Chapter 21

Fourier Analysis and the Central Limit
Theorem

Any theorem as important as the Central Limit Theorem deserves more than one
proof. Different proofs emphasize different aspects of the problem. Our first proof
was based on properties of moment generating functions. It’s a nice proof, and the
main idea is easily explained (for ‘nice’ distributions, if the moment generating func-
tion converges to the moment generating function of the standard normal, then the
densities converge to the density of the standard normal). Unfortunately the proof
uses some major results in Complex Analysis. We thus want to provide a proof that
works under less restrictive conditions.

Sadly, the proof below won’t be it. It too appeals to some black box results from
Complex Analysis. As this argument still requires us to assume results beyond the
scope of the book, why do we bother giving this proof? There are many reasons. The
first is that it introduces integral transforms, specifically the Fourier transform.
Integral transforms in general and the Fourier transform in particular are ubiquitous
in higher mathematics, and it never hurts to see them. The second reason is that our
statement of the Central Limit Theorem is for functions whose moment generating
functions exist in a neighborhood of the origin. There are plenty of densities that
have finite first, second and third moments but whose moment generating function
doesn’t exist. Consider for example a cousin of the Cauchy distribution,
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It shouldn’t be apparent that this is a probability distribution. It is clearly non-
negative and it decays rapidly enough as || — oo so that the integral converges;
however, it’s not at all clear that it will integrate to 1, although the constant does
have some nice features (it has an 8 in it, which could come from the power of , and
the normalization constant of the Cauchy distribution had a 7 in the denominator,
which this does as well). For our purposes, it doesn’t matter! Say we have the nor-
malization constant wrong — who cares! There’s some constant, let’s call it Cg, such
that Cg /(1 + 28) is a probability density. While this will have finite mean, variance
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and third moment, the eight moment is clearly infinite, as it’s
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the integrand is essentially Cyg for |z| large, and thus the integral diverges. Similarly
one can show all the larger even moments blow-up, and hence the moment generating
function can’t converge in a neighborhood of the origin as the moment generating
function doesn’t exist!.

This example shows us that our approach to the Central Limit Theorem is too
restrictive, as it eliminates many nice distributions (For example, the Cauchy distri-
bution arises in Mandelbrot’s work on fractal behavior of financial and commodi-
ties markets.). The moment generating function approach is fundamentally flawed;
there’s just no getting around the fact that some nice distributions don’t have a mo-
ment generating function, and thus we can’t do any argument that requires a moment
generating function to exist! While the sums of independent Cauchy distributions do
not approach normality, the cousin of it we mentioned above does. The key turns out
to be having finite mean and variance.

One solution to this quandary is to study the Fourier transform of our density,
which in probability is called the characteristic function. We’ll see later that unlike
the moment generating function, the characteristic function always exists, and is
a very close analogue of the moment generating function. It has better properties
(such as existence!), and is more amenable to analysis. This will allow us to adapt
our previous proof. The ideas are similar, but the algebra is a little different.

The material in this chapter is thus a bit more advanced than many introductory
probability courses. Most courses just don’t have time to delve this deeply. While
we won’t prove everything we need, we’ll provide enough details so that hopefully
the big picture is clear, and give you a sense of some of what’s waiting for you in
future math classes.

21.1 Integral transforms

Given a function K (2, y) and an interval I (which is frequently (—oo, o) or [0, 00)),
we can construct a map from functions to functions as follows: send f to

(K)(y) = /1 F@)K (2, 5)dz.

As the integrand depends on the two variables x and y and we only integrate out z,
the result is a function of y. Obviously it doesn’t matter what letters we use for the
dummy variables; other common choices are K (¢, z) or K (¢, s) or K (z,&). We call
K the kernel and the new function the integral transform of f.

Integral transforms are useful for studying a variety of problems. Their utility
stems from the fact that the related function leads to simpler algebra for the problem
at hand. We define two of the most important integral transforms, the Laplace and
the Fourier transforms.
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Definition 21.1.1 (Laplace Transform) Let K(t,s) = e~ 's. The Laplace trans-
form of f, denoted Lf, is given by

(Cf)(s) = /0 " f(t)et.

Given a function g, its inverse Laplace transform, L~ g, is

1 et 1 /7 ,
(L71g)(t) = lim —/ eg(s)ds = lim —/ et g(c - iT)idr.
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Definition 21.1.2 (Fourier Transform (or Characteristic Function)) Ler
K(z,y) = e ™Y The Fourier transform of f, denoted Ff or f, is given

by -
f(y) = /_ f(x)e_Q’”xydx,

where

) >, (i0)"
e . Z% = cosf +isinf.
n=0

The inverse Fourier transform of g, denoted F ~1g, is
R .
Flo) = [ gy
—o0

Note other books define the Fourier transform differently, sometimes using
K(z,y) = e @ or K(z,y) = e~ Y //2m.

The Laplace and Fourier transforms are related. If we let s = 2miy and consider
functions f(x) which vanish for x < 0, we see the Laplace and Fourier transforms
are equal.

While we have chosen to write the Fourier transform of f by
) = [ raemiovas,

other books sadly might use a different notation. Some authors use e =¥ or e*¥ /\/27
instead of e~2™%*Y, g0 always check the convention when you reference a book or
use a program such as Mathematica. Why are there so many different notations? It
turns out that different notations lead to cleaner algebra for different problems. For
our purposes, this choice leads to the simplest algebra, which is why we use it.
Given a function f we can compute its transform. What about the other direc-
tion? If we are told g is the transform of some function f, can we recover f from
knowing g? If yes, is the corresponding f unique? Notice how similar these ques-
tions are to the two black-box complex analysis theorems from Chapter 20. There
we knew moment generating functions and wanted to recover densities. Fortunately,
the answer to both questions turns out to be ‘yes’, provided f and g satisfy certain
nice conditions. A particularly nice set of functions to study is the Schwartz space.
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Definition 21.1.3 (Schwartz space) The Schwartz space, S(R), is the set of all in-
finitely differentiable functions f such that, for any non-negative integers m and n,

m dnf
dxm

sup | (1 + 2?)

z€R

< 00,

where sup,cy, |g(z)| is the smallest number B such that |g(x)| < B for all x (think
‘maximum value’ whenever you see supremum).

Whenever we define a space or a set, it’s worthwhile to show that it isn’t empty!
Let’s show there are infinitely many Schwartz functions. We claim the Gaussians
flx)= \/27177 e~ (@=m?/29% gre in S(R) for any i, o € R. By a change of variables,
it suffices to study the special case of ¢ = 0 and o = 1. Clearly the standard normal,

flx) = %e‘xz/ 2 is infinitely differentiable. Its first few derivatives are

2m
f@) = —a ¢12_7Te—m2/2
) = @ 1) e
27

Sy = (=3

By induction, we can show that the n' derivative is a polynomial p,,(z) of degree n
times \/%6_12/ 2. To show f is Schwartz, by Definition 21.1.3 we must show

(142%™ pofa) e
is bounded. This follows from the fact that the standard normal decays faster than
any polynomial. Say we want to show |xme_m2/ 2| is bounded. The claim is clear
for |z] < 1. What about larger |z|? By keeping just one term of the Taylor series
expansion of the exponential function, we know (22/2)¥ /k! < /2 for any k, so
e™*/2 < |12% /22% Thus [z™e*"/2| < kI2% /22*=™ and if we choose 2k > m
then this is bounded by k!2*.

We now state the main result we need from Complex Analysis. It states precisely
when the integral transform arises from a unique input. We only give the statement
for the inverse Fourier transform — just stating the result for the Laplace transform
requires a lot of new notation from Complex Analysis! A proof can be found in many
books on Complex Analysis or Fourier Analysis (see for example [SS1, SS27).

Theorem 21.1.4 (Inversion Theorems) Let f € S(R), the Schwartz space. Then
f@) = [ Fapevy,

where fis the Fourier transform of f. In particular, if f and g are Schwartz functions
with the same Fourier transform, then f(z) = g(z).
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This interplay between a function and its transform will be very useful for us
when we study probability distributions, as the moment generating function is an
integral transform of the density! Recall the moment generating function is defined
by Mx (t) = E[e*X], which means

o0
Mx(t) = / e f(t)dt.
—0o0
If f(x) = 0 for x < 0, this is just the Laplace transform of f. Alternatively, if we
take t = —2miy then it’s the Fourier transform of f. This is trivially related to (yet
another!) generating function, the characteristic function of X.

The characteristic function. The characteristic function of a random variable X is
¢(t) = E[e"Y].

Unlike the moment generating function, if X has a continuous density then the char-
acteristic function always exists for all £. Note the characteristic function is essen-
tially the Fourier transform of the density: the Fourier transform is just ¢(—27t).

Why does the characteristic function always exist? Remember the density is a
non-negative integrable function f. We have

/:C e f(x)dz| < /:O |eim|f($)d$:/°c Fa)de =

=—00 =—00 r=—00

—_

as |e’'®| = 1. The reason the absolute value of this exponential is 1 is the Pythagorean
theorem. We have e?’ = cos + isin 6 for any real 6 (there are many ways to see
this; one way is to compare the Taylor series expansions of €, cos # and sin 6, noting
i = +/—1). If z = a + ib is a complex number, then |z|?> = 2%, where Z = a — ib
is the complex conjugate; we call |z| the length, absolute value or the norm of z.
For us, we get

le"|> = (costx +isintx)(costr —isintz) = cos®tx +sin’tr = 1.

This is a immense improvement over the moment generating function — the most
important property an object can have is existence, so already we’ve made progress.

Furthermore, we see that the characteristic function is simply related to the mo-
ment generating function. What a difference, though, an ¢ makes! The characteristic
function and the Fourier transform are trivially related; they differ by rescaling the
input by a factor of 27. The rescaling from the characteristic function to the moment
generating function is far more profound; the presence of the factor of ¢ leads to very
different behavior, and very different algebra.

We now see why these results from complex analysis will save the day. The in-
version formulas above tell us that, if our initial distribution is nice, then knowing
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the integral transform of the function is the same as knowing the function; in other
words, knowing the integral transform uniquely determines the distribution.

The following remark is a bit more advanced, and is meant to put these arguments
into their proper context in the realm of analytic arguments. A function f : R — C
has compact support if there’s a finite closed interval [a, b] such that for all 2 ¢
[a,b], f(z) = 0. Schwartz functions with compact support are extremely useful in
many arguments. It can be shown that given any continuous function g on a finite
closed interval [a, b], there’s a Schwartz function f with compact support arbitrarily
close to g; i.e., for all z € [a,b], |f(z) — g(x)| < e. Similarly, given any such
continuous function g, one can find a sum of step functions of intervals arbitrarily
close to g in the same sense as above (a step function is a finite sum of characteristic
functions of closed intervals). Often, to prove a result for step functions it suffices
to prove the result for continuous functions, which is the same as proving the result
for Schwartz functions. Schwartz functions are infinitely differentiable and as the
Fourier Inversion formula holds, we can pass to the Fourier transform space, which
is sometimes easier to study.

21.2 Convolutions and Probability Theory

An important property of the Fourier transform is that it behaves nicely under convo-
lution. Remember we denote the convolution of two functions f and g by h = f*g,
where

) = [ " ftg(e — t)dt = [ #te=tatar

A natural question to ask is: what must we assume about f and g to ensure that
the convolution exists? For our purposes, f and g will be probability densities. Thus
they’re non-negative and integrate to 1. While this is all we need to ensure that
h = f % g integrates to 1, it’s not quite enough to guarantee that f * g is finite. Let’s
first show it integrates to 1. Since our integrand is non-negative, we’re allowed to
switch the order of integration. Note for each z the integral is either non-negative or
positive infinity. We have

[ raw = [T [T sogte - o

/t:_oo ug [/:_oo G t)dx] dt.

The integral in brackets is 1. If you want, change variables and let v = = — ¢,
du = dx. We’re integrating a probability density from —oo to oo; that’s always 1.
We’re left with

oo o0

[ Gro@ds = [ s =1,
T=—00 t=—o0

again as the integral of a probability density from —oo to oo is always 1. This means

our non-negative function (f * g)(x) can only be zero on a set of measure (or length)

0. If you’re not familiar with measure theory, no worries: here’s another formulation.
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It means that for any M, the length of {« : (f * g)(x) > M} is at most 1/M, as
otherwise the integral would exceed 1.

So, this proves that for almost all = we have (f * g)(z) is finite. What must
we assume about f and g so that the convolution is finite for a// x? If we assume
f and g are square-integrable, namely ffcoo f(x)*dx and f x)2dx are finite,
then f x g is well-behaved everywhere. We’ll see shortly how thls follows from the
Cauchy-Schwarz inequality, which is proved in Appendix B.6.

The Cauchy-Schwarz inequality. For complex-valued functions f and g,

| iwatatar < ([ |f<x>|2dx)1/2 ([ wwpa) -

Assuming f and g are square-integrable is very weak, and is met in all the stan-
dard densities we study. Even in situations where they ’re not square-integrable, often
there are no problems. For example, if we take

2V/z
0 otherwise,

fa) = {L ifo<z<1

then f is integrable but not square integrable, as fol dx/x blows-up. That said, the
convolution of f with itself is well-behaved. After ‘some’ integration, you would
find

/4 if0<y<1
(f* f)(y) = { (arcesc(\/y) —arctan(y/y —1))/2 if1 <y <2
0 otherwise.

We now state a wonderful result. It is because of this that the Fourier transform is
so prevalent in probability. It’s such an important result that we provide a full proof.

Theorem 21.2.1 (Convolutlons and the Fourler Transform) Let f, g be continu-
ous functions on R. Iff f(@)Pdx and [7_|g(x)|>dz are finite then h = f * g

exists, and h( )= f ( )g (y) Thus the Fourler tmnsform converts convolution to
multiplication.

Proof: We first show h = f * g exists. We have

h(z) = (fxg)(x)

/ F(g(a — t)dt

/_ F@)]- gz — 1)]dt

([ rwpa) - (/" lote—tar) -

=
-2
In

IA
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by the Cauchy-Schwarz inequality. As we’re assuming f and g are square-integrable,
both integrals are finite (for = fixed, as ¢ runs from —oo to co so too does = — ?).
We’re not assuming f and g are densities; if we did, then the inequalities would be
equalities as the densities are never negative.

Now that we know that the convolution h exists, we can explore its properties.
Let’s calculate its Fourier transform. This leads to a double integral (one integral
from the definition of A, and then another from the definition of the Fourier trans-
form). The fact that we’ll have two integrals suggests how we’ll handle it. Usually
there are two things to try with a double integral: we can change variables, or we
can interchange the order of integration. We’ll interchange orders; this is justified as
the integrals of the absolute value is finite, and we can appeal to the Fubini Theorem
(see Theorem B.2.1).

Before we change orders, however, we first cleverly add zero to facilitate the
algebra (see §A.12 for more examples of this method). We’ll see shortly an integral
of g(z — t) against the exponential e=27%*Y. As we have g evaluated at z — ¢, we

want x — ¢ in the exponential and not x. This suggests writing = as * —t + t. We
find

hy) = /_OO h(z)e ™2™y dg
_ / - / " (g — e 2T dtdr

_ / / F(B)g(x — t)e M@0y iy

= / ft)e=?mt [ / T - t)e_%i(z_t)ydx] dt
t=—00 r=—00
— —2mity —Qﬂiuyd d
/t:_oo flt)e [/u__oo g(u)e 1‘:| t

- /t i FOe > g(y)dt = F(y)g(y).

=—00

where the last line 1s from the definition of the Fourier transform. O

Ifforalli = 1,2,... we have f; is square-integrable, prove for all 7 and j that
S5 | fi(2) fi ()| < co. What about f1 *(f2 f3) (and so on)? Prove fi(fax f3) =
(f1 * f2) * f3. Therefore convolution is associative, and we may write f % - - - % f
for the convolution of NV functions. If you’re stuck, we discuss this in §19.5.

It’s unusual to have two operations that essentially commute. We have the Fourier
transform of a convolution is the product of the Fourier transforms; as convolution
is like multiplication, this is saying that using this special type of multiplication, we
can switch the orders of the operations. It is rare to have two operations satisfying
such a rule. For example, v/a + b typically is not \/a + V/b.

The following lemma is the starting point to the Fourier analytic proof of the
Central Limit Theorem.
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Lemma 21.2.2 Let X, and X5 be two independent random variables with den-
sities f and g. Assume f and g are square-integrable probability densities, so
[55 f(x)?dx and [ g(x)?dx are finite. Then f % g is the probability density
for X1 + Xa. More genemlly, if X1,..., XN are lndependent random variables
with square-mtegmble densities p1, . .., DN, then p1 * pa * - - - x py is the density for
X1+ ---+ XnN. (4s convolution is commutative and assoczative, we don’t have to
be careful when writing py * pa * -+ - % pN.)

Proof: The probability of X; € [z, z+ Ax] is f;HAz f(t)dt, which is approximately
f(x)Az when Az is small (as the integrand is essentially constant). The probability
that Xy + X € [z, 2 + Ax] is just

T+Axr— :El
/ / z1)g(z2)drodry.
L1=—00 JIXo=T—T1

As Ax — 0 we obtain the convolution f * g, and find

b
Prob(X; + Xz € [a,b]) = / (f*g)(2)d=. (21.1)

We must justify our use of the word “probability” in (21.1); namely, we must show
f * g is a probability density. Clearly (f * g)(z) > 0 as f(z),g(z) > 0. As we are
assuming f and g are square-integrable,

[ o = [ [ s patidds
/ / F(@ = y)g(y)dady
| o (/_Oof(x—y)dw> d
/_Z 9(y) (/_O; f(t)dt> dy.

As f and g are probability densities, these integrals are 1, completing the proof. O

Remark: we really don’t need to assume the densities are square-integrable. The
purpose of that assumption is to make sure the density of the sum of the random vari-
ables is finite everywhere. If we re willing to allow our density to be infinite at a few
places, we can drop that assumption.

This section introduced a lot of material and results, but we can now begin to
see the big picture. If we take N independent random variables with densities
p1,---,DN, then the sum has density p = py * --- * py. While at first this equa-
tion looks frightening (what is the convolution of N exponential densities?), there’s
a remarkable simplification that happens. Using the Fourier transform of a convo-
lution is the product of the Fourier transforms, we find p(y) = p1(y) - - -pn(y); in
the special case when the random variables are identically distributed, this simpli-
fies further to just p;(y)"¥. Now ‘all’ (and, sadly, it’s a big ‘all’) we need to do
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to prove the Central Limit Theorem in the case when all the densities are equal is
show that, as N — oo, p1(y)" converges to the Fourier transform of something
normally distributed (remember we haven’t normalized our sum), and the inverse
Fourier transform is uniquely determined and is normally distributed.

21.3 Proof of the Central Limit Theorem

We can now sketch the proof of the Central Limit Theorem. The version we prove is
a bit more general than our earlier work. We no longer need to assume the moment
generating function exists. To really grasp the nuts and bolts of this proof, we en-
courage you to provide the complete details to the series of problems below, each of
which gives another needed input for the proof.

Theorem 21.3.1 (Central Limit Theorem) Let X, ..., Xy be independent, iden-
tically distributed random variables whose first three moments are finite and whose
probability density decays sufficiently rapidly. Denote the mean by p and the vari-
ance by o2, let

X4+ Xy

and set

Then as N — oo, the distribution of Zn converges to the standard normal.

We highlight the key steps, but we do not provide detailed justifications (which
would require several standard lemmas about the Fourier transform; see for example
[SS1]). Without loss of generality, we may consider the case where we have a proba-
bility density p on R that has mean zero and variance one (see §20.4). We assume the
density decays sufficiently rapidly so that all convolution integrals that arise below
converge.

Specifically, our density p satisfies

/°° zp(z)dz = 0, /OO 2?p(z)dr = 1, /OC lz[3p(x)dr < oo. (21.2)

—00 —00 — 00

Assume X7, Xo, ... are independent identically distributed random variables drawn
from p; thus, Prob(X; € [a,b]) = f; p(z)dz. Define Sy = Zf\; X;. Recall the
standard Gaussian (mean zero, variance one) has density exp(—22/2)//27.

As we are assuming ;4 = 0 and 0 = 1, we have Zy = ()(14-1/%5\(]1\!)/1\7 =

%, s0 Zn = Sy /v/N. We must show Sy /v/N converges in probability to
the standard Gaussian:

. SN 1 b 2
A}gnocProb (\/—N € [a,b]) = \/—2_7T/a e 2dz.

We sketch the proof. The Fourier transform of p is

ply) = / " playe vy,

—00
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Clearly, [p(y)| < [, p(x)dz = 1,and p(0) = [ p(x)dz = 1.

Claim 1 One useful property of the Fourier transform is that the derivative of
is the Fourier transform of 2mwizg(x), thus, differentiation (hard) is converted to
multiplication (easy). Explicitly, show

7)) = / 2mix - g(x)e 2" d,

If g is a probability density, note §'(0) = 2miE[x] and g” (0) = —47m2E[z?].

The above claim shows why it’s, at least potentially, natural to use the Fourier
transform to analyze probability distributions. The mean and variance (and the
higher moments) are simple multiples of the derivatives of p at zero. By Claim
1, as p has mean zero and variance one, p'(0) = 0, p”’(0) = —4n>. We Taylor ex-
pand p (we do not justify that such an expansion exists and converges; however, in
most problems of interest this can be checked directly, and this is the reason we need
technical conditions about the higher moments of p), and find near the origin that

fen 4
ply) = 1+]$y2+--- = 1-2r%%+0(y%). (21.3)
Near the origin, the above shows p looks like a concave down parabola. There is no
y term as p’(0) — 0. Here O(y?) is big-Oh notation for an error at most on the order
of y3; see §20.6 for more on big-Oh notation.
From §21.2, we know

o The probability that X7 +--- + Xx € [a,b] is f;(p %% p)(2)dz.

e The Fourier transform converts convolution to multiplication. If FT[f](y) de-
notes the Fourier transform of f evaluated at y, then we have

FTp*---xpl|(y) = ply)---by).

However, we do not want to study the distribution of X; + - - - + Xy = z, but rather

the distribution of Sy = % =z.

Claim 2 If B(z) = A(cx) for some fixed ¢ # 0, show B(y) = LA (¥).

T c

Claim 3 Show that if the probability density of X1+ - -+ Xn = x is (px- - -*p)(x)
(i.e., the distribution of the sum is given by p x - - - x p), then the probability density
of% =uxzis (VNpx---xV/Np)(zvVN). By Exercise 2, show

N
(VNp p)( )| (v) P\ 7%
The above claims allovsI/V us to determine the Fourier transform of the distribution

of Sy It’s just [ﬁ(\/iﬁ)} . We take the limit as N — oo for fixed y. From (21.3),
ply) = 1 —27%y% + O(y?). Thus we have to study

272y? 3 N
[1_ . +o(_N3/2)] |
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For any fixed y, we have

. 27m2y? Y3 N oy
1\}51100[1_ N +O(N3/2>] =e V. (21.4)

There are two definitions of e” (see the end of §B.3); while we normally work with
the infinite sum expansion, in this case the product formulation is far more useful:

= 1 1 _)
¢ N E;noo ( + N

(you might recall this formula from compound interest). Of course, this isn’t a fully
rigorous proof. The problem is we don’t have exactly the same setting as the defini-
tion, as we have the lower order error O(y®/N3/2). A great way to proceed rigor-
ously is to take the logarithm of both sides of (21.4), and notice that as N — oo the
two sides are equal.

Claim 4 Show that the Fourier transform ofe_Q’Ty2 atx is \/% e=**/2 Hint: This
problem requires contour integration from complex analysis. If you haven’t had a
course in Complex Analysis, this is another black box result to return to after taking
more math.

We would like to conclude that as the Fourier transform of the distribution of Sy
2 . 2 . 2
converges to e~ 2™¥" and the Fourier transform of e~ is \/% e~ /2, then the

distribution of Sy equalling = converges to \/% e=2/2, Justifying these statements
requires some results from complex analysis. We refer the reader to [Fe] for the de-
tails, which completes the proof. |

The key point in the proof is that we used Fourier Analysis to study the sum of
independent identically distributed random variables, as Fourier transforms convert
convolution to multiplication. The universality is due to the fact that on/y terms up to
the second order contribute in the Taylor expansions. Explicitly, for “nice” p the dis-
tribution of Sy converges to the standard Gaussian, independent of the fine structure
of p. The fact that p has mean zero and variance one is really just a normalization to
study all probability distributions on a similar scale; see Section 20.4.

The higher order terms are important in determining the rate of convergence in
the Central Limit Theorem (see [Fe] for details and [KonMi] for an application to
Benford’s Law).

Here are some good problems to think about.

e Modify the proof to deal with the case of p having mean y and variance o2,

e For reasonable assumptions on p, estimate the rate of convergence to the Gaus-
sian.

e Let p1, p2 be two probability densities satisfying (21.2). Consider Sy = X7 +
-+ + X, where for each i, X; is equally likely to be drawn randomly from
p1 or pa. Show the Central Limit Theorem is still true in this case. What if
we instead had a fixed, finite number of such distributions p1, . . ., Pk, and for

each ¢ we draw X; from p; with probability g; (of course, g1 + - - 4+ qr. = 1)?
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21.4 Summary

There are, not surprisingly, many structural similarities with the Fourier analysis
proof and the moment generating function proof. If you forgive the pun, this is to
be expected. Why? The moment generating function is Mx (t) = E[e!X] while the
Fourier transform (or the characteristic function) is E[e~27%X]. The two are thus re-
lated by ¢ — —2miy, but what a difference that s makes! The characteristic function
exists for any density, which isn’t the case for the moment generating function.

This relation sheds light on Claim 1. It should now be clear why derivatives
of the Fourier transform are related to the moments of the density; it’s because the
Fourier transform is a very close cousin of the moment generating function, where
the derivatives are the moments.

There’s essentially an unlimited number of things one can do in math. We can
define almost anything; the question is which definitions are useful, which defini-
tions lead to good viewpoints. In Theorem 21.2.1 we saw the Fourier transform of
a convolution is the product of the Fourier transforms. When studying sums of ran-
dom variables, it’s hard not to try to use convolutions, as that is the most natural
way to find the density. As the Fourier transform interacts well with convolutions, it
shouldn’t be surprising that it enters the proof.

21.5 Exercises

Problem 21.5.1 Find sufficient conditions on f and g so that the Cauchy-Schwarz
inequality holds as an equality. Try to find the weakest such conditions.

Problem 21.5.2 Find the Fourier transform of f(x) = e~ %I,

Problem 21.5.3 Show that §'(y) = [~ 2mix - g(z)e™ >V .

Problem 21.5.4 Prove Claim 2, that if B(z) = A(cz) for some fixed ¢ # 0, then
B(y) = 2A(%)-

Problem 21.5.5 Find constants Cs,,, such that ffc Com _Jp = 1form € {1,2,3,4}.

oo 1+4z2m

(Using techniques from Complex Analysis it’s possible to find Ca,, for all m.)

Problem 21.5.6 Using the Taylor series of €%, cosx and sin x, ‘prove’ that ei* =
cosT + isinx.

Problem 21.5.7 Show that L~ 1(Lf)(s))(z) = f(x).
Problem 21.5.8 Show that F~1(F f)(s))(z) = f(x).

Problem 21.5.9 Show that any infinitely differentiable functions with compact sup-
port (that is, they are only non-zero on a finite interval) are in the Schwartz space.

Problem 21.5.10 Explain how a function can be smooth and have compact support.
Problem 21.5.11 Show that the Cauchy distribtuion is not in the Schwartz space.

Problem 21.5.12 Use characteristic functions to show that the Cauchy distribution
is strictly stable, that is, the sum of two identically distributed Cauchy distributions
is a rescaled version of the original distribtution.



Appendix E

Complex Analysis and the Central Limit

Theorem

In Chapter 20 we gave a proof of the Central Limit Theorem using generating func-
tions; unfortunately that proof isn’t complete as it assumed some results from Com-
plex Analysis. Moreover, we had to assume the moment generating function existed,
which isn’t always true.

We tried again in Chapter 21; we proved the Central Limit Theorem by using
Fourier analysis. Instead of using the moment generating function, which can fail
to even exist, this time we used the Fourier transform (also called the characteristic
function), which has the very nice and useful property of actually existing! Unfortu-
nately, here too we needed to appeal to some results from Complex Analysis.

This leaves us in a quandary, where we have a few options.

1. We can just accept as true some results from Complex Analysis and move on.

2. We can try and find yet another proof, this time one that doesn’t need Complex
Analysis.

3. We can drop everything and take a crash course in Complex Analysis.

This chapter is for those who like the third option. We’ll explain some of the
key ideas of complex analysis, in particular we’ll show why it’s such a different
subject than real analysis. Obviously, it helps to have seen real analysis, but if you’re
comfortable with Taylor series and basic results on convergence you’ll be fine.

It turns out that assuming a function of a real variable is differentiable doesn’t
mean too much, but assume a function of a complex variable is differentiable and all
of a sudden doors are opening everywhere with additional, powerful facts that must
be true. Obviously this chapter can’t replace an entire course, nor is that our goal.
We want to show you some of the key ideas of this beautiful subject, and hopefully
when you finish reading you’ll have a better sense of why the black-box results from
Complex Analysis (Theorems 20.5.3 and 20.5.4) are true.

This chapter is meant to supplement our discussions on moment generating func-
tions and proofs of the Central Limit Theorem. We thus assume the reader is familiar
with the notation and concepts from Chapters 19 through 21.
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E.1 Warnings from real analysis

The following example is one of my favorites from real analysis. It indicates why
real analysis is hard, almost surely much harder than you might expect. Consider the
function g : R — R given by

—1/2?
o) = {e 1 ifz #£0 E1)

0 otherwise.

Using the definition of the derivative and I.'Hopital’s rule, we can show that g is
infinitely differentiable, and all of its derivatives at the origin vanish. For example,

e=/h*
12 _ .
. 1/h
;ILIE)% el/hz
= e

klggo 2kek®

where we used L’Hopital’s rule in the last step (limg—, o A(k)/B(k) = limg— oo
A'(k)/B' (k) iflimy_,o0 A(k) = limy_y00 B(k) = 00). (We replaced h with 1/k as
this allows us to re-express the quantities above in a familiar form, one where we can
apply L’Hopital’s rule.) A similar analysis shows that the n™ derivative vanishes at
the origin for all n, i.e., g™ (0) = 0 for all positive integer n. If we consider the
Taylor series for g about 0, we find

" 1,2 o (n) "
o(@) = 9(0) + g0 + LU Zﬂ% "

however, clearly g(z) # 0 if x # 0. We are thus in the ridiculous case where the
Taylor series (which converges for all 2!) only agrees with the function when =z = 0.
This isn’t that impressive, as the Taylor series is forced to agree with the original
function at 0, as both are just g(0).

We can learn a lot from the above example. The first is that it’s possible for a
Taylor series to converge for all z, but only agree with the function at one point! It’s
not too impressive to agree at just one point, as by construction the Taylor series has
to agree at that point of expansion. The second, which is far more important, is that
a Taylor series does not uniquely determine a function! For example, both sin z and
sinz+ g(x) (with g(x) the function from equation (E.1)) have the same Taylor series
about z = 0.

The reason this is so important for us is that we want to understand when a
moment generating function uniquely determines a probability distribution. If our
distribution was discrete, there was no problem (Theorem 19.6.5). For continuous
distributions, however, it’s much harder, as we saw in equation (19.6.5) where we
met two densities that had the same moments.

Apparently, we must impose some additional conditions for continuous random
variables. For discrete random variables, it was enough to know all the moments;
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this doesn’t suffice for continuous random variables. What should those conditions
be?

Recall that if we have a random variable X with density fx, its £™ moment,
denoted by i}, is defined by

(o)

i = [ pxons
—0o0

Let’s consider again the pair of functions in equation (19.6.5). A nice calculus exer-

cise shows that p1) = e**/2_ This means that the moment generating function is

o0 2
1 tk ek 24k
Mx(t) = Z ]l:;I
k=0

= kO
k=0

For what ¢ does this series converge? Amazingly, this series converges only when
t = 0! To see this, it suffices to show that the terms do not tend to zero. As k! < k¥,
for any fixed ¢, for k sufficiently large ¥ /k! > (t/k)*; moreover, ek*/2 = (eF/2)k,
so the k™ term is at least as large as (e¥/2t/k)*. For any t # 0, this clearly does not
tend to zero, and thus the moment generating function has a radius of convergence
of zero!

This leads us to the following conjecture: If the moment generating function
converges for |t| < § for some § > 0, then it uniquely determines a density. We’ll
explore this conjecture below.

E.2 Complex Analysis and Topology Definitions

Our purpose here is to give a flavor of what kind of inputs are needed to ensure that
a moment generating function uniquely determines a probability density. We first
collect some definitions, and then state some useful results from complex analysis.

Definition E.2.1 (Complex variable, complex function) Any complex number z
can be written as » = x + iy, with x and y real and i = /—1. We denote the
set of all complex numbers by C. A complex function is a map f from C to C; in
other words f(z) € C. Frequently one writes x = R(z) for the real part, y = 3(z)
for the imaginary part, and f(z) = u(z,y) + wv(z,y) with u and v functions from
RZ 10 R.

There are many ways to write complex numbers. The most common is the defi-
nition above; however, a polar coordinate approach is sometimes useful. One of the
most remarkable relations in all of mathematics is

e = cosf +isiné.
There are several ways to see this, depending on how much math you want to assume.
One way is to use the Taylor series expansions for the exponential, sine and cosine
functions. This gives another way of writing complex numbers; instead of 1 4 ¢ we
could write /2 exp(im/4). A particularly interesting choice of 6 is 7, which gives
e'™ = —1, a beautiful formula involving many of the most important constants in
mathematics!
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Noting i2 = —1, it isn’t too hard to show that

(a+1ib) + (z+iy) = (a+x)+i(b+y)
(a+1ib) - (x+iy) = (ax—by)+i(ay+ bx).

The complex conjugate of = = x + iy is Z := = — iy, and we define the absolute
value (or the modulus or magnitude) of 2 to be v/2Z, and denote this by |z|. This
is real valued, and equals /2 4 y2. If we were to write z as a vector, it would be
z = (z,y); note that in this case we see that | z| equals the length of the corresponding
vector.

We can write almost anything as an example of a complex function; one possible
function is f(z) = 22 + |z|. The question is when is such a function differentiable
in z, and what does that differentiability entail. Actually, before we answer this we
first need to state what it means for a complex function to be differentiable!

Definition E.2.2 (Differentiable) We say a complex function f is (complex) differ-
entiable at zy if it’s differentiable with respect to the complex variable z, which

means
lim f(z0 +h) — f(z0)
h—0 h

exists, where h tends to zero along any path in the complex plane. If the limit exists
we write f'(zo) for the limit. If f is differentiable, then f(z+iy) = u(z,y)+iv(z,y)
satisfies the Cauchy-Riemann equations:

ou . Ov Ou  Ov

= oy oy

f(z) = 79 Tigy =

(one direction is easy, arising from sending h — 0 along the paths h and ih, with
h € R).

Here’s a quick hint to see why differentiability implies the Cauchy-Riemann
equations — try and fill in the details. Since the derivative exists at zo, the key limit
is independent of the path we take to the point zy + iy9. Consider the path = 4 iyg
with © — x¢, and the path zy + ¢y with y — yo, and use results from multivariable
calculus on partial derivatives.

Let’s explore a bit and see which functions are complex differentiable. We let
h = hy + ihy below, with b — 0 + 03.

o If f(z) = z then

hmw T o el ST 1;
h—0 h h—0 h h—0

thus the function is complex differentiable and the derivative is 1.
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o If f(2) = 22 then
_ 2 2
LSS (k)
h—0 h h—0 h
224 22h+h?2— 22
= lim
h—0 h
. 2zh+h?
= lim —
h—0 h
= lim(2z+4h)
h—0

= lim2z+ lim A
h—0 h—0

= 2240 = 2z.

We’re using the following properties of complex numbers: 4/h = 1 and 2zh+

h? = (2z + h)h. Note how similar this is to the real valued analogue, f(z) =
2

e,

o If f(z) = Z then

lim —f(z+h)—f(z) = lim 7z—|—h—z.
h—0 h h—0 h
Unlike the other limits, this one isn’t immediately clear. Let’s write z = x + 1y,

h = hi + ihs (and of course Z = = — iy, h = h1 — ihs). The limit is

. x—iy+h—ihy— (z —iy) . hy —tho
lim - = lim —.
h—0 h1 + ’LhQ h—0 h1 + ’th
This limit does not exist; depending on how & — 0 we obtain different an-
swers. For example, if ho = 0 (traveling along the z-axis) the limit is just
limp 0 h1/hy = 1, while if h; = 0 (traveling along the y-axis) the limit is
just limy,_,o —iha/ihy = —1. Thus this function isn’t complex differentiable
anywhere, even though it’s a fairly straightforward function to define.

If we continue to argue along these lines, we find that a function is complex dif-
ferentiable if the « and y dependence is in a very special form, namely everything is
a function of z = x + 7y. In other words, we don’t allow our function to depend on
z = x —iy. I[f we could depend on both, we could isolate out = (which is z + Z) and
y (which is (z — Z) /7). We can begin to see why being complex differentiable once
implies that we’re complex differentiable infinitely often, namely because of the very
special dependence on = and y. Also, in the plane there’s really only two ways to
approach a point: from above, or from below. In the complex plane, the situation is
strikingly different. There are so many ways we can move in two-dimensions, and
each path must give the same answer if we’re to be complex differentiable. This is
why differentiability means far more for a complex variable than for a real variable.

To state the needed results from Complex Analysis, we also require some ter-
minology from Point Set Topology. In particular, many of the theorems below deal
with open sets. We briefly review their definition and give some examples.
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Definition E.2.3 (Open set, closed set) 4 subset U of C is an open set if for any
20 € U there’s a 6 such that whenever |z — zy| < 0 then z € U (note § is allowed to
depend on z). A set C is closed if its complement, C \ C, is open.

The following are examples of open sets in C.

1. Uy = {z: |z| < r} forany » > 0. This is usually called the open ball of
radius 7 centered at the origin.

2. Uy = {z : R(2) > 0}. To see this is open, if zg € U, then we can write
20 = xo + @Yo, with g > 0. Letting 6 = x¢/2, for z = x + iy we see that if
|z — 29| < 0 then |z — 20| < x0/2, which implies x > x¢/2 > 0; Us is often
called the open right half-plane.

For examples of closed sets, consider the following.

1. C1 = {z : |z| < r}. Note that if we take z( to be any point on the boundary,
then the ball of radius ¢ centered at zo will contain points more than r units
from the origin, and thus C; isn’t open. A little work shows, however, that Cy
is closed (in fact, C] is called the closed ball of radius r about the origin). We
prove it’s closed by showing its complement is open. What we need to do is
show that, given any point in the complement, there’s a small ball about that
point entirely contained in the complement. I urge you to draw a picture for
the following argument. If zy € C \ Cy then |z9| > 7 (as otherwise it would
be inside C1). If we take § < @ then after some algebra we’ll find that if
|z — zp| < d then z € C\ Cy. Thus C\ C} is open, so C} is closed.

2. Cy = {#: R(z) > 0}. To see this set isn’t open, consider any zy = iy with
y € R. A similar calculation as the one we did for Us or C; shows Cs is
closed.

For a set that is neither open nor closed, consider S = U; U Cs.

We now state two of the most important properties a complex function could
have. One of the most important results in the subject is that these two seemingly
very different properties are actually equivalent!

Definition E.2.4 (Holomorphic, analytic) Let U be an open subset of C, and let f
be a complex function. We say f is holomorphic on U if f is differentiable at every
point z € U, andwe say f is analytic on U if f has a series expansion that converges
and agrees with f on U. This means that for any zy € U, for z close to zy we can

choose a,,’s such that
o0

flz) = Z an(z — 29)".

n=0

As alluded to above, saying a function of a complex variable is differentiable
turns out to imply far more than saying a function of a real variable is differentiable,
as the following theorem shows us.
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Theorem E.2.5 Let f be a complex function and U an open set. Then f is holo-
morphic on U if and only if f is analytic on U, and the series expansion for f is its
Taylor series.

The above theorem is amazing; its result seems to good to be true. Namely, as
soon as we know f is differentiable once, it’s infinitely (real) differentiable and f
agrees with its Taylor series expansion! This is very different than what happens in
the case of functions of a real variable. For instance, the function

h(z) = x3sin(1/x) (E2)

is differentiable once and only once at z = 0, and while the function g(x) from
(E.1) 1s infinitely differentiable, the Taylor series expansion only agrees with g(z) at
z = 0. Complex analysis is a very different subject than real analysis!

The next theorem provides a very nice condition for when a function is identically
zero. It involves the notion of a limit or accumulation point, which we define first.

Definition E.2.6 (Limit or accumulation point) We say z is a limit (or an accu-
mulation) point of a sequence {z,} >, if there exists a subsequence {z,, }72, con-
verging to z.

Let’s do some examples to clarify the definitions.

1. If z, = 1/n, then 0 is a limit point.

2. If z,, = cos(mn) then there are two limit points, namely 1 and —1. (If z,, =
cos(n) then every point in [—1, 1] is a limit point of the sequence, though this
is harder to show.)

3. Ifz,, = (14 (=1)™)™ 4+ 1/n, then 0 is a limit point. We can see this by taking
the subsequence {z1, 23, 25, 27, . . . }; note the subsequence {z, 22, 24, ... }
diverges to infinity.

4. Let z, denote the number of distinct prime factors of n. Then every positive
integer is a limit point! For example, let’s show 5 is a limit point. The first five
primes are 2, 3,5, 7 and 11; consider N =2-3-5-7-11 = 2310. Consider
the subsequence {2y, zn2, 2n3, Zn4, . . . }; as N* has exactly 5 distinct prime
factors for each k, 5 is a limit point.

5. If z, = n? then there are no limit points, as lim,, . 2, = 0.

6. Let zp be any odd, positive integer, and set

3z, +1 1if z, is odd
zZ. =
e Zn/2 if z,, is even.

It’s conjectured that 1 is always a limit point (and if some z,, = 1, then the
next few terms have to be 4,2,1,4,2,1,4,2,1,..., and hence the sequence
cycles). This is the famous 3z + 1 problem. Kakutani called it a conspiracy
to slow down American mathematics because of the amount of time people
spent on this; Erdos said mathematics isn’t yet ready for such problems. See
[Lagl, Lag2, Lag3] for some nice expositions, but be warned that this problem
can be addictive!
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We can now state the theorem which, for us, is the most important result from
Complex Analysis. It’s the basis of the black box results.

Theorem E.2.7 Let f be an analytic function on an open set U, with infinitely many
zeros z1,29,23, - ... Iflimy, oo 2z, € U, then f is identically zero on U. In other
words, if a function is zero along a sequence in U whose accumulation point is also
in U, then that function is identically zero in U.

Note the above is very different than what happens in real analysis. Consider
again the function from (E.2),

h(z) = z3sin(1/z).

This function is continuous and differentiable. It’s zero whenever © = 1/mn with
n an integer. If we let z, = 1/mn, we see this sequence has 0 as a limit point,
and our function is also zero at 0 (see Figure E.1). It’s clear, however, that this

0.000015 -

—0.00001 |

—0.000015 F

-0.00002 |

Figure E.1: Plot of 23 sin(1/x).

function is not identically zero. Yet again, we see a stark difference between real and
complex valued functions. As a nice exercise, show that 23 sin(1/x) is not complex
differentiable. It will help if you recall e = cos §+isin 0, orsin § = (e?? —e~1) /2.

E.3 Complex analysis and moment generating func-
tions

We conclude our technical digression by stating a few more very useful facts. The
proof of these requires properties of the Laplace transform, which is defined by
(Lf)(s) = fooc e™** f(z)dz. The reason the Laplace transform plays such an im-
portant role in the theory is apparent when we recall the definition of the moment
generating function of a random variable X with density f:

My(t) = Ble) = [ e fla)da

— 00
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in other words, the moment generating function is the Laplace transform of the den-
sity evaluated at s = —t.

Remember that if F'x and GGy are the cumulative distribution functions of the
random variables X and Y with densities f and g, then

Fx(z) = /z f(t)dt

We remind the reader of the two important results we assumed in the text (Theorems
20.5.3 and 20.5.4), which we restate below. After stating them we discuss their
proofs.

Theorem E.3.1 Assume the moment generating functions Mx (t) and My (t) exist
in a neighborhood of zero (i.e., there’s some § such that both functions exist for
[t| < ). If Mx (t) = My (t) in this neighborhood, then Fx (u) = Fy (u) for all u.
As the densities are the derivatives of the cumulative distribution functions, we have

f=g

Theorem E.3.2 Let {X;};cr be a sequence of random variables with moment gen-
erating functions Mx,(t). Assume there’s a § > 0 such that when |t| < § we have
lim; oo Mx, (t) = Mx(t) for some moment generating function Mx (t), and all
moment generating functions converge for |t| < 0. Then there exists a unique cumu-
lative distribution function F' whose moments are determined from Mx (t) and for
all x where Fx (z) is continuous, lim;_,~, Fx,(z) = Fx ().

The proof of these theorems follow from results in complex analysis, specifically
the Laplace and Fourier inversion formulas. To give an example as to how the results
from complex analysis allow us to prove results such as these, we give most of the
details in the proof of the next theorem. We deliberately do not try and prove the
following result in as great generality as possible!
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Theorem E.3.3 Let X and Y be two continuous random variables on [0, 00) with
continuous densities f and g, all of whose moments are finite and agree. Suppose
further that:

1. There is some C > 0 such that for all ¢ < C, e\t f(et) and e(cTDtg(et)
are Schwartz functions (see Definition 21.1.3). This isn’t a terribly restrictive
assumption; f and g need to have decay in order for all moments to exist and
be finite. As we’re evaluating f and g at ' and not t, there’s enormous decay
here. The meat of the assumption is that f and g are infinitely differentiable
and their derivatives decay.

2. The (not necessarily integral) moments

/@w>=4 ﬂW@wadMAnzé & g(2)de

agree for some sequence of non-negative real numbers {r, }°2_, which has a
finite accumulation point (i.e., lim, oo 7, = T < 00).

Then f = g (in other words, knowing all these moments uniquely determines the
probability density).

Proof: We sketch the proof, which is long and sadly a bit technical. Remember the
purpose of this proof'is to highlight why our needed results from Complex Analysis
are true. Feel free to skim or skip the proof, but we urge you to read the example at
the end of this section, where we return to the two densities that are causing us so
much heartache. Let h(z) = f(z) — g(x), and define

Note that A(z) exists for all z with real part non-negative. To see this, let R(z) denote
the real part of z, and let k be the unique non-negative integer with & < R(z) < k+1.
Then 2%* < zF 4+ 2%+1 and

A < [ O ) + gt de
0
< [ttt [t e @ = 2+ 2,

Results from analysis now imply that A(z) exists for all z. The key point is that A
is also differentiable. Interchanging the derivative and the integration (which can be
justified; see Theorem B.2.2), we find

Alz) = /0°° z*(log z)h(x)dz.

To show that A’(z) exists, we just need to show this integral is well-defined. There
are only two potential problems with the integral, namely when z — oo and when
x — 0. For z large, 2°logaz < x®™(*)*1 and thus the rapid decay of h gives
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’floo z*(log x)h(x)dx’ < oo. For x near 0, h(z) looks like ~(0) plus a small er-
ror (remember we’re assuming f and g are continuous); thus there’s a C' so that
|h(z)| < C for || < 1. Note

1
lim
e—0 ¢

1
< liml/ 1-(—logz) - Cdz.

e—0

/°° z*(log z)h(x)dz
0

The anti-derivative of logx is xlogz — z, and lim._,o(eloge — €) = 0. This is
enough to prove that this integral is bounded, and thus from results in analysis we
get A’(z) exists.

We (finally!) use our results from complex analysis. As A is differentiable once,
it’s infinitely differentiable and it equals its Taylor series for z with %(z) > 0. There-
fore A is an analytic function which is zero for a sequence of z,,’s with an accumula-
tion point, and thus it’s identically zero. This is spectacular — initially we only knew
A(z) was zero if z was a positive integer or if z was in the sequence {r, }; we now
know it’s zero for all z with (z) > 0. This remarkable conclusion comes from
complex analysis; it’s here that we use it.

We change variables, and replace = with e! and dz with etdt. The range of
integration is now —oo to oo, and we set h(t)dt = h(et)eldt. We now have

A(z) = /OO e#p(t)dt = 0.

— 00

Choosing z = ¢ + 2miy with ¢ less than the C' from our hypotheses gives

A(c+ 2miy) = /OO > [ecth(t)] dt = 0.

— 00

Our assumptions imply that e“*h(t) is a Schwartz function, and thus it has a unique
inverse Fourier transform. As we know this transform is zero, it implies that e (¢) =
0,or h(z) =0, or f(x) = g(x). O

We needed the analysis at the end on the inverse Fourier transform as our goal
is to show that f(z) = g(z), not that A(z) = 0. It seems absurd that A(z) could
identically vanish without f = g, but we must rigorously show this.

What if we lessen our restrictions on f and g; perhaps one of them isn’t continu-
ous? Perhaps there’s a unique continuous probability distribution attached to a given
sequence of moments such as in the above theorem, but if we allow non-continuous
distributions there could be additional possibilities. This topic is beyond the scope
of this book, requiring more advanced results from analysis; however, we wanted to
point out where the dangers lie, where we need to be careful.

After proving Theorem E.3.3, it’s natural to go back to the two densities that are
causing so much trouble, namely (see (19.2))

1
h@) 2wz

fa(z) = fi(z)[l+sin(27logx)].

o~ (log? z)/2
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We know these two densities have the same integral moments (their k™ moments are
2 . . .

k" /2 for k a non-negative integer). These functions have the correct decay; note

e—t2/2

e(c+1)tf1 (et) _ e(c+1)t A

Voret’

which decays fast enough for any c to satisfy the assumptions of Theorem E.3.3.
As these two densities are not the same, some condition must be violated. The only
condition left to check is whether or not we have a sequence of numbers {r,,}>2
with an accumulation point » > 0 such that the r,M moments agree. Using more
results from Complex Analysis (specifically, contour integration), we can calculate
the (a + ib)™ moments. We find

(a + ib)™ moment of f; is elatib)*/2

and

(a + ib)™ moment of f; is elatit)®/2 | % (e(‘LJri(l’_27r))2/2 - e(“+i(b+2”))2/2) :

While these moments agree for b = 0 and a a positive integer, there’s no sequence of
real moments having an accumulation point where they agree. To see this, note that
when b = 0 the a™™ moment of f5 is

ea2/2 + e(a—27,'7r)2/2 (1 . e4m7r) : (E.3)

and this is never zero unless a is a half-integer (i.e., a = k/2 for some integer
k). In fact, the reason we wrote (E.3) as we did was to highlight the fact that it’s
only zero when a is a half-integer. Exponentials of real or complex numbers are
never zero, and thus the only way this can vanish is if 1 = %™, Recalling that
e = cosf + isinf, we see that the vanishing of the a™ moment is equivalent to
1 — cos(4ma) —isin(4wa) = 0; the only way this can happen is if a = k/2 for some
k. If this happens, the cosine term is 1 and the sine term is 0.

E.4 Exercises

Problem E.4.1 Let f(x) = a3sin(1/x) for x # 0 and set f(0) = 0. (a) Show that
f is differentiable once when viewed as a function of a real variable, but that it is not
differentiable twice. (b) Show that f is not differentiable when viewed as a function
of a complex variable z; it might be useful to note that sinu = (e — =) /24,

Problem E.4.2 [f we're told that all the moments of f are finite and f is infinitely
differentiable, must there be some C' such that for all ¢ < C we have e(*TV f(et) is
a Schwartz function?



