Math 383: Complex Analysis: Fall ‘21 (Williams)

Professor Steven J Miller: siml@williams.edu

Homepage:
https://web.williams.edu/Mathematics/similler/
public htm|/383Fa21/

Lecture 31: 12-3-21:

https://web.williams.edu/Mathematics/similler/public html/math/talks/talks.html



mailto:sjm1@williams.edu
https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa21/
https://web.williams.edu/Mathematics/sjmiller/public_html/math/talks/talks.html

Plan for the day: Lecture 31: December 2, 2021.:

https://web.williams.edu/Mathematics/sjmiller/public html/383Fa21/coursenotes/
Math302 LecNotes Intro.pdf

e Eigenvalues of matrices
 Random Matrix Theory and L-functions

General items.

e The unreasonable effectiveness of mathematics in the natural sciences:
https://www.maths.ed.ac.uk/~vlranick/papers/wigner.pdf
Eugene Wigner -- Reprinted from Communications in Pure and Applied
Mathematics, Vol. 13, No. | (February 1960). New York: John Wiley & Sons, Inc.
Copyright © 1960 by John Wiley & Sons, Inc.



https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa21/coursenotes/Math302_LecNotes_Intro.pdf
https://www.maths.ed.ac.uk/%7Ev1ranick/papers/wigner.pdf
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Introduction




@ Determine correct scale and statistics to study
eigenvalues and zeros of L-functions.

@ See similar behavior in different systems.

@ Discuss the tools and techniques needed to prove the
results.

@ Find sub-systems with interesting behavior!




Fundamental Problem: Spacing Between Events

General Formulation: Studying system, observe values at
b, b, I3, ...

Question: What rules govern the spacings between the t;?
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e Energy Levels of Nuclei.
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@ Zeros of L-functions.
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Sketch of proofs

In studying many statistics, often three key steps:
@ Determine correct scale for events.

@ Develop an explicit formula relating what we want to
study to something we understand.

© Use an averaging formula to analyze the quantities
above.

It is not always trivial to figure out what is the correct
statistic to study!
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Classical Random Matrix Theory ’

With Olivia Beckwith, Leo Goldmakher, Chris Hammond,
Steven Jackson, Cap Khoury, Murat Kologlu, Gene Kopp,
Victor Luo, Adam Massey, Eve Ninsuwan, Vincent Pham,
Karen Shen, Jon Sinsheimer, Fred Strauch, Nicholas
Triantafillou, Wentao Xiong
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Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem intractable.
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Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem intractable.
Heavy nuclei (Uranium: 200+ protons / neutrons) worse!

Get some info by shooting high-energy neutrons into
nucleus, see what comes out.

Fundamental Equation:
Hwn = Enwn
H : matrix, entries depend on system

E, : energy levels
¥n : energy eigenfunctions
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Origins of Random Matrix Theory

e Statistical Mechanics: for each configuration,
calculate quantity (say pressure).

@ Average over all configurations — most configurations
close to system average.

@ Nuclear physics: choose matrix at random, calculate
eigenvalues, average over matrices (real Symmetric

A = AT, complex Hermitian A’ = A).

A
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Random Matrix Ensembles

ayn a2 a3z - an
dip do2 doz 2N
A= . . . . - AT> alj - ajl
ainy den asn -+ ann
Fix p, define
Prob(A) = [ nr(ay)
1<i<j<N
This means
Bij
Prob (A: a; € [0y, 85]) = ][ / p(x;)dx;.
1<i<j<N v Xj=jj

L Want to understand eigenvalues of A.
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Eigenvalue Distribution

I(x — xo) is a unit point mass at xp:
[ f(x)d(x — Xo)dx = f(xo).
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[ f(x)d(x — Xo)dx = f(xo).

To each A, attach a probability measure:

pan(x) = 21 ( ))




Classical RMT
oe

Eigenvalue Distribution

I(x — xo) is a unit point mass at xp:
[ f(x)d(x — Xo)dx = f(xo).

To each A, attach a probability measure:

) = 30 (o)

A Ai(A)

/bMA,N(X)dX - #{ ._l,vve[ab]}
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Eigenvalue Distribution

I(x — xo) is a unit point mass at xp:
[ f(x)d(x — Xo)dx = f(xo).

To each A, attach a probability measure:

) = 30 (o)

b # N 54 < [a b
/ ,uAyN(X)dX = { A’(I }
Z,’L Ni(A)K Trace(AK)

k" moment = p = —.
2 2
2k Nz +1 2kNz+1
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Wigner’s Semi-Circle Law

Wigner’s Semi-Circle Law

N x N real symmetric matrices, entries i.i.d.r.v. from a
fixed p(x) with mean 0, variance 1, and other moments
finite. Then for almost all A, as N — o~

v1—x2 if x| <A1

2
0 otherwise.

pan(x) — {
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SKETCH OF PROOF: Eigenvalue Trace Lemma

Want to understand the eigenvalues of A, but choose the
matrix elements randomly and independently.

Eigenvalue Trace Lemma

Let Abe an N x N matrix with eigenvalues \;(A). Then

Trace Ak Z Ai(A

where

N

TI'aCe(Ak = Z Z 3,1 ip 3,2,3 ajNi1 .

i1=1 ix=1
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SKETCH OF PROOF: Correct Scale

Trace(A?) = Z)\;(A)Z.

By the Central Limit Theorem:

N N N N
Trace(A?) = Zzaijaji = Zza,?j ~ N

=1 j=1 i=1 j=1
> XA~ NP

Gives NAve()\;(A)?) ~ N?or Ave()\i(A)) ~ V'N.
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SKETCH OF PROOF: Averaging Formula

Recall k-th moment of 14 n(X) is Trace(AK) /2K Nk/2+1,

Average k-th moment is

Trace Ak
/ / ok Nk/2+1 Hp a;)daj.

i<j

Proof by method of moments: Two steps

@ Show average of k-th moments converge to moments
of semi-circle as N — oc;

e Control variance (show it tends to zero as N — o).




Classical RMT
oe

SKETCH OF PROOF: Averaging Formula for Second Moment

Substituting into expansion gives

OoN/\/

22N2/ / a; - p(as1)das - - - p(ann)dann

711/1

Integration factors as

(e o]
/ ,,p aj)daj
ajj=—00

Higher moments involve more advanced combinatorics
(Catalan numbers).

H / ak, dak, = 1.
a

(i) * =00
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SKETCH OF PROOF: Averaging Formula for Higher Moments

Higher moments involve more advanced combinatorics
(Catalan numbers).

N N
1 o e
Ok Nk/2+1 / / Z”'Zaﬁiz'”aikh Hp(alj)dalj
T T =1

k=1 i<j

Main contribution when the a;,,,,’s matched in pairs, not
all matchings contribute equally (if did would get a
Gaussian and not a semi-circle; this is seen in Real
Symmetric Palindromic Toeplitz matrices).

Distribution of eigenvalues of real symmetric palindromic Toeplitz matrices and circulant matrices (with Adam
Massey and John Sinsheimer), Journal of Theoretical Probability 20 (2007), no. 3, 637—662.

http://arxiv.org/abs/math/0512146



http://arxiv.org/abs/math/0512146

Classical RMT
o

Numerical examples

Distribution of eigenvalues--Gaussian, N=400, 500 matrices
T T T

0.025

0.015F

0.005F

0
s =

500 Matrices: Gaussian 400 x 400
p(X) _ \/Lz? e_x2/2

-05 [ 05 15
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Numerical examples

The eigen, | cmc uchy
dstibution are NOT Semirular

2000

1500

1000

o0 -200 -100 100 200 300

Cauchy Distribution: p(x) = -

w(1+x3)

|. Zakharevich, A generalization of Wigner’s law, Comm.
Math. Phys. 268 (2006), no. 2, 403—414.

http://web.williams.edu/Mathematics/sjmiller/public_html/book/papers/innaz.pdf



http://web.williams.edu/Mathematics/sjmiller/public_html/book/papers/innaz.pdf
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Block Circulant Ensemble ’

With Murat Kologlu, Gene Kopp, Fred Strauch and
Wentao Xiong.
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The Ensemble of m-Block Circulant Matrices

Symmetric matrices periodic with period m on wrapped
diagonals, i.e., symmetric block circulant matrices.

8-by-8 real symmetric 2-block circulant matrix:

Co Ci|C C3|C d3 Co d1
Cq do d1 d2 d3 d4 C3 d2
C di|C Ci|C C3|Cs O3
C3 d2 Cq do d1 d2 d3 d4
Cy d3 Co d1 Ch Ci|C GC3
d3 d4 C3 dg Cq do d1 d2
Co C3|Cs d3 Co d1 Co C4
d1 dz d3 d4 C3 dz Cq do

Choose distinct entries i.i.d.r.v.

DR
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Oriented Matchings and Dualization

Compute moments of eigenvalue distribution (as m stays
fixed and N — o) using the combinatorics of pairings.

Rewrite:
Mn(N) = 7 Z E(ai1 i2Gigy " aini1)
1<it,in<N
1
B N2+ Z n(N)md1 (~) " My~

where the sum is over oriented matchings on the edges
{(1,2),(2,3),...,(n,1)} of a regular n-gon.
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Oriented Matchings and Dualization

Co Ci|C C3|C d3|C
Cq do d1 ab d3 d4 C3 dz
C di|C C|C C3|Cs O
C3 d2 Cq do d1 d2 d3 d4
Cy d3 Co d1 Ch C | C GC3
ds di|C3 Gb|Ci Oh|dy @b
Co C3 | C4 d3 Co d1 Co €4
/1:5 (4 7:6 di dh|ds dy|cs db|Cr

Figure: An oriented matching in the expansion for M,(N) = Mg(8).
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Contributing Terms

As N — oo, the only terms that contribute to this sum are
those in which the entries are matched in pairs and with
opposite orientation.
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Only Topology Matters

Think of pairings as topological identifications; the
contributing ones give rise to orientable surfaces.

Contribution from such a pairing is m=29, where g is the
genus (number of holes) of the surface. Proof:
combinatorial argument involving Euler characteristic.

A0)
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Computing the Even Moments

Theorem: Even Moment Formula

Lk/2] 1
My = Z 5g(k)m‘29 + Ok <N) ,

g=0

with e4(k) the number of pairings of the edges of a
(2k)-gon giving rise to a genus g surface.

J. Harer and D. Zagier (1986) gave generating functions
for the e4(k).
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Harer and Zagier

Lk/2]
> eg(k)r* 1729 = (2k — 1)1l (k. )
g=0

where .

- 14+ x
k+1
1+2kz:;c(k,r)x = (1—x> .

Thus, we write

Moy = m~ &2k — 1)t e(k, m).
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A multiplicative convolution and Cauchy’s residue formula
yield the characteristic function of the distribution.
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Fourier transform and algebra yields

Theorem: Kologlu, Kopp and Miller

The limiting spectral density function f,(x) of the real
symmetric m-block circulant ensemble is given by the
formula

,%
2

fn( zm: 2rlz(r+lg+1)

=0

(2r + 2s)! (_1) s (2.

(r+s)ls! 2

As m — oo, the limiting spectral densities approach the
semicircle distribution.
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Results (continued)

Figure: Plot for f; and histogram of eigenvalues of 100 circulant
matrices of size 400 x 400.
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Results (continued)

0.4

I
-3 -2 -1 1 2 3

Figure: Plot for f, and histogram of eigenvalues of 100 2-block
circulant matrices of size 400 x 400.
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Results (continued)

-3 -2 -1 1 2 3

Figure: Plot for f; and histogram of eigenvalues of 100 3-block
circulant matrices of size 402 x 402.
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Results (continued)

0.4

-3 -2 -1 1 2 3

Figure: Plot for f; and histogram of eigenvalues of 100 4-block
circulant matrices of size 400 x 400.
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Results (continued)

0.4

Figure: Plot for f3 and histogram of eigenvalues of 100 8-block
circulant matrices of size 400 x 400.
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Results (continued)

Figure: Plot for f59 and histogram of eigenvalues of 100 20-block
circulant matrices of size 400 x 400.
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Results (continued)

Figure: Plot of convergence to the semi-circle.

The Limiting Spectral Measure for Ensembles of Symmetric Block
Circulant Matrices (with Murat Kologlu, Gene S. Kopp, Frederick W.
Strauch and Wentao Xiong), Journal of Theoretical Probability 26
(2013), no. 4, 1020-1060. http://arxiv.org/abs/1008.4812

A



http://arxiv.org/abs/1008.4812
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Other Ensembles: N x N (k, w)-checkerboard ensemble

Matrices M = (mj;) = M7 with a; iidrv, mean 0, variance
1, finite higher moments, w fixed and

a; ifizjmodk

my =
! w if i =/ mod k.

Example: (3, w)-checkerboard matrix:

w a1 Qo2 w s - doN-1
aio W a2 a13 w o a1 N-1

ap a 1 w a3 a4 w

aN-1 a1N-1 W ayn-1 aan-1 - w
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Split Eigenvalue Distribution: Checkerboard and Generalizations

Scaled Bin Count

1.0

0.8

0.6

0.4

0.2

AL
-05

0.0

0.5

1.0

15

20

25

Normalized Eigenve

. Figure: Histogram of normalized eigenvalues for 100 100 x 100
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Split Eigenvalue Distribution: Checkerboard and Generalizations

Scaled Bin Count

08

06

04

I . . . . I . . . . I . . . . I L Normalized Eigenva
0 1 2 3

. Figure: Histogram of normalized eigenvalues for 100 150 x 150
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: Checkerboard and Generalizations

Split Eigenvalue Distribution

Scaled Bin Count

08

0.6

0.2

0.4

2 3

Normalized Eigenve

. Figure: Histogram of normalized eigenvalues for 100 200 x 200



Block Circulant
[ ]

Split Eigenvalue Distribution: Checkerboard and Generalizations

Scaled Bin Count
1

06

0.2

T S TSRS Normalized Eigenve
4

. Figure: Histogram of normalized eigenvalues for 100 250 x 250
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: Checkerboard and Generalizations

Split Eigenvalue Distribution

Scaled Bin Count

0.8

0.6

0.4

0.2

2 3 4

Normalized Eigenve

. Figure: Histogram of normalized eigenvalues for 100 300 x 300
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Split Eigenvalue Distribution: Checkerboard and Generalizations

Scaled Bin Count

0.8 -

06 -

0.4 -

L ey e s 1w - Normalized Eigenva
0 1 2 3 4

. Figure: Histogram of normalized eigenvalues for 100 350 x 350
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Split Eigenvalue Distribution: Checkerboard and Generalizations

Figure: Complex Generalization I.
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Split Eigenvalue Distribution: Checkerboard and Generalizations

Figure: Complex Generalization II.

BO)
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Introduction
to L-Functions

ST
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Riemann Zeta Function

=1 1\

(s) =) 5 = 11 (1—5) , Re(s) > 1.
n=1 p prime

Unique Factorization: n=p}' --- pjr.

1 1\? . 1\?2
1+§+ E + - +§+ § + -

1

ns’
n

n6-3)" -

p

;
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Riemann Zeta Function (cont)

1 1\
((s) = ;le;[(ul;) ., Re(s) > 1
w(x) = #{p:pisprime,p < x}

Properties of {(s) and Primes:
@ limg_ 1+ (S) = ( ) — OQ.
@ ((2)= F, (x) — 0.

eSS -
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Riemann Zeta Function

n=1 p prime

Functional Equation:
&(s) = r(3)mic(s) = €1 - ).
Riemann Hypothesis (RH):
All non-trivial zeros have Re(s) = %; can write zeros as %—H'v.

Observation: Spacings b/w zeros appear same as b/w

. . . —T
elgenvalues of Complex Hermitian matrices A° = A.
[~ |
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General L-functions

L(s,f) = f:afrff) — I Lo(sf)™", Re(s)>1.
n=1 p prime

Functional Equation:
A(s, f) = No(s,f)L(s,f) = N1 —s,f).

Generalized Riemann Hypothesis (RH):

- 1 : 1.
All non-trivial zeros have Re(s) = 5 can write zeros as >t

Observation: Spacings b/w zeros appear same as b/w
: . =T
eigenvalues of Complex Hermitian matrices A = A.

L
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Elliptic Curves: Mordell-Weil Group

Elliptic curve y? = x® + ax + b with rational solutions
P = (x1,y1) and Q = (X2, y») and connecting line

y =mx+ b.
R
P
E
2P
Addition of distinct points P and Q Adding a point P to itself

E(Q) = E(Q)ors @ z

;
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Elliptic curve L-function

E : y? = x3 + ax + b, associate L-function

s ) = Y20~ T Lefp)
n=1 p prime

where

ae(p) = p— #{(x,y) € (Z/pZ)? : y?> = x® + ax + b mod p}.

L
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Elliptic curve L-function

E : y? = x3 + ax + b, associate L-function

s ) = Y20~ T Lefp)
n=1 p prime

where

ae(p) = p— #{(x,y) € (Z/pZ)? : y?> = x® + ax + b mod p}.

Birch and Swinnerton-Dyer Conjecture

Rank of group of rational solutions equals order of
vanishing of L(s,E) ats =1/2.
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Properties of zeros of L-functions

e infinitude of primes, primes in arithmetic progression.
@ Chebyshev’s bias: m34(x) > 71 .4(x) ‘most’ of the time.
@ Birch and Swinnerton-Dyer conjecture.

e Goldfeld, Gross-Zagier: bound for h(D) from
L-functions with many central point zeros.

@ Even better estimates for h(D) if a positive
percentage of zeros of {(s) are at most 1/2 — ¢ of the
average spacing to the next zero.

;
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Distribution of zeros

@ ((s) # 0 for Re(s) = 1: 7(x), maq(X).
@ GRH: error terms.
@ GSH: Chebyshev’s bias.

@ Analytic rank, adjacent spacings: h(D).
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Explicit Formula (Contour Integration)
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Explicit Formula (Contour Integration)

C/(S) B d - d —s\—1
s —glogg(s) = ——S|0g1;I(1_p )

d _
— ﬁipzlogﬁ - p~°)

_ logp - p~° log p
_ 2—1 - Z—ps + Good(s).
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Explicit Formula (Contour Integration)

¢(s) _ _d B »
NONE —d—logC ——IogH (1-p

d _

_ logp - p~° log p
— ;1_—'0_3_; = + Good(s).

Contour Integration:

[~

X\" ds
P S




L-Functions
e0

Explicit Formula (Contour Integration)

= —dilogg = ——IogH 1— -

d _
— £;|og(1 - p~°)

_ logp - p~° log p
— %:—1_'05 = zp: e + Good(s).

Contour Integration:

_d(s) o s
) $(s)ds vs ;I gp/¢(s)p ds.
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Explicit Formula (Contour Integration)

- logp - p~° log p
- ;—1_'05 = zp: e + Good(s).

Contour Integration (see Fourier Transform arising):

C s)ds Vs Zlogp/qﬁ e~ gitloer g

Knowledge of zeros gives info on coefficients.
r g g
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Explicit Formula: Example

Dirichlet L-functions: Let ¢ be an even Schwartz function
and L(s, x) =>_,x(n)/n® a Dirichlet L-function from a
non-trivial character y with conductor m and zeros

p =1+ iv,. Then

Z¢( log m/7T ) / oy
() o

-2 Ep: Iogl(();gniﬂ)&; (zlogl?lill/)w)) : ,t()p) * o(log;vI m)'
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Katz-Sarnak
Density Conjectures
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Measures of Spacings: n-Level Density and Families

Let g; be even Schwartz functions whose Fourier
Transform is compactly supported, L(s, f) an L-function
with zeros 1 + i~ and conductor Qy:

log Q log Q
Dni(g) = Z o1 (’Yf,h%) “Gn (’Yf,jn%)

@ Properties of n-level density:
¢ Individual zeros contribute in limit
© Most of contribution is from low zeros
o Average over similar L-functions (family)
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n-Level Density

n-level density: F = UFy a family of L-functions ordered
by conductors, gx an even Schwartz function: D, (g) =

_ log Q¥ log Qf
m =y 2.9 (7’@ 1 Gn (7%
N feEFn /1 -----
/k

As N — oo, n-level density converges to

/Q )ong(r)(X)dX = /Q Vong(r)(U)dU.

Conjecture (Katz-Sarnak)

(In the limit) Scaled distribution of zeros near central point
agrees with scaled distribution of eigenvalues near 1 of a
classical compact group.




Katz-Sarnak Conj
[efe] ]

1-Level Densities

Let G be one of the classical compact groups: Unitary,
Symplectic, Orthogonal (or SO(even), SO(odd)).
If supp(g) C (—1,1), 1-level density of G is

where
0 G is Unitary

Cg = 1 G is Symplectic
—1 G is Orthogonal.

y
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Identifying the Symmetry Groups

e Often suggested by monodromy group in the function
field.

@ Tools: Explicit Formula, Summation Formula.

@ How to identify symmetry group in general? One
possibility is by the signs of the functional equation:
Folklore Conjecture: If all signs are even and no
corresponding family with odd signs, Symplectic
symmetry; otherwise SO(even). (False!)

The low lying zeros of a GL(4) and a GL(6) family of L-functions (with
Eduardo Dueriez), Compositio Mathematica 142 (2006), no. 6, 1403—1425.
http://arxiv.org/abs/math/0506462

y



http://arxiv.org/abs/math/0506462
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Explicit Formula

@ 7: cuspidal automorphic representation on GL,,.

e Q. > 0: analytic conductor of L(s,7) = > \.(n)/n°.
e By GRH the non-trivial zeros are J + i, .

o Satake params: {a. (p)}L1; A(P") = 2oy axi(P)"-
o L(s,m) =3, = T, ITLy (1 — ani(p)p™) .

log QY . (vlogp\ Ar(p”)logp
Zg<%ﬂf 2r >_g(0) 2ZQ(IogQr p"/2log Q.

j pv
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Some Results: Rankin-Selberg Convolution of Families

Symmetry constant: ¢, = 0 (resp, 1 or -1) if family £ has
unitary (resp, symplectic or orthogonal) symmetry.

Rankin-Selberg convolution: Satake parameters for
Tip X M2,p A€ {0m xny (K)}ETy = {0, (1) - an (/) } 15in

Theorem (Duenez-Miller)

If 7 and G are nice families of L-functions, then
Crxg = Cr - Cg-

Breaks analysis of compound families into simple ones.
The effect of convolving families of L-functions on the underlying group symmetries (with Eduardo Duefez),
Proceedings of the London Mathematical Society, 2009; doi: 10.1112/pIlms/pdp018.

http://arxiv.org/pdf/math/0607688.pdf

y
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1-Level Density

Assuming conductors constant in family F, have to study

" moment : M(PY) = ari1(p)” + -+ arn(p)”

([ logp ) logp | 1
Si(F) = -2 ( = ) _AMp
(%) Ep:g logR/) \/plog R |F|; f( )]
_ ~ [ logp log p L 2
p L feF
The corresponding classical compact group determined
by
1 0 Unitary
2 o o .
|TlZ:A,c(p ) = Cr = 1 Symplectic

feF —1  Orthogonal.

y
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LELCEWENES

Very similar to Central Limit Theorem.

@ Universal behavior: main term controlled by first two
moments of Satake parameters, agrees with RMT.

e First moment zero save for families of elliptic curves.

e Higher moments control convergence and can
depend on arithmetic of family.

OGS
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Correspondences

Similarities between L-Functions and Nuclei:

Zeros <«— Energy Levels
Schwartz test function ——  Neutron

Support of test function «+—  Neutron Energy.

TR
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Main Tools

y

@ Control of conductors: Usually monotone, gives scale
to study low-lying zeros.

@ Explicit Formula: Relates sums over zeros to sums
over primes.

© Averaging Formulas: Orthogonality of characters,
Legendre Sums, Petersson Formula, Kuznestov
Formula




Katz-Sarnak Conj

Applications of n-level density

Bounding the order of vanishing at the central point.
Average rank - ¢(0) < [ ¢(x)Wg(r)(x)dx if ¢ non-negative.

Theorem (Miller, Hughes-Miller)

Using n-level arguments, for the family of cuspidal
newforms of prime level N — oo (split or not split by sign),
for any r there is a c, such that probability of at least r
zeros at the central point is at most c,r—".

Better results from 2-level than lwaniec-Luo-Sarnak for
r > 5.

Low lying zeros of L—functions with orthogonal symmetry (with Christopher Hughes), Duke Mathematical Journal

136 (2007), no. 1,115-172. http://arxiv.org/abs/math/0507450

v/ OGS
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Elliptic Curves
o

Elliptic Curves: First Zero Above Central Point ’

Eduardo Duefiez, Duc Khim Huynh, Jon P. Keating and
Nina Snaith

Qe
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Theoretical results: y2 = x® + A(T)x + B(T)

Theorem: M-"04

For small support, one-param family of rank r over Q(T):

Jm e 3 Yo () = [ enstdk + rof0)

Ei€Fn |

SO(odd) if half odd
where G = < SO(even) if all even

weighted average otherwise.

Supports Katz-Sarnak, B-SD, and Independent model in limit.
Independent Model:

Aonar — {</2r><2r g) g € SO(2N — 2r)} .
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Interesting Families

Let £ : y2 = x3+ A(T)x + B(T) be a one-parameter family
of elliptic curves of rank r over Q(T).
Natural sub-families:

@ Curves of rank r.
@ Curves of rank r + 2.
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Interesting Families

Let £ : y2 = x3+ A(T)x + B(T) be a one-parameter family
of elliptic curves of rank r over Q(T).
Natural sub-families:

@ Curves of rank r.

@ Curves of rank r + 2.

Question: Does the sub-family of rank r + 2 curves in a
rank r family behave like the sub-family of rank r + 2
curves in arank r + 2 family?

Equivalently, does it matter how one conditions on a curve
being rank r + 2?
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Testing Random Matrix Theory Predictions

Know the right model for large conductors, searching for
the correct model for finite conductors.

In the limit must recover the independent model, and want
to explain data on:

@ Excess Rank: Rank r one-parameter family over
Q(T): observed percentages with rank > r + 2.

© First (Normalized) Zero above Central Point: Influence
of zeros at the central point on the distribution of
zeros near the central point.
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Excess Rank

One-parameter family, rank r over Q(T).
Density Conjecture (Generic Family) = 50% rank r, r+1.

For many families, observe

Percent with rankr ~ 32%
Percent with rank r+1 ~ 48%
Percent with rank r+2 ~ 18%
Percent with rank r+3 ~ 2%

Problem: small data sets, sub-families, convergence rate
log(conductor).
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°

Data on Excess Rank

y24+y = x34+ Tx

Each set is 2000 curves, last has conductors of size 107,
(small on logarithmic scale).

t-Start RkO Rk1 Rk2 Rk3 Time (hrs)

-1000 394 478 123 0.6 <1
1000 384 473 136 0.6 <1
4000 37.4 478 137 1.1 1
8000 37.3 488 129 1.0 2.5

24000 35.1 50.1 139 0.8 6.8

50000 36.7 483 138 1.2 51.8

¥ ~
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RMT: Theoretical Results (N — o)

1.5

0.5 1 1.5 2
1st normalized evalue above 1: SO(even)




Elliptic Curves
L]

RMT: Theoretical Results (N — o)

© o ©o o
N B O o

0.5 1 1.5 2 2.5
1st normalized evalue above 1: SO(odd)




Elliptic Curves
L]

Rank 2 Curves: 1st Norm. Zero above the Central Point

1.5 2 2.5 3 3.5
665 rank 2 curves from
V2 4+ aiXy + asy = X3 + @x® + asx + as.
log(cond) € [10,10.3125], median = 2.29, mean = 2.30
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Rank 2 Curves: 1st Norm. Zero above the Central Point

1.5 2 2.5 3 3.5

665 rank 2 curves from
V2 4+ aiXy + asy = X3 + @x® + asx + as.
log(cond) € [16, 16.5], median = 1.81, mean = 1.82
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Rank 0 Curves: 1st Norm Zero: 14 One-Param of Rank 0

© o o o
N A O O B N

1 1.5 2 2.5

209 rank 0 curves from 14 rank 0 families,
log(cond) € [3.26,9.98], median = 1.35, mean = 1.36
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Rank 0 Curves: 1st Norm Zero: 14 One-Param of Rank 0

P

© o oo

0.5 1 1.5 2 2.5

996 rank 0 curves from 14 rank 0 families,
log(cond) € [15.00, 16.00], median = .81, mean = .86.
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Rank 2 Curves from y? = x3 — T2x + T2 (Rank 2 over Q(T))
1st Normalized Zero above Central Point

0.5 1 15 2 25 3 3.5

35 curves, log(cond) € [7.8,16.1], n = 1.85, n = 1.92,
o, = .41
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Rank 2 Curves from y? = x3 — T2x + T2 (Rank 2 over Q(T))
1st Normalized Zero above Central Point

0.5 1 15 2 25 3 3.5

34 curves, log(cond) € [16.2,23.3], u = 1.37, p = 1.47,
o, = .34
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Summary of Data

@ The repulsion of the low-lying zeros increased with
increasing rank, and was present even for rank 0
curves.

@ As the conductors increased, the repulsion
decreased.

e Statistical tests failed to reject the hypothesis that, on
average, the first three zeros were all repelled equally
(i.e., shifted by the same amount).
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Spacings b/w Norm Zeros: Rank 0 One-Param Families over Q(T)

@ All curves have log(cond) € [15,16];

@ z = imaginary part of /" normalized zero above the central point;

@ 863 rank 0 curves from the 14 one-param families of rank 0 over Q(T);
@ 701 rank 2 curves from the 21 one-param families of rank 0 over Q(T).

863 Rank 0 Curves | 701 Rank 2 Curves || t-Statistic
Median 2z, — z 1.28 1.30
Mean 2z — z 1.30 1.34 -1.60
StDev 2z — z 0.49 0.51
Median z; — 2 1.22 1.19
Mean 23— 2 1.24 1.22 0.80
StDev z3 — 2 0.52 0.47
Median z3 — z 2.54 2.56
Mean 2z; — z 2.55 2.56 -0.38
StDev z3 — z 0.52 0.52

QR
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Spacings b/w Norm Zeros: Rank 2 one-param families over Q(T)

@ All curves have log(cond) € [15, 16];

@ z = imaginary part of the /" norm zero above the central point;

@ 64 rank 2 curves from the 21 one-param families of rank 2 over Q(T);
@ 23 rank 4 curves from the 21 one-param families of rank 2 over Q(T).

64 Rank 2 Curves | 23 Rank 4 Curves || t-Statistic
Median z; — z; 1.26 1.27
Mean 2z — z 1.36 1.29 0.59
StDev 2z — z 0.50 0.42
Median z3 — z» 1.22 1.08
Mean 2z — 2 1.29 1.14 1.35
StDev z; — 2z 0.49 0.35
Median z; — z 2.66 2.46
Mean 2z — z 2.65 2.43 2.05
StDev z3 — z 0.44 0.42
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Rank 2 Curves from Rank 0 & Rank 2 Families over Q(7)

@ All curves have log(cond) € [15,16];

@ z = imaginary part of the /" norm zero above the central point;

@ 701 rank 2 curves from the 21 one-param families of rank 0 over Q(T);
@ 64 rank 2 curves from the 21 one-param families of rank 2 over Q(T).

701 Rank 2 Curves | 64 Rank 2 Curves | t-Statistic
Median 2z, — z 1.30 1.26
Mean 2z — z 1.34 1.36 0.69
StDev 2z — z 0.51 0.50
Median z3 — 2 1.19 1.22
Mean 23— 2 1.22 1.29 1.39
StDev z3 — 2 0.47 0.49
Median z; — z 2.56 2.66
Mean 2z; — z 2.56 2.65 1.93
StDev z3 — z 0.52 0.44

Q77
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New Model for Finite Conductors

@ Replace conductor N with N,grecive-
< Arithmetic info, predict with L-function Ratios Con;.
o Do the number theory computation.

@ Excised Orthogonal Ensembles.
o L(1/2, E) discretized.
o Char. polys Aa(6) = det(/ — e?A=") model L(1/2 + it, E).
o Study matrices in SO(2Ney) with [A4(0)| > ceV.

@ Painlevé VI differential equation solver.
o Use explicit formulas for densities of Jacobi ensembles.

o Key input: Selberg-Aomoto integral for initial conditions.
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Modeling lowest zero of Lg,, (s, x4) with 0 < d < 400,000

EEN AN

\
16k
14

12+ |

04t M
02 \
0.5 15

Lowest zero for Lg,, (S, xq) (bér chart), lowest eigenvalue
of SO(2N) with N, (solid), standard N, (dashed).

o




Elliptic Curves

Modeling lowest zero of Lg,, (s, x4) with 0 < d < 400,000

18 T T T
16|
14
12+

1k
08
06

04

uz«‘r
o e
0.5 1 15 2

Lowest zero for Lg,, (S, xq) (bar chart); lowest eigenvalue of SO(2N): Nes; = 2 (solid)
with discretisation, and N = 2.32 (dashed) without discretisation.

The lowest eigenvalue of Jacobi Random Matrix Ensembles and Painlevé VI, (with E. Duefiez, D. K. Huynh, J.
Keating and N. Snaith), Journal of Physics A: Mathematical and Theoretical 43 (2010) 405204 (27pp).
http://arxiv.org/pdf/1005.1298

Models for zeros at the central point in families of elliptic curves (with E. Duefez, D. K. Huynh, J. Keating and N.
Snaith), J. Phys. A: Math. Theor. 45 (2012) 115207 (32pp). http://arxiv.org/pdf/1107.4426
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Elliptic Curves

Generalizations: With Owen Barrett and Nathan Ryan

0000% =>Q=>00002

e

Percent
s o

00002 =>Q=>0

0.1 04 05

0.2 03
Imaginary part of lowest lying zero

Quadratic twists of a weight 3 level 8 form.
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Open Questions
and References
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Open Questions: Low-lying zeros of L-functions

e Generalize excised ensembles for higher weight GL,
families where expect different discretizations.

@ Obtain better estimates on vanishing at the central
point by finding optimal test functions for the second
and higher moment expansions.

e Further explore L-function Ratios Conjecture to
predict lower order terms in families, compute these
terms on number theory side.

See Dueriez-Huynh-Keating-Miller-Snaith, Miller, and the
Ratios papers.
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Publications: Random Matrix Theory

o Distribution of eigenvalues for the ensemble of real symmetric Toeplitz matrices (with Christopher
Hammond), Journal of Theoretical Probability 18 (2005), no. 3, 537-566.
http://arxiv.org/abs/math/0312215

e Distribution of eigenvalues of real symmetric palindromic Toeplitz matrices and circulant matrices (with
Adam Massey and John Sinsheimer), Journal of Theoretical Probability 20 (2007), no. 3, 637-662.
http://arxiv.org/abs/math/0512146

The distribution of the second largest eigenvalue in families of random regular graphs (with Tim Novikoff
and Anthony Sabelli), Experimental Mathematics 17 (2008), no. 2, 231-244.
http://arxiv.org/abs/math/0611649

Nuclei, Primes and the Random Matrix Connection (with Frank W. K. Firk), Symmetry 1 (2009), 64—105;
doi:10.3390/sym1010064. http://arxiv.org/abs/0909.4914

Distribution of eigenvalues for highly palindromic real symmetric Toeplitz matrices (with Steven Jackson and
Thuy Pham), Journal of Theoretical Probability 25 (2012), 464—495.
http://arxiv.org/abs/1003.2010

The Limiting Spectral Measure for Ensembles of Symmetric Block Circulant Matrices (with Murat Kologlu,
Gene S. Kopp, Frederick W. Strauch and Wentao Xiong), Journal of Theoretical Probability 26 (2013), no. 4,
1020-1060. http://arxiv.org/abs/1008.4812

Distribution of eigenvalues of weighted, structured matrix ensembles (with Olivia Beckwith, Karen Shen),
submitted December 2011 to the Journal of Theoretical Probability, revised September 2012.
http://arxiv.org/abs/1112.3719

The expected eigenvalue distribution of large, weighted d-regular graphs (with Leo Goldmahker, Cap
Khoury and Kesinee Ninsuwan), preprint.

© ©¢ 06 00 O
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Publications: [-Functions

o The low lying zeros of a GL(4) and a GL(6) family of L-functions (with Eduardo Duefiez), Compositio
Mathematica 142 (2006), no. 6, 1403—1425. http://arxiv.org/abs/math/0506462

Low lying zeros of L—functions with orthogonal symmetry (with Christopher Hughes), Duke Mathematical
Journal 136 (2007), no. 1, 115-172. http://arxiv.org/abs/math/0507450

Lower order terms in the 1-level density for families of holomorphic cuspidal newforms, Acta Arithmetica 137
(2009), 51-98. http://arxiv.org/abs/0704.0924

The effect of convolving families of L-functions on the underlying group symmetries (with Eduardo Duefiez),
Proceedings of the London Mathematical Society, 2009; doi: 10.1112/plms/pdp018.
http://arxiv.org/pdf/math/0607688.pdf

Low-lying zeros of number field L-functions (with Ryan Peckner), Journal of Number Theory 132 (2012),
2866-2891. http://arxiv.org/abs/1003.5336

The low-lying zeros of level 1 Maass forms (with Levent Alpoge), preprint 2013.
http://arxiv.org/abs/1301.5702

The n-level density of zeros of quadratic Dirichlet L-functions (with Jake Levinson), submitted September
2012 to Acta Arithmetica. http://arxiv.org/abs/1208.0930

© © 00 ©0 0 O

Moment Formulas for Ensembles of Classical Compact Groups (with Geoffrey lyer and Nicholas
Triantafillou), preprint 2013.



http://arxiv.org/abs/math/0506462
http://arxiv.org/abs/math/0507450
http://arxiv.org/abs/0704.0924
http://arxiv.org/pdf/math/0607688.pdf
http://arxiv.org/abs/1003.5336
http://arxiv.org/abs/1301.5702
http://arxiv.org/abs/1208.0930

Qs and Refs
[ ]

Publications: Elliptic Curves

o 1- and 2-level densities for families of elliptic curves: evidence for the underlying group symmetries,
Compositio Mathematica 140 (2004), 952-992. http://arxiv.org/pdf/math/0310159

Variation in the number of points on elliptic curves and applications to excess rank, C. R. Math. Rep. Acad.
Sci. Canada 27 (2005), no. 4, 111-120. http://arxiv.org/abs/math/0506461

Investigations of zeros near the central point of elliptic curve L-functions, Experimental Mathematics 15
(2006), no. 3, 257-279. http://arxiv.org/pdf/math/0508150

Constructing one-parameter families of elliptic curves over Q(T) with moderate rank (with Scott Arms and
Alvaro Lozano-Robledo), Journal of Number Theory 123 (2007), no. 2, 388—402.
http://arxiv.org/abs/math/0406579

Towards an ‘average’ version of the Birch and Swinnerton-Dyer Conjecture (with John Goes), Journal of
Number Theory 130 (2010), no. 10, 2341-2358. http://arxiv.org/abs/0911.2871

The lowest eigenvalue of Jacobi Random Matrix Ensembles and Painlevé VI, (with Eduardo Duefiez, Duc
Khiem Huynh, Jon Keating and Nina Snaith), Journal of Physics A: Mathematical and Theoretical 43 (2010)
405204 (27pp). http://arxiv.org/pdf/1005.1298

Models for zeros at the central point in families of elliptic curves (with Eduardo Duefiez, Duc Khiem Huynh,
Jon Keating and Nina Snaith), J. Phys. A: Math. Theor. 45 (2012) 115207 (32pp).
http://arxiv.org/pdf/1107.4426

Effective equidistribution and the Sato-Tate law for families of elliptic curves (with M. Ram Murty), Journal of
Number Theory 131 (2011), no. 1,25-44. http://arxiv.org/abs/1004.2753
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Moments of the rank of elliptic curves (with Siman Wong), Canad. J. of Math. 64 (2012), no. 1, 151-182.
http://web.williams.edu/Mathematics/sjmiller/public_html/math/papers/
mwMomentsRanksEC812final.pdf
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Publications: L-Function Ratio Conjecture

o A symplectic test of the L-Functions Ratios Conjecture, Int Math Res Notices (2008) Vol. 2008, article ID
rnm146, 36 pages, doi:10.1093/imrn/rnm146. http://arxiv.org/abs/0704.0927

e An orthogonal test of the L-Functions Ratios Conjecture, Proceedings of the London Mathematical Society
2009, doi:10.1112/plms/pdp009. http://arxiv.org/abs/0805.4208

e A unitary test of the L-functions Ratios Conjecture (with John Goes, Steven Jackson, David Montague,
Kesinee Ninsuwan, Ryan Peckner and Thuy Pham), Journal of Number Theory 130 (2010), no. 10,
2238-2258. http://arxiv.org/abs/0909.4916

o An Orthogonal Test of the L-functions Ratios Conjecture, Il (with David Montague), Acta Arith. 146 (2011),
53-90. http://arxiv.org/abs/0911.1830

e An elliptic curve family test of the Ratios Conjecture (with Duc Khiem Huynh and Ralph Morrison), Journal
of Number Theory 131 (2011), 1117-1147. http://arxiv.org/abs/1011.3298

o Surpassing the Ratios Conjecture in the 1-level density of Dirichlet L-functions (with Daniel Fiorilli).
submitted September 2012 to Proceedings of the London Mathematical Society.
http://arxiv.org/abs/1111.3896
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