then lim _ f(x) = L & for all sequences (x,) & A satisfying x, # x and (x,) = ¢, then f(x,) — L.

(4.2.4) Algebraic Limit Theorem for Functional Limits. Let f and g be functions defined on domain A
€ R, and assume that lim,_,_f(x) = L and lim,_,_g(x) = M for some limit point ¢ € A. Then, (i) lim _,_

kf(x) = kL for all k € R, (ii) lim __(f(x) + g(x)) = L + M; lim__ (f(x)g(x)) = LM and (iv) lim(f(x)/g(x)) = L/M,
provided M # 0.

(4.2.5) Divergence Criterion for Functional Limits. Let f be a function defined on A, and ¢ be a limit
point of A. If there exists two sequences (x,), (y,) withx, # candy, # cand lim __x, =lim__y,=c
butlim __f(x,) # lim __fly,), then lim f(x) does not exist.

X—C X—C

(4.3.1) Continuity. A function fis continuous at a pointc € A if, forall >0, thereexistsa >0
such that whenever |x-c| < it follows that |f(x) - f(c)| < . If fis continuous at every point in the
domain A, then fis continuous on A.

(4.3.2) Characterizations of Continuity. Let f, defined on A, and ¢ € A. The function fis continuous at
c if and only if any one of the following conditions is met: (i) For all € >0, there existsa & >0 such
that |x-c| < & implies |f(x) - flc)| < € (ii) Forall V (f(c)), there exists a V (c) such thatx € V (c)
implies f(x) € V (f(c)); (iii) If (x ) = ¢, then f(x,) = f(c); If cis a limit point of A, then the above
conditions are equivalent to (iv) lim __f(x) = f(c).

(4.3.3) Criterion for Discontinuity. Let f, defined on A, and ¢ € A be a limit point of A. If there exists a
sequence (x,) S A where (x,) = ¢ but such that f{x,) does not converge to f(c), we may conclude that f
is not continuous at c.

(4.3.4) Algebraic Continuity Theorem. Assume f, g defined on A, continuous at a point ¢ € A. Then, (i)
kf(x) is continuous at ¢ V k € R; (ii) f(x) + g(x) is continuous at c; (iii) f(x)g(x) is continuous at ¢; and
(iv) fix)/g(x) is continuous at ¢, provided the quotient is defined.

(*) All polynomials are continuous on R.
(4.3.9) Compositions of Continuous Functions. Given f defined on A and g defined on B, and assume
the range f(A) = {f(x) : x € A}is contained in the domain B so that the composition g - f(x) = g(f(x)) is

defined on A. If f is continuous at ¢ € A, and g is continuous at f(c) € B, then g(f(x)) is continuous at c.

(4.4.1) Preservation of Compact Sets. Let f defined on A be continuous on A. If K S A is compact, then
f(K) is compact as well.



(4.4.2) Extreme Value Theorem. If f, defined on K compact, is continuous on K & R, then f attains a
maximum and a minimum value. In other words, there exists x,, x, € K such that f(x,) < f(x) < f(x,) for
allx € K.

(4.4.4) Uniform Continuity. A function f defined on A is uniformly continuous on A if for every € >0,
there existsa & >0 such thatforallx,y € A, |x-y| < & implies |f(x) -fly)| < €.

(4.4.5) Sequential Criterion for Absence of Uniform Continuity. A function defined on A fails to be
uniformly continuous on A if and only if there exists a particular € ;>0 and two sequences (x,), (y,) in
A satisfying |x, -y, | = 0 but |f(x,)-fly,)| 2 €.

(4.4.7) Uniform Continuity on Compact Sets. A function that is continuous on a compact set K is
uniformly continuous on K.

(4.5.1) Intermediate Value Theorem. Let f be defined on [a, b] be continuous. If L is a real number
satisfying f(a) < L < f(b) or fla) > L > f(b), then there exists a point ¢ € (a, b) such that f(c) = L.

(4.5.3) Intermediate Value Property. A function f has the intermediate value property on an interval
[a, b]ifforall x<yin [a, b] and all L between f(x) and f(y), it is always possible to find a point ¢ € (x, y)
where f(c) = L.

Sequences of Functions

(6.2.1) Pointwise Convergence: For eachn € N, let f, be a function defined on set A < R. The
sequence of functions converges pointwise on A to a function fif, (1) for all x € A, the sequence pf
real numbers f,(x) converges to f(x) < forevery >0and x € A, there exists an N such that |f,(x) -
fx)l< VY n2N.

(6.2.3) Uniform Convergence: Let (f,) be a sequence of functions defined on a set A < R. Then, (f,)
converges uniformly on A to a limit function f defined on A if, for every >0, there existsan N € N
such that |f,(x) - fix)| < whenevern2Nandx € A.

(6.2.5) Cauchy Criterion for Uniform Convergence: A sequence of functions (fn) defined on a set A &
R converges uniformly on A if and only if for every € >0, there exists an N € N such that |fn(x) -
fm(x)| < € wheneverm,n2Nandx € A.

(6.2.6) Continuous Limit Theorem: Let (f,) be a sequence of functions defined on A < R that
converges uniformly on A to a function f. If each fn is continuous at ¢ € A, then fis continuous at c.



(6.3.1) Differentiable Limit Theorem: Let f, — f pointwise on the closed interval [a, b], and assume
that each f, is differentiable. If (f,") converges uniformly on [a, b] to a function f, then the function fis
differentiable and f = g.

(6.3.2) Weaker Differentiability Limit Theorem: Let (f,) be a sequence of differentiable functions
defined on the closed interval [a, b], and assume (f,’) converges uniformly on [a, b]. If there exists a
point x, € [a, b] where f (x,) is convergent, then (f,) converges uniformly on [a, b].

(6.3.3) Stronger Differentiable Limit Theorem: Let (f,) be a sequence of differentiable functions
defined on the closed interval [a, b], and (f,’) converges uniformly to a function g on [a, b]. If there
exists a point x, € [a, b] where f,(x,) is convergent, then (f,) converges uniformly. Moreover, the limit
function f = lim f, is differentiable and satisfies f' = g.

Series of Functions

(6.4.1) Convergence of Series of Functions: For each n € N, let f, and f be functions defined on a set
A S R. The infinite series 2 f,(x) converges pointwise on A to f(x) if the sequence s,(x) of partial sums
defined by s,(x) = f,(x) + f,(x) + ... + f,(x) converges pointwise to f(x). The series converges uniformly on
A to fif the sequences s,(x) converges uniformly on A to f(x).

(*) If have series in which functions f, are continuous, then by the Algebraic Continuity Theorem the
partial sums will be continuous as well.

(6.4.2) Term by Term Continuity Theorem. Let f, be continuous functions defined on a set A & R, and
assume that 2 f converges uniformly to a function f. Then, fis continuous on A. Proof idea: Apply
Continuous Limit Theorem (6.2.6) to partial sums s, =f, +f, + ... + f,.

(6.4.3) Term by Term Differentiability Theorem. Let f, be differentiable functions defined on an
interval A, and assume that 2 f ’(x) converges uniformly to a limit g(x) in A. If there exists a point x, €
[a, b] where 2 f (x,) converges, then the series 2 f,(x) converges uniformly to a differentiable
function f(x) satisfying f'(x) = g(x) on A. In other words, f(x) = 2 f (x) and f'(x) = Z f ’(x). Proof idea:
Apply the Stronger Differentiable Limit Theorem to the partial sums s, =f, +f, + ... + f,. and observe
that the Algebraic Differentiability Theorem (5.2.4) implies thats,”=f,"+f,”+ ... + f/

(6.4.4) Cauchy Criterion for Uniform Convergence of a Series. A series 2 f, converges uniformly on A
€ Rifand only if forevery >0, there exists an N € N such that |f, ,,(x) +f ,,(x) +... +f (x)] <
whenevern>m2Nand x € A.

(6.4.5) Weierstrass M-Test. For each n € N, let f, be a function defined on aset A < Rand let M, >0
be a real number satisfying | f,(x)| £ M, for all x € A. If 2 M_ converges, then 2 f, converges

uniformly on A. Proof idea: Cauchy Criterion and the triangle inequality.

Power Series: functions of the form f(x) = Za x" = a, + a,x + a,x* + a,* + ...



(6.5.1) If a power series 2 a,x" converges at some point x, € R, then it converges absolutely for any x
satisfying |x| < |x,|. Proof Idea: Since the series converges, then the sequence of terms is bounded
(converges to 0). Using the hypothesis (if x € R: |x]| < |x,]), find series of M|x/x,|" to be geometric
with ratio |x/x,| < 1, so converges and thus by Comparison Test, converges absolutely.

(*) Implies that the set of points for which a given power series converges must necessarily be {0}, R,
or a bounded interval centered around x = 0. R is referred to as the radius of convergence of a power
series.

(6.5.2) If a power series 2 a x" converges absolutely at a point x0, then it converges uniformly on the
closed interval [-c, c] where ¢ = |x0|. Proof Idea: Application of the Weierstrass M-Test.

(*) if the power series g(x) = 2 a,x" converges conditionally at x = R, then it is possible for it to diverge
when x = -R. Sample with R = 1: 2 (-1)"x"/n.

(6.5.3) Abel’s Lemma. Let b, satisfy b, 2b, 2 b, 2 ... 20, and let 2 a, be a series for which the partial
sums are bounded. In other words, assume that there exists A >0 such that |a, +a,+... +a,| <A for
alln € N.Thenforalln €N, |a,b, +a,b,+... +a,b,| < Ab,.

(6.5.4) Abel’s Theorem. Let g(x) = 2 a,x" be a power series that converges at the point x = R > 0. Then
the series converges uniformly on the interval [0, R]. (Similar result for x = -R.)

(6.5.5) If a power series converges pointwise on the set A € R, then it converges uniformly on any
compact set K € A. Proof idea: Apply Abel’s Theorem (6.5.4) to the max and min of the compact set
K.

(*) Power series is continuous at every point at which it converges.

(6.5.6) If Za x" converges for all x € (-R, R), then the differentiated series 2 na x"* converges at each
X € (-R, R) as well. Consequently, the convergence is uniform on compact sets contained in (-R, R).

(*) Series can converge at endpoint, but differentiated series can diverge. Ex: 2 x"/n at x = -1.

(6.5.7) Assume f(x) = 2 a,x" converges on an interval A < R. Then, the function fis continuous on A
and differentiable on any open interval (-R, R) & A. Moreover, the derivative is given by f'(x) =

> na x"* and fis infinitely differentiable on (-R, R), and the successive derivatives can be obtained via
term by term differentiation of the appropriate series.



Results from psets:

4W:

4F:

5W:

5F:

The limit of a sequence, if it exists, must be unique. First, assume lima,=a and lima, = b, and
proceed to show that a = b.
(Reverse Triangle Inequality): |a + b| £ |a| + |b| = Inverse Triangle Inequality: |a-b]| 2 | |a]
- |b] .
For sequences (x,), (y,):

o (x,) and (yn) divergent but (x, + y,) convergent; x, =n, y, = -n.
(x,) convergent and (y,) convergent, and (x, + y,) converges; impossible by the ALT
(b,) convergent with b, # 0 V n:(1/b,) convergent; b, = 1/n
unbounded (a,) and convergent (b,) and (a, - b,) bounded; impossible
(a,), (b,) such that (a,b,) converges but (b,) does not; (a,) =0, (b,) = n.

o O O O

(Squeeze Theorem): If x, <y <z ¥V n € Nandlimx, =limz =L, thenlimy, =L
(Cesaro Means): If (x,) is a convergent sequence, then the sequence given by the averagesy, =
n'(x, + x, + ... + x_) also converges to the same limit. Note: it is possible for (y ) of averages to
converge even if (x, ) does not. Example: x, = (-1)"
(Limit Superior): lim sup a, =lim _y, wherey_ =sup{a,: k2 n}

oy, converges

o liminfa,= lim __x wherex, =inf{a, : k 2 n}

o liminfa,<lim sup a, for every bounded sequence.

m  Strictinequality when liminfa, =-1limsup a, = 1.
liminfa, =limsup a, if and only if lim an exists, and all three values are equal.

o

For (a,), (b,) Cauchy, we have that:
o c¢,=|a,-b,| is Cauchy while ¢, = (-1)"a, is not Cauchy.

(Infinite product) TTh, = b,b,bs,...
o Understood in terms of sequence of partial products p,, = TTb, = b,b,...b,,
o The sequence of partial products converges if and only if 2 a, converges.
If a,>0andlim (na,) =L # 0, then 2 a, diverges.
Assume that a, > 0 and lim n’a, exists. Then X a, converges.
For sequence (a,):
o If Za, converges absolutely, then Za * converges absolutely



o FALSE: If 2a, converges and (b,) converges, then 2 a,b, converges. Counterexample:
a,=b,= (-1)(V )"
o If Za, converges conditionally, then X n’a, diverges.
e (Ratio Test): Given series 2 a, with a, # 0, the Ratio Test states that if (a,) satisfies lim
la,.,/a,| =r<1,then the series converges absolutely.

n+1!

6W:
6F:
7W:

7F:
e Lipschitz Condition
o A function fis called Lipschitz if there exists a bound M > 0 such that |(f(x) - f(y))/(x -
y)| £ Mforall x # y € A. Geometrically speaking, a function fis Lipschitz if there is a
uniform bound on the magnitude of the slopes of lines drawn through any two points
on the graph of f.
o If fdefined on A is Lipschitz, then it is uniformly continuous on A.
e Inverse function + Topological Characterization of Continuity
o Let g be defined on all of R. If B € R, define the set g*(B) by g*(B) = {x € R: g(x) € B}
m g is continuous if and only if g*(0) is open whenever O € Ris an open set
m if fis a continuous function defined on R,
m g '(K) is not necessarily compact whenever K is compact
m g (F)is closed whenever Fis closed

8W:
8F:
9W:

9F:



