
Sequences 

 

(2.2.1) ​Sequence​. A sequence is a function whose domain is ​N​.  
 

(2.2.3) ​Convergence of a Sequence.​ A sequence (​a​ n​ ) converges to a real number a if, for every ε > 0, 

there exists an ​N​  ∈ ​N​ such that whenever ​n​  ≥ ​N​ , it follows that |​a​ n​  - ​a​ | < ε.  

 

(2.2.3B) ​Convergence of a Sequence, Topological Characterization. ​A sequence (​a​ n​ ) converges to a if, 

given any ε-neighborhood ​V​ε​ (​a​ ) of a, there exists a point in the sequence after which all of the terms 

are in ​V​ε​ (​a​ ) ⇔ every ​V​ε​ (​a​ ) contains all but a finite number of terms of (​a​ n​ ).  

 

(2.2.7) ​Uniqueness of Limits.​ The limit of a sequence, when it exists, must be unique.  

 

(2.2.9) ​Divergence​. A sequence that does not converge is said to diverge.  

 

(2.3.1) ​Bounded​. A sequence (​x​ n​ ) is bounded if ∃ ​M​  > 0 such that |xn| < ​M​  for all ​n​  ∈ ​N​.  
 

(2.3.2) Every convergent sequence is bounded.  

 

(2.3.3) ​Algebraic Limit Theorem​. Let lim ​a​ n​  = ​a​  and lim ​b​ n​  = ​b​ . Then, (i) lim(​ca​ n​ ) = ​ca​  for all ​c​  ∈ ​R​; (ii) 
lim(​a​ n​  + ​b​ n​ ) = ​a​  + ​b​ ; (iii) lim(​a​ n​ b​ n​ ) = ​ab​ ; (iv) lim(​a​ n​ /​b​ n​ ) = ​a​ /​b​  provided ​b​  ≠ 0.  

 

(2.3.4) ​Order Limit Theorem​. Assume lim ​a​ n​  = ​a​  and lim ​b​ n​  = ​b​ . Then, (i) if ​a​ n​  ≥ 0 for all ​n​  ∈ ​N​, then  

a​  ≥ 0; (ii) if ​a​ n​  ≥ ​b​ n​  for every ​n​  ∈ ​N​, then ​a​  ≥ ​b​ ; (iii) If there exists ​c​  ∈ ​R​ for which ​c​  ≤ ​a​ n​  for all ​n​  ∈ N, 

then ​c​  ≤ ​a​ .  

 

(2.4.3) ​Convergence of a Series.​ Let (​b​ n​ ) be a sequence, and define the corresponding sequence of 

partial sums (​s​ m​ ) of the series ∑​b​ n​  where ​s​ m​  = ​b​ 1​ + ​b​ 2​ + … + ​b​ m​ . The series ∑​b​ n​  converges to ​B​  if the 

sequence (​s​ m​ ) converges to ​B​ . Thus, ∑​b​ n​  = ​B​ .  

 

(2.4.6)​ Cauchy Condensation Test.​ Suppose (​b​ n​ ) is decreasing and satisfies ​b​ n​  ≥ 0 for all ​n​  ∈ ​N​. Then, 

the series ∑​b​ n​  converges if and only if the series ∑2​n​ b​ 2​n​  = ​b​ 1​ + 2​b​ 2​ + 4​b​ 4​ + 8​b​ 8​ + … converges.  

 

(2.4.7) The series ∑1/​n​ p​  converges if and only if ​p​  > 1.  

 

(2.5.1) ​Subsequences.​ Let (​a​ n​ ) be a sequence of real numbers, and let ​n​ 1​ < ​n​ 2​ < ​n​ 3​ < …. be an 

increasing sequence of natural numbers. Then the sequence (​a​ n​ 1​, ​a​ n​ 2​, ​a​ n​ 3​, …) is called a subsequence 

of (​a​ n​ ) and is denoted by (​a​ nk​ ), where ​k​  ∈ ​N​ indexes the subsequence.  

 

(2.5.2) Subsequence of a convergent sequence converge to the same limit as the original sequence.  

 

(2.5.5) ​Bolzano-Weierstrass Theorem​. Every bounded sequence contains a convergent subsequence.  

 



(2.6.1) ​Cauchy Sequence​. A sequence (​a​ n​ ) is called a Cauchy sequence if, for every ε > 0, there exists 

an ​N​  ∈ ​N​ such that whenever ​m​ , ​n​  ≥ ​N​ , it follows that |​a​ n​  - ​a​ m​ | < ε.  

 

(2.6.2) Every convergent sequence is a Cauchy sequence.  

 

(2.6.3) Cauchy sequences are bounded.  

 

(2.6.4) ​Cauchy Criterion.​ A sequence converges if and only if it is a Cauchy sequence.  

 

Series  

 

(2.7.1) ​Algebraic Limit Theorem for Series. ​If ∑​a​ k​  = ​A​  and ∑​b​ k​  = ​B​ , then (i) ∑​ca​ k​  = ​cA​  for all ​c​  ∈ ​R 

and (ii) ∑(​a​ k​  + ​b​ k​ ) = ​A ​ + ​B​ .  

 

(2.7.2) ​Cauchy Criterion for Series.​ The series ∑​a​ k​  converges if and only if, given ε > 0, there exists 

an ​N​  ∈ ​N​ such that whenever ​n​  > ​m​  ≥ ​N​ , it follows that |​a​ m​ +1​ + ​a​ m​ +2​ + … + ​a​ n​ | < ε.  

 

(2.7.3) If the series ∑​a​ k​  converges, then the sequence (​a​ k​ ) converges to 0.  

 

(2.7.4) ​Comparison Test. ​Assume (​a​ k​ ) and (​b​ k​ ) are sequences satisfying 0 ≤ ​a​ k​  ≤ ​b​ k​  ∀ ​k​  ∈ ​N​. Then, (i) if 

∑​b​ k​  converges, then ∑​a​ k​  converges and (ii) if ∑​a​ k​  diverges, then ∑​b​ k​  diverges.  

 

(2.7.6) ​Absolute Convergence Test.​ If the series ∑|​a​ n​ | converges, then ∑​a​ n​  converges as well. 
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(2.7.7) ​Alternating Series Test.​ Let (​a​ n​ ) be a sequence satisfying (i) ​a​ 1​ ≥ ​a​ 2​ ≥ … ≥ ​a​ n​  ≥ ​a​ n​ +1​ ≥ … and (ii) 

(​a​ n​ ) converges to 0. Then, the alternating series ∑(-1)​n​ +1​a​ n​  converges.  

 

 

Topology of The Reals 

 

(3.2.1) ​Open​. A set ​O​  is open if for all points ​a​  ∈ ​O​ , there exists a ​V​ε​ (​a​ ) ⊆ ​O​ .  

 

(3.2.3) (i) The union of an arbitrary collection of open sets is open. (ii) The intersection of a finite 

collection of open sets is open.  

 

(3.2.4) ​Limit Point. ​A point ​x​  is a limit point of a set ​A​  if every ​V​ε​ (​x​ ) intersects the set ​A​  at some point 

other than ​x​ .  

 

(3.2.5) A point ​x​  is a limit point of a set ​A​  if and only if ​x​  = lim ​a​ n​  for some sequence (​a​ n​ ) contained in ​A 

satisfying ​a​ n​  ≠ ​x​  for all ​n​  ∈ ​N​.  
 

(3.2.6) ​Isolated Point​. A point ​a​  ∈ ​A​  is an isolated point of ​A​  if it is not a limit point of ​A​ .  



 

(3.2.7) ​Closed​. A set ​F​  ⊆ ​R​ is closed if it contains its limit points.  

 

(3.2.8) A set ​F​  ⊆ ​R​ is closed if and only if every Cauchy sequence contained in ​F​  has a limit that is also 

an element of ​F​ .  

 

(3.2.10) ​Density of Q in R​. For every ​y​  ∈ ​R​, there exists a sequence of rational numbers that 

converges to ​y​ .  

 

(3.2.11) ​Closure​. Given a set ​A​  ⊆ ​R​, let ​L​  be the set of all limit points of ​A​ . The closure of ​A​  is defined 

to be Cl(​A​ ) = ​A​  ∪ ​L​ .  

 

(3.2.12) For any ​A​  ⊆ ​R​, the closure of ​A​  is a closed set and is the smallest closed set containing ​A​ .  

 

(3.2.13) A set ​O​  is open if and only if ​O​ c​  is closed. 

 

(3.2.14) (i) The union of a finite collection of closed sets is closed. (ii) The intersection of an arbitrary 

collection of closed sets is closed.  

 

(3.3.1) ​Compactness​. A set ​K​  ⊆ ​R​ is compact if every sequence in ​K​  has a subsequence that converges 

to a limit that is also in ​K​ .  

 

(3.3.3) ​Bounded​. A set ​A​  ⊆ ​R​ is bounded if there exists ​M​  > 0 such that |​a​ | < ​M​  for all ​a​  ∈ ​A​ .  

 

(3.3.4) ​Characterization of Compactness in R​. A set ​K​  ⊆ ​R​ is compact if and only if it is closed and 

bounded.  

 

(3.3.5) If ​K​ 1​ ⊇ ​K​ 2​ ⊇ ​K​ 3​ ⊇ … is a nested sequence of nonempty compact sets, then the intersection 

∩​K​ n​  is not empty.  

 

(3.3.6) ​Open Cover. ​Let ​A​  ⊆ ​R​. An open cover for ​A​  is a (possibly infinite) collection of open sets {​O​ d​  : 

d​  ∈ ​D​ } whose union contains the set A. A finite subcover isa a finite sub collection of open sets from 

the original open cover whose union still manages to completely contain ​A​ .  

 

(3.3.8) ​Heine-Borel Theorem​. Let ​K​  be a subset of ​R​. All of the following statements are equivalent in 

the sense that any one of them implies the two others: (i) ​K​  is compact; (ii) ​K​  is closed and bounded; 

(iii) Every open over for ​K​  has a finite subcover. 

 

 

Functional Limits 

 

(4.2.1) ​Functional Limit.​ Let ​f​  be defined on ​A​ , and let ​c​  be the limit point of ​A​ . Then, lim​x​ →​c ​ f​ (​x​ ) = ​L 

provided that for all ​ε​  > 0, ∃ ​δ​  > 0 such that whenever 0 < |​x​  - ​c​ | < ​δ​  it follows that |​f​ (​x​ ) - ​L​ | < ​ε​ .  



 

(4.2.1B) ​Functional Limit - Topological Characterization​. Let ​c​  be the limit point of the domain of ​f​ . 

We say lim​x​ →​c ​ f​ (​x​ ) = ​L​  provided that, for every ​V​ε​ (​L​ ) of ​L​ , there exists a ​V​δ​ (​c​ ) such that for all ​x​  ∈ ​V​δ​ (​c​ ) 

it follows that ​f​ (​x​ ) ∈ ​V​ε​ (​L​ ).  

 

(4.2.3) ​Sequential Criterion for Functional Limits​. Given a function ​f​  defined on ​A​  and a limit point ​c​  of 

A​ , then lim​x​ →​c ​ f​ (​x​ ) = ​L​  ⇔ for all sequences (​x​ n​ ) ⊆ ​A​  satisfying ​x​ n​  ≠ ​x​  and (​x​ n​ ) → ​c​ , then ​f​ (​x​ n​ ) → ​L​ .  

 

(4.2.4) ​Algebraic Limit Theorem for Functional Limits​. Let ​f​  and ​g​  be functions defined on domain ​A 

⊆ ​R​, and assume that lim​x​ →​c​  ​f​ (​x​ ) = ​L​  and lim​x​ →​c​  ​g​ (​x​ ) = ​M​  for some limit point ​c​  ∈ ​A​ . Then, (i) lim​x​ →​c 

kf​ (​x​ ) = ​kL​  for all ​k​  ∈ ​R​, (ii) lim​x​ →​c ​ (​f​ (​x​ ) + ​g​ (​x​ )) = ​L​  + ​M​ ; lim​x​ →​c​ (​f​ (​x​ )​g​ (​x​ )) = ​LM​  and (iv) lim(​f​ (​x​ )/​g​ (​x​ )) = ​L​ /​M​ , 

provided ​M​  ≠ 0.  

 

(4.2.5) ​Divergence Criterion for Functional Limits​. Let ​f​  be a function defined on ​A​ , and ​c​  be a limit 

point of ​A​ . If there exists two sequences (​x​ n​ ), (​y​ n​ ) with ​x​ n​  ≠ ​c​  and ​y​ n​  ≠ ​c​  and lim​x​ →​c​  ​x​ n​  = lim​x​ →​c​  ​y​ n​  = ​c 

but lim​x​ →​c​  ​f​ (​x​ n​ ) ≠ lim​x​ →​c​  ​f​ (​y​ n​ ), then lim ​f​ (​x​ ) does not exist.  

 

(4.3.1) ​Continuity​. A function ​f​  is continuous at a point ​c​  ∈ ​A​  if, for all ​ε​  > 0, there exists a ​δ​  > 0 

such that whenever |​x​  - ​c​ | < ​δ​  it follows that |​f​ (​x​ ) - ​f​ (​c​ )| < ​ε​ . If ​f​  is continuous at every point in the 

domain ​A​ , then ​f​  is continuous on ​A​ .  

 

(4.3.2) ​Characterizations of Continuity​. Let ​f​ , defined on ​A​ , and ​c​  ∈ ​A​ . The function ​f​  is continuous at 

c​  if and only if any one of the following conditions is met: (i) For all ε > 0, there exists a δ > 0 such 

that |​x​  - ​c​ | < δ implies |​f​ (​x​ ) - ​f​ (​c​ )| < ε; (ii) For all ​V​ε​ (​f​ (​c​ )), there exists a ​V​δ​ (​c​ ) such that ​x​  ∈ ​V​δ​ (​c​ ) 

implies ​f​ (​x​ ) ∈ ​V​ε​ (​f​ (​c​ )); (iii) If (​x​ n​ ) → ​c​ , then ​f​ (​x​ n​ ) → ​f​ (​c​ ); If ​c​  is a limit point of ​A​ , then the above 

conditions are equivalent to (iv) lim​x​ →​c ​ f​ (​x​ ) = ​f​ (​c​ ).  

 

(4.3.3) ​Criterion for Discontinuity​. Let ​f​ , defined on ​A​ , and ​c​  ∈ ​A​  be a limit point of ​A​ . If there exists a 

sequence (​x​ n​ ) ⊆ ​A​  where (​x​ n​ ) → ​c​  but such that ​f​ (​x​ n​ ) does not converge to ​f​ (​c​ ), we may conclude that ​f 
is not continuous at ​c​ .  

 

(4.3.4) ​Algebraic Continuity Theorem​. Assume ​f​ , ​g​  defined on ​A​ , continuous at a point ​c​  ∈ ​A​ . Then, (i) 

kf​ (​x​ ) is continuous at ​c​  ∀ ​k​  ∈ ​R​; (ii) ​f​ (​x​ ) + ​g​ (​x​ ) is continuous at ​c​ ; (iii) ​f​ (​x​ )​g​ (​x​ ) is continuous at ​c​ ; and 

(iv) ​f​ (​x​ )/​g​ (​x​ ) is continuous at ​c​ , provided the quotient is defined.  

 

(*) All polynomials are continuous on ​R​.  
 

(4.3.9) ​Compositions of Continuous Functions​. Given ​f ​ defined on ​A​  and ​g​  defined on ​B​ , and assume 

the range ​f​ (​A​ ) = {​f​ (​x​ ) : ​x​  ∈ ​A​ } is contained in the domain ​B​  so that the composition ​g​  ⋅ ​f​ (​x​ ) = ​g​ (​f​ (​x​ )) is 

defined on ​A​ . If f is continuous at ​c​  ∈ ​A​ , and ​g​  is continuous at ​f​ (​c​ ) ∈ ​B​ , then ​g​ (​f​ (​x​ )) is continuous at ​c​ .  

 

(4.4.1) ​Preservation of Compact Sets​. Let ​f​  defined on ​A​  be continuous on ​A​ . If ​K​  ⊆ ​A​  is compact, then 

f​ (​K​ ) is compact as well.  



 

(4.4.2) ​Extreme Value Theorem​. If ​f​ , defined on ​K​  compact, is continuous on ​K​  ⊆ ​R​, then ​f​  attains a 

maximum and a minimum value. In other words, there exists ​x​ 0​, ​x​ 1​ ∈ ​K​  such that ​f​ (​x​ 0​) ≤ ​f​ (​x​ ) ≤ f(​x​ 1​) for 

all ​x​  ∈ ​K​ .  

 

(4.4.4) ​Uniform Continuity​. A function ​f​  defined on ​A​  is uniformly continuous on ​A​  if for every ε > 0, 

there exists a δ > 0 such that for all ​x​ , ​y​  ∈ ​A​ , |​x ​ - ​y​ | < δ implies |​f​ (​x​ ) - ​f​ (​y​ )| < ε.  

 

(4.4.5) ​Sequential Criterion for Absence of Uniform Continuity​. A function defined on ​A​  fails to be 

uniformly continuous on ​A​  if and only if there exists a particular ε​0​ > 0 and two sequences (​x​ n​ ), (​y​ n​ ) in 

A​  satisfying |​x​ n​  - ​y​ n​ | → 0 but |​f​ (​x​ n​ ) - ​f​ (​y​ n​ )| ≥ ε​0​.  
 

(4.4.7) ​Uniform Continuity on Compact Sets​. A function that is continuous on a compact set ​K​  is 

uniformly continuous on ​K​ .  

 

(4.5.1) ​Intermediate Value Theorem​. Let ​f​  be defined on [​a​ , ​b​ ] be continuous. If ​L​  is a real number 

satisfying ​f​ (​a​ ) < ​L​  < ​f​ (​b​ ) or ​f​ (​a​ ) > ​L​  > ​f​ (​b​ ), then there exists a point ​c​  ∈ (​a​ , ​b​ ) such that ​f​ (​c​ ) = ​L​ .  

 

(4.5.3) ​Intermediate Value Property​. A function ​f​  has the intermediate value property on an interval 

[​a​ , ​b​ ] if for all ​x​  < ​y​  in [​a​ , ​b​ ] and all ​L​  between ​f​ (​x​ ) and ​f​ (​y​ ), it is always possible to find a point ​c​  ∈ (​x​ , ​y​ ) 

where ​f​ (​c​ ) = ​L​ .  

 

  

 

Sequences of Functions 

 

(6.2.1) ​Pointwise Convergence:​ For each ​n​  ∈ ​N​ , let ​f​ n​  be a function defined on set ​A​  ⊆ ​R​. The 

sequence of functions converges pointwise on ​A​  to a function ​f​  if, (1) for all ​x​  ∈ ​A​ , the sequence pf 

real numbers ​f​ n​ (​x​ ) converges to ​f​ (​x​ ) ⇔ for every ​ε​  > 0 and ​x​  ∈ ​A​ , there exists an ​N​  such that |​f​ n​ (​x​ ) - 

f​ (​x​ )| < ​ε​  ∀ ​n​  ≥ ​N​ .  

 

(6.2.3) ​Uniform Convergence: ​Let (​f​ n​ ) be a sequence of functions defined on a set ​A​  ⊆ ​R​. Then, (​f​ n​ ) 

converges uniformly on ​A​  to a limit function ​f​  defined on ​A​  if, for every ​ε​  > 0, there exists an ​N​  ∈ ​N 

such that |​f​ n​ (​x​ ) - ​f​ (​x​ )| < ​ε​  whenever ​n​  ≥ ​N​  and ​x​  ∈ ​A​ .  

 

(6.2.5) ​Cauchy Criterion for Uniform Convergence: ​A sequence of functions (fn) defined on a set A ⊆ 

R converges uniformly on A if and only if for every ε > 0, there exists an N ∈ N such that |fn(x) - 

fm(x)| < ε whenever m, n ≥ N and x ∈ A.  

 

(6.2.6) ​Continuous Limit Theorem:​ Let (​f​ n​ ) be a sequence of functions defined on ​A​  ⊆ ​R​ that 

converges uniformly on A to a function f. If each fn is continuous at c ∈ A, then f is continuous at c.  

 



(6.3.1) ​Differentiable Limit Theorem: ​Let ​f​ n​  → ​f​  pointwise on the closed interval [​a​ , ​b​ ], and assume 

that each ​f​ n​  is differentiable. If (​f​ n​ ’​ ) converges uniformly on [​a​ , ​b​ ] to a function ​f​ , then the function ​f​  is 

differentiable and ​f’​  = ​g​ .  

 

(6.3.2) ​Weaker Differentiability Limit Theorem:​ Let (​f​ n​ ) be a sequence of differentiable functions 

defined on the closed interval [​a​ ,​ b​ ], and assume (​f​ n​ ’​ ) converges uniformly on [​a​ , ​b​ ]. If there exists a 

point ​x​ 0​ ∈ [​a​ , ​b​ ] where ​f​ n​ (​x​ 0​) is convergent, then (​f​ n​ ) converges uniformly on [​a​ , ​b​ ].  

 

(6.3.3) ​Stronger Differentiable Limit Theorem: ​Let (​f​ n​ ) be a sequence of differentiable functions 

defined on the closed interval [​a​ ,​ b​ ], and (​f​ n​ ’​ ) converges uniformly to a function ​g​  on [​a​ , ​b​ ]. If there 

exists a point ​x​ 0​ ∈ [​a​ , ​b​ ] where ​f​ n​ (​x​ 0​) is convergent, then (​f​ n​ ) converges uniformly. Moreover, the limit 

function ​f​  = lim ​f​ n​  is differentiable and satisfies ​f’​  = ​g​ .  

 

Series of Functions 

 

(6.4.1) ​Convergence of Series of Functions​: For each ​n​  ∈ ​N​, let ​f​ n​  and ​f​  be functions defined on a set 

A​  ⊆ ​R​. The infinite series ∑​ ​f​ n​ (​x​ ) ​converges pointwise​  on ​A​  to ​f​ (​x​ ) if the sequence ​s​ k​ (​x​ ) of partial sums 

defined by ​s​ k​ (​x​ ) = ​f​ 1​(x) + ​f​ 2​(x) + … + ​f​ k​ (​x​ ) converges pointwise to ​f​ (​x​ ). The series ​converges uniformly​  on 

A​  to ​f​  if the sequences ​s​ k​ (​x​ ) converges uniformly on ​A​  to ​f​ (​x​ ).  

 

(*) If have series in which functions ​f​ n​  are continuous, then by the Algebraic Continuity Theorem the 

partial sums will be continuous as well.  

 

(6.4.2) ​Term by Term Continuity Theorem.​ Let ​f​ n​  be continuous functions defined on a set ​A​  ⊆ ​R​, and 

assume that ∑​f​ n​  converges uniformly to a function ​f​ . Then, ​f​  is continuous on ​A​ . ​Proof idea:​ Apply 

Continuous Limit Theorem (6.2.6) to partial sums ​s​ k​  = ​f​ 1​ + ​f​ 2​ + … + ​f​ k​ .  

 

(6.4.3) ​Term by Term Differentiability Theorem​. Let ​f​ n​  be differentiable functions defined on an 

interval ​A​ , and assume that ∑​f​ n​ ’(​x​ ) converges uniformly to a limit ​g​ (​x​ ) in ​A​ . If there exists a point ​x​ 0​ ∈ 

[​a​ , ​b​ ] where ∑​ ​f​ n​ (​x​ 0​) converges, then the series ∑​f​ n​ (​x​ ) converges uniformly to a differentiable 

function ​f​ (​x​ ) satisfying ​f’​ (​x​ ) = ​g​ (​x​ ) on ​A​ . In other words, ​f​ (​x​ )  = ∑​ ​f​ n​ (​x​ ) and ​f’​ (​x​ ) = ∑​ ​f​ n​ ’​ (​x​ ). ​Proof idea: 

Apply the Stronger Differentiable Limit Theorem to the partial sums ​s​ k​  = ​f​ 1​ + ​f​ 2​ + … + ​f​ k​ . and observe 

that the Algebraic Differentiability Theorem (5.2.4) implies that ​s​ k​ ’ ​ = ​f​ 1​’​  + ​f​ 2​’​  + … + ​f​ k​ ’ 

 

(6.4.4) ​Cauchy Criterion for Uniform Convergence of a Series​. A series ∑​f​ n​  converges uniformly on ​A 

⊆ ​R​ if and only if for every ​ε​  > 0, there exists an ​N​  ∈ ​N​ such that |​f​ m​ +1​(x) + ​f​ m​ +2​(​x​ ) + … + ​f​ n​ (​x​ )| < ​ε  

whenever ​n​  > ​m​  ≥ ​N​  and ​x​  ∈ ​A​ . 

 

(6.4.5) ​Weierstrass M-Test​. For each ​n​  ∈ ​N​, let ​f​ n​  be a function defined on a set ​A​  ⊆ ​R​ and let ​M​ n​  > 0 

be a real number satisfying |​ ​f​ n​ (​x​ )| ≤ ​M​ n​  for all ​x​  ∈ ​A​ . If ∑​M​ n​  converges, then ∑​f​ n​  converges 

uniformly on ​A​ . ​Proof idea​: Cauchy Criterion and the triangle inequality.  

 

Power Series​: functions of the form f(x) = ∑​a​ n​ x​ n​  = ​a​ 0​ + ​a​ 1​x​  + ​a​ 2​x​ 2​ + ​a​ 3​x​ 3​ + … 



 

(6.5.1) If a power series ∑​a​ n​ x​ n ​  ​ converges at some point ​x​ 0​ ∈ ​R​, then it converges absolutely for any ​x 

satisfying |​x​ | < |​x​ 0​|. ​Proof Idea: ​Since the series converges, then the sequence of terms is bounded 

(converges to 0). Using the hypothesis (if ​x​  ∈ ​R​ : |​x​ | < |​x​ 0​|), find series of ​M​ |​x​ /​x​ 0​|​
n​  to be geometric 

with ratio |​x​ /​x​ 0​| < 1, so converges and thus by Comparison Test, converges absolutely.  

 

(*)  Implies that the set of points for which a given power series converges must necessarily be {0}, ​R​, 
or a bounded interval centered around ​x​  = 0. R is referred to as the radius of convergence of a power 

series.  

 

(6.5.2) If a power series ∑​a​ n​ x​ n​  converges absolutely at a point x0, then it converges uniformly on the 

closed interval [-c, c] where c = |x0|. ​Proof Idea​: Application of the Weierstrass M-Test.  

 

(*) if the power series g(x) = ∑​a​ n​ x​ n​  converges conditionally at x = R, then it is possible for it to diverge 

when x = -R. Sample with R = 1: ∑(-1)​n​ x​ n​ /​n.  

 

(6.5.3) ​Abel’s Lemma. ​Let ​b​ n​  satisfy ​b​ 1​ ≥ ​b​ 2​ ≥ ​b​ 3​ ≥ … ≥ 0, and let ∑​a​ n​  be a series for which the partial 

sums are bounded. In other words, assume that there exists ​A​  > 0 such that |​a​ 1​ + ​a​ 2​ + … + ​a​ n​ | ≤ ​A​  for 

all ​n​  ∈ ​N​. Then for all ​n​  ∈ ​N​, |​a​ 1​b​ 1​ + ​a​ 2​b​ 2​ + … + ​a​ n​ b​ n​ | ≤ ​Ab​ 1​.  

 

(6.5.4) ​Abel’s Theorem​. Let ​g​ (​x​ ) = ∑​a​ n​ x​ n​  be a power series that converges at the point ​x​  = ​R​  > 0. Then 

the series converges uniformly on the interval [0, ​R​ ]. (Similar result for ​x​  = -​R​ .) 

 

(6.5.5) If a power series converges pointwise on the set ​A​  ⊆ ​R​ , then it converges uniformly on any 

compact set ​K​  ⊆ ​A​ . ​Proof idea​: Apply Abel’s Theorem (6.5.4) to the max and min of the compact set 

K​ .  

 

(*) Power series is continuous at every point at which it converges.  

 

(6.5.6) If ∑​a​ n​ x​ n​  converges for all ​x​  ∈ (-​R​ , ​R​ ), then the differentiated series ∑​na​ n​ x​ n​ -1​ converges at each 

x​  ∈ (-​R​ , ​R​ ) as well. Consequently, the convergence is uniform on compact sets contained in (-​R​ , ​R​ ).  

 

(*) Series can converge at endpoint, but differentiated series can diverge. Ex: ∑​x​ n​ /​n ​ at ​x ​ = -1​. 
 

(6.5.7) Assume ​f​ (​x​ ) = ∑​a​ n​ x​ n​  converges on an interval ​A​  ⊆ ​R​. Then, the function ​f​  is continuous on ​A 

and differentiable on any open interval (-​R​ , ​R​ ) ⊆ ​A​ . Moreover, the derivative is given by ​f’​ (​x​ ) = 

∑​na​ n​ x​ n​ -1​ and ​f​  is infinitely differentiable on (-​R​ , ​R​ ), and the successive derivatives can be obtained via 

term by term differentiation of the appropriate series. 

 

 

 

 

 



 

 

 

 

Results from psets:  

 

4W: 

● The limit of a sequence, if it exists, must be unique. First, assume lim ​a​ n​  = ​a​  and lim ​a​ n​  = ​b​ , and 

proceed to show that ​a​  = ​b​ . 

● (Reverse Triangle Inequality): |​a​  + ​b​ | ≤ |​a​ | + |​b​ | ⇒ Inverse Triangle Inequality: |​a​  - ​b​ | ≥ ||​a​ | 

- |​b​ ||.  

● For sequences (​x​ n​ ), (​y​ n​ ): 

○ (​x​ n​ ) and (yn) divergent but (​x​ n​  + ​y​ n​ ) convergent; ​x​ n​  = ​n​ , ​y​ n​  = -​n​ .  

○ (​x​ n​ ) convergent and (​y​ n​ ) convergent, and (​x​ n​  + ​y​ n​ ) converges; impossible by the ALT 

○ (​b​ n​ ) convergent with ​b​ n​  ≠ 0 ∀ ​n​  : (1/​b​ n​ ) convergent; ​b​ n​  = 1/​n 

○ unbounded (​a​ n​ ) and convergent (​b​ n​ ) and (​a​ n​  - ​b​ n​ ) bounded; impossible 

○ (​a​ n​ ), (​b​ n​ ) such that (​a​ n​ b​ n​ ) converges but (​b​ n​ ) does not; (​a​ n​ ) = 0, (​b​ n​ ) = ​n​ .  

 

4F:  

● (Squeeze Theorem): If ​x​ n​  ≤ ​y​ n​  ≤ ​z​ n​  ∀ ​n​  ∈ ​N​ and lim ​x​ n​  = lim ​z​ n​  = L, then lim ​y​ n​  = L.  

● (Cesaro Means): If (​x​ n​ ) is a convergent sequence, then the sequence given by the averages ​y​ n​  = 

n​ -1​(​x​ 1​ + ​x​ 2​ + … + ​x​ n​ ) also converges to the same limit. Note: it is possible for (​y​ n​ ) of averages to 

converge even if (​x​ n​ ) does not. Example: ​x​ n​  = (-1)​n 

● (Limit Superior): lim sup ​a​ n​  = lim​ ​n​ →∞ ​y​ n​  where ​y​ n​  = sup{​a​ k​  : ​k​  ≥ ​n​ } 

○ y​ k​  converges 

○ lim inf ​a​ n​  =  lim​ ​n​ →∞ ​x​ n​  where ​x​ n​  = inf{​a​ k​  : ​k​  ≥ ​n​ } 

○ lim inf ​a​ n​  ≤ lim sup ​a​ n​  for every bounded sequence.  

■ Strict inequality when lim inf ​a​ n​  = -1 lim sup ​a​ n ​ = 1.  

○ lim inf ​a​ n​  = lim sup ​a​ n​  if and only if lim an exists, and all three values are equal.  

 

5W:  

● For (​a​ n​ ), (​b​ n​ ) Cauchy, we have that: 

○ c​ n​  = |​a​ n​  - ​b​ n​ | is Cauchy while ​c​ n​  = (-1)​n​ a​ n​  is not Cauchy.  

 

5F:  

● (Infinite product) Π​b​ n​  = ​b​ 1​b​ 2​b​ 3​… 

○ Understood in terms of sequence of partial products ​p​ m​  = Π​b​ n​  = ​b​ 1​b​ 2​…​b​ m 

○ The sequence of partial products converges if and only if ∑​a​ n​  converges. 

● If ​a​ n​  > 0 and lim (​na​ n​ ) = ​L​  ≠ 0, then ∑ ​a​ n​  diverges.  

● Assume that ​a​ n​  > 0 and lim ​n​ 2​a​ n​  exists. Then ∑​a​ n​  converges.  

● For sequence (​a​ n​ ): 

○ If ∑​a​ n​  converges absolutely, then ∑​a​ n​
2​ converges absolutely  



○ FALSE: If ∑​a​ n​  converges and (​b​ n​ ) converges, then ∑​a​ n​ b​ n​  converges. Counterexample: 

a​ n​  = ​b​ n​  =  (-1)​n​ (√​n​ )​-1 

○ If ∑​a​ n​  converges conditionally, then ∑​n​ 2​a​ n​  diverges. 

● (Ratio Test): Given series ∑​a​ n​  with ​a​ n​  ≠ 0, the Ratio Test states that if (​a​ n​ ) satisfies lim 

|​a​ n​ +1​/​a​ n​ | = ​r​  < 1, then the series converges absolutely.  

 

6W:  

 

6F:  

 

7W:  

 

7F:  

● Lipschitz Condition 

○ A function ​f​  is called Lipschitz if there exists a bound ​M​  > 0 such that |(​f​ (​x​ ) - ​f​ (​y​ ))/(​x​  - 

y​ )| ≤ ​M​  for all ​x​  ≠ ​y​  ∈ ​A​ . Geometrically speaking, a function ​f​  is Lipschitz if there is a 

uniform bound on the magnitude of the slopes of lines drawn through any two points 

on the graph of ​f​ .  

○ If ​f​  defined on ​A​  is Lipschitz, then it is uniformly continuous on ​A​ .  

● Inverse function + Topological Characterization of Continuity 

○ Let ​g​  be defined on all of ​R​. If ​B​  ⊆ ​R​, define the set ​g​ -1​(​B​ ) by ​g​ -1​(​B​ ) = {​x​  ∈ ​R​ : ​g​ (​x​ ) ∈ ​B​ } 

■ g​  is continuous if and only if ​g​ -1​(​O​ ) is open whenever ​O​  ⊆ ​R​ is an open set  

■ if ​f​  is a continuous function defined on ​R​, 
■ g​ -1​(​K​ ) is not necessarily compact whenever ​K​  is compact 

■ g​ -1​(​F​ ) is closed whenever ​F​  is closed 

 

8W:  

 

8F:  

 

9W:  

 

9F:  

 

 


