Math 383: Complex Analysis: Fall 23 (Williams)
Professor Steven J Miller: siml@williams.edu

Homepage:
https://web.williams.edu/Mathematics/sjmiller/p
ublic html/383Fa23/

Lecture 01: 9-08-23: https://youtu.be/slieScdiiR0

Definition of differentiability, differences between real and complex differentiability.
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Definitions of the Derivative
Definition of the derivative:
f(x) or df/dx is lim_{h-> 0} (E(x+h) - £(x)) /
Exercise: what is the definition that works well for multivariable calculus (NOT THIS!!!)
For complex functions we use
£(z) = lim {h-> 0} (f(z¢h) - £(2)) /
When does this limit exist?
For what functions f(z) will f'(z) exist?

Possibilities: {(z) is a complex polynomial:a nz"n+...+ta lz+a 0

We are using z = x + i y where x, y are real numbers and i = sqrt(-1).



‘Consider f(z) = complex conjugate of z
So if z = x + iy then complex conjugate is x - iy.

£(z) = lim {h >0} (E(z+h) - £(z)) /
Want the same limit no matter how h goes to zero.

ComplexConjugate(z+h) = ComplexConjugate(z) + ComplexConjugate(h).
So f'(z) =lim {h -> 0} ComplexConjugate(h)/h.

One path: approach along the real axis: h=h _x+i0. So ComplexConjuage(h) = h, limit equals 1.
Another path: approach along the imaginary axis: h=0+1ih_y, ComplexConjugate(h) =-i h_y, so limit is
lim th y->0} -ihy/ (hy) =lim {h y->0}(-1)=-1L

Limits differ, so the complex conjugation function is not complex differentiable!
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fReaI Analysis versus Complex Analysis

1. Assume f is differentiable, must f' be differentiable? False for Reals, true for Complex.
Consider: f(x) = x"3 sin(1/x) if x is not zero and Q If X IS zero.
Go back to the definition: look at f(h)/h

Exercise: show " or " does not exist
So If complex differentiable once, lather rinse repeat, infinitely differentiable!

’2 Assume f has a Taylor series that converges for all x; must f equal its Taylor
Series in a neighborhood of zero? False for Reals, true for Complex.

Consider f(x) = exp(-1/x"2) if x is not zero and 0 If X IS zero.
Exercise: show *{(n)}(0) = 0, so Taylor series is identically zero, but f is not zero function.

Not even complex continuous -- take z = 1/iy with y going to zero, see function explodes



In[1]:= fF[x ] = If[x == @, O, EXp[-1/x"2]];
Manipulate[Plot[f[x], {x, -c, c¢}], {c, 1, .801} ]
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‘Real vs Complex

3. Consider f bounded and differentiable, is it constant? Real no, Complex yes.
Real: consider sin(x), cos(x), arctan'(x) = 1/(1+x"2)

4. Consider differentiable f and sequence of points x_n such that f(x_) = 0 and
IIm _{n ->00} x_n=x"and f(x*) = 0; must f be identically zero?
Consider f(x) = x"3 sin(1/x). This is differentiable, has infinitely many zeros
that get closer amtbslpsarbisBSHIRO= 0, but f is not identically 0|



https://youtu.be/sljeScdiiR0

Math 383: Complex Analysis: Fall 23 (Williams)
Professor Steven J Miller: siml@williams.edu

Homepage:
https://web.williams.edu/Mathematics/sjmiller/pu
blic htm|/383Fa23/

Lecture 02: 9-10-23: https://youtu.be/xYFwgGrs9mQ

Experimental Mathematics:
Formulas for derivatives, product rule, Cauchy-Riemann Equations, Green’s Theorem
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Definitions of the Derivative: From 1-dimension to several.
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Definitions of the Derivative: Several Variables.
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Important Derivatives:

What are the derivatives of f(x) = x3, g(x) = x3/2 and h(x) = x'2?
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Product Rule: Experimental Discovery!
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Definitions of the Complex Derivative and Properties.

(20) = lim f(zo+h) — f(z0) ”(FC({/%{Z!L

h—0 h

Proposition 2.2 If f and g are holomorphic in ), then:
(1) f+ g is holomorphic in Q2 and (f +g) = f" + 4.
(ii) fg is holomorphic in  and (fg) = f'g+ fg’.

(iii) If g(z0) # 0, then f/g is holomorphic at zy and

Moreover, if f : Q0 — U and g: U — C are holomorphic, the chain rule

holds
(g0 f)(2) =g (f(2))f'(2)  forall z € €.



Cauchy-Riemann Equations — Experimental Discovery: f(z) = u(x,y) +i v(x,y)
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Writing f = u + iv, we find after separating real and imaginary parts
and using 1/7 = —i, that the partials of u and v exist, and they satisfy
the following non-trivial relations

Ju  Ov du v

dr  Jdy i dy Jx

These are the Cauchy-Riemann equations, which link real and complex
analysis.
We can clarify the situation further by defining two differential oper-

ators
0 _1(0 10 L 0 _1(0 10
9-  2\oz "Toy) MY ZT2\or Toy)

Proposition 2.3 If f is holomorphic at zg. then

9 ,
ng(zo) =0 and f'(z)= Tz(zo) = QTZ(?«’D)-

Also, if we write F(x,y) = f(z), then F s differentiable in the sense of
real variables, and

det Jp(z0,y0) = | F'(20)|°.



Math 383: Complex Analysis: Fall 23 (Williams)
Professor Steven J Miller: siml@williams.edu

Homepage:
https://web.williams.edu/Mathematics/sjmiller/pu
blic htm|/383Fa23/

LECtU re 03: 9'13'23: NO ClaSS, dO exam: Real Analysis Review (limsup/liminf,

strange functions): https://youtu.be/DLyzZhJN58w (slides); watched at home: Differentiating Term By Term, Analytic Functions, Path
Integrals: https://youtu.be/e60Dh8cAIhQ (2017). Green's Theorem in a day: https://youtu.be/lq-Og1GAtOQ

Lecture 04: 9-15-23: https://youtu.be/-hgBpme4Q2A

Primitives and Goursat’s Theorem, Green Review (if time)
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Suppose f is a function on the open set 2. A primitive for f on {2 is a
function F' that is holomorphic on €2 and such that F'(z) = f(z) for all
z € (.

Goursat’s theorem

Theorem 1.1 If Q) is an open set in C, and T C ) a triangle whose
interior is also contained in €2, then

[ sty - —

whenever f 1s holomorphic in ().
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Math 383: Complex Analysis: Fall 23 (Williams)
Professor Steven J Miller: siml@williams.edu

Homepage:
https://web.williams.edu/Mathematics/similler/pu
blic html|/383Fa23/

Lecture 05: 9-18-23: https://youtu.be/pTyXgBAGN7A

Primitive Theorem, Cauchy's Formula
General items: e Choices have in complexification e Path independence e Level of rigor
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Theorem 2.1 A holomorphic function in an open disc has a primitive
Theorem 2.2 (Cauchy’s theorem for a disc) If f is holomorphic in

a disc, then
/ f(z)d==0
¥

for any closed curve ~ in that disc.

Proof. Since f has a primitive, we can apply Corollary 3.3 of Chap-
ter 1.

Corollary 2.3 Suppose f is holomorphic in an open set containing the
circle C' and its interior. Then ’p

/Cf(z) dz = 0. 5

Proof. Let D be the disc with boundary circle C. Then there exists
a slightly larger disc D’ which contains D and so that f is holomorphic
on D'. We may now apply Cauchy’s theorem in D’ to conclude that

fcf(z) dz = 0.



Integrating z" about a circle centered at the origin....
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Theorem 2.1 A holomorphic function in an open disc has a primitive
in that disc.
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For more information on this problem, see the video from 2017: Lecture 05: 9/18/17: Primitive Theorem, Cauchy's
Formula, Example: https://youtu.be/RkZHWAfKHfE . There we go through the details of the integration. Today we
instead concentrated on why we are integrating over the region we are, and why we have the integrand we do.
Explicitly, why we used exp(iz) instead of (exp(iz) + exp(-iz))/2 and why we have the detour around the origin.

For continuous functions [edit]  hitps://en.wikipedia.org/wiki/Contour integration
To define the contour integral in this way one must first consider the integral, over a real variable, of a complex-valued function. Let f: R — C be a complex-valued function of a real

variable, 7. The real and imaginary parts of fare often denoted as u(7) and 1(r), respectively, so that

£(t) = u(t) + ().

Then the integral of the complex-valued function fover the interval [a, b] is given by

b b
/f(t)dtz/ (u(t) + iv(t)) dt
b

:/a u(t)dt+i/abv(t)dt.

Let f: C — C be a continuous function on the directed smooth curve 7. Let = : R — C be any parametrization of y that is consistent with its order (direction). Then the integral along 7 it
denoted

Kf(z) dz

and is given by(®]

/,f(z)dz - /abf(v(t))v’(t) dt.

[6]

This definition is well defined. That is, the result is independent of the parametrization chosen.'®! In the case where the real integral on the right side does not exist the integral along y is

said not to exist.


https://youtu.be/RkZHw4fKHfE
https://en.wikipedia.org/wiki/Contour_integration

Math 383: Complex Analysis: Fall 23 (Williams)
Professor Steven J Miller: siml@williams.edu

Homepage:
https://web.williams.edu/Mathematics/similler/pu
blic html|/383Fa23/

Lecture 06: 9-20-23: https://youtu.be/srLWOuLwVpk

Cauchy’s formula and consequences
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Plan for the day: Lecture 06: September 20, 2023:

* Prove Cauchy’s formulas aa /9'44" o sTes
* See holomorphic and analytic are the same @Ws Y/
* Apply Cauchy’s formula to integrate 6/\(7%/,
e
Kf/ﬂ?’ﬂfé(ﬁ ?Z « ( o

General items.
* Have choices in contours and integrands Srlts (hckeges o
e See why we have the conditions we do
why we have the conditi [ Al foou 4!

40



1 Goursat’s theorem

Corollary 3.3 in the previous chapter says that if f has a primitive in an

open set {2, then
[ f(z)dz=0
Y

for any closed curve ~ in (2. Conversely, if we can show that the above
relation holds for some types of curves ~, then a primitive will exist. Our
starting point is Goursat’s theorem, from which in effect we shall deduce
most of the other results in this chapter.

Theorem 1.1 If €2 s an open set in C, and T C ) a triangle whose
interior is also contained in ), then

Lf(z)dz — 0

whenever f is holomorphic in €.

41



2 Local existence of primitives and Cauchy’s theorem in

a disc

Theorem 2.1 A holomorphic function in an open disc has a primitive

in that disc.

Theorem 2.2 (Cauchy’s theorem for a disc) If f is holomorphicin

a disc, then
/ f(z)dz=20 A
¥

for any closed curve ~ in that disc.

Corollary 2.3 Suppose f is holomorphic in an open set containing the
circle C and its intertor. Then

/ f( H) dH 0 Figure 6. A curve 7,
Z)dz = U,
C

42
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Theorem 4.1 Suppose f is holomorphic in an open set that contains

the closure of a disc D. If C' denotes the boundary circle of this disc with
the positive orientation, then

/Io,f f le¢ va Crcle C

f(z) = % g(g) dC  for any point z € D.
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Corollary 4.2 If f is holomorphic in an open set (), then f has infinitely
many complex derivatives in ). Moreover, if C' C () 1s a circle whose
intertor 1s also contained in (2, then
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Corollary 4.3 (Cauchy inequalities) If f is holomorphic in an open () = / 1O g

set that contains the closure of a disc D centered at zy and of radius R, e (Gt
then
n n! f C
709 (z0)] < 2L

where || f||c = sup,.c | f(2)| denotes the supremum of | f| on the boundary
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Integrate sin?(x)/x%> and 1/ (1 + x")
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Cauchy Distribution
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Appendix added after the lecture:

https://en.wikipedia.org/wiki/Simply connected space

Key idea is simply connected.

Simply connected space

From Wikipedia, the free encyclopedia

In topology, a topological space is called simply connected (or 1-connected, or 1-simply connected!') if it is path-connected and every path between two points can be continuously

Definition and equivalent formulations [edit]

A topological space X is called simply connected if it is path-connected and any loop in X defined by f : S1 — X can be contracted to a point:
there exists a continuous map F' : D? — X such that F restricted to S is f. Here, S* andD? denotes the unit circle and closed unit disk in the
Euclidean plane respectively.

An equivalent formulation is this: X is simply connected if and only if it is path-connected, and wheneverp : [0, 1} — X and q : [U, 1] — X are
two paths (that is, continuous maps) with the same start and endpoint (p(0) = ¢(0) and p(1) = ¢(1)), then p can be continuously deformed
into g while keeping both endpoints fixed. Explicitly, there exists a homotopy F' : [0, 1] x [0, 1] — X such that F'(z,0) = p(z) and

F(z,1) = g(x).

A topological space X is simply connected if and only if X is path-connected and the fundamental group of X at each point is trivial, i.e. consists
only of the identity element. Similarly, X is simply connected if and only if for all points &,y € X, the set of morphisms HUmH(X) (:I:, 'y) in the
fundamental groupoid of X has only one element.[?]

In complex analysis: an open subset X C C is simply connected if and only if both X and its complement in the Riemann sphere are connected.
The set of complex numbers with imaginary part strictly greater than zero and less than one, furnishes a nice example of an unbounded,

This shape represents a set that is &
not simply connected, because any
loop that encloses one or more of the
holes cannot be contracted to a point
without exiting the region.

connected, open subset of the plane whose complement is not connected. It is nevertheless simply connected. It might also be worth pointing out that a relaxation of the requirement that

X be connected leads to an interesting exploration of open subsets of the plane with connected extended complement. For example, a (not necessarily connected) open set has

connected extended complement exactly when each of its connected components are simply connected.


https://en.wikipedia.org/wiki/Simply_connected_space

Math 383: Complex Analysis: Fall 23 (Williams)
Professor Steven J Miller: siml@williams.edu

Homepage:
https://web.williams.edu/Mathematics/similler/pu
blic html|/383Fa23/

Lecture 07: 9-22-23: https://youtu.be/UVvYWP7 S5Ww

Evaluating Integrals
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Lectures 08, 09 and 10:
Lectures from Math 150: Multivariable Calculus: Sequences and Series

Read multivariable calculus (Cain and Herod) and my lecture notes.
Read Intermediate and Mean Value Theorems and Taylor Series (you should know this material already; the main results
are stated and mostly proved, subject to some technical results from analysis which we need to rigorously prove the IVT).

» Twenty-third day lecture: http:/youtu.be/aigdkmu-5ow (ApPFil 28, 2014: Geometric and Harmonic Series, Memoryless
Processes)

» Twenty-fourth day lecture: http://youtu.be/6bf9fjwMs20 (May 2, 2014: Comparison Test, Implications of
Limits of Terms)

« Twenty-fifth lecture: https://youtu.be/fad X1AcGFOA (May 2, 2014. Comparison Test, Implications of Limits of
Terms: 11)

« Twenty-sixth lecture: https://youtu.be/[FgCKfUTOQ8 (Comparison Test, Implications of Limits of Terms: I11)

« Twenty-seventh day lecture: http://youtu.be/ujJbUpCab6M (May 7, 2014: Root Test, Integral Test)

« Twenty-eight day lecture: http://youtu.be/yro1SLw9t4dc (May 12, 2014: Taylor Series)

« Twenty-ninth day lecture: http://youtu.be/40cxtpxuSJw (May 14, 2014: Special Series, Alternating Series, Pi
formulas, Birthday Problem: Not doing 2018)



http://people.math.gatech.edu/~cain/notes/cal10.pdf
https://web.williams.edu/Mathematics/sjmiller/public_html/150Sp23/currentnotes/Math105LecNotes_Seq.pdf
https://web.williams.edu/Mathematics/sjmiller/public_html/150Sp23/handouts/MVT_TaylorSeries.pdf
http://youtu.be/aigdKmu-5ow
http://youtu.be/6bf9fjwMs2o
https://youtu.be/fa4X1AcGFOA
https://youtu.be/jFgCKfUTOQ8
http://youtu.be/ujJbUpCab6M
http://youtu.be/yr01SLw9t4c
http://youtu.be/4OcxtpxuSJw

Math 383: Complex Analysis: Fall 23 (Williams)
Professor Steven J Miller: siml@williams.edu

Homepage:
https://web.williams.edu/Mathematics/similler/pu
blic html|/383Fa23/

Lecture 11: 10-02-23: https://youtu.be/3pgsv4hVrPs

Holomorphic is Analytic, Liouville's Theorem, Fundamental Theorem of Algebra, Cauchy Integral



mailto:sjm1@williams.edu
https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa23/
https://youtu.be/3pgsv4hVrPs

Plan for the day: Lecture 11: October 2, 2023:

* Prove holomorphic and analytic are synonymes.
* Prove the accumulation theorem.
* Prove Liouville’s Theorem.
* Prove the Fundamental Theorem of Algebra.
(don’t get the name fundamental lightly!)

Watch Videos from 2021 By Friday.

e Lecture 08: 9/27/21: Cauchy Formula, Accumulation Theorem, Cauchy-like
Integrals: https://youtu.be/wSqgTEQ4usno (slides)

« Lecture 09: 9/29/21: Integration Examples: (see for other examples Lecture 09:
9/27/17: Integration Example, Types of
Singularities: https://youtu.be/Jz76hM32C80) (slides)
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https://youtu.be/wSqTEQ4usno
https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa23/lectures/383Fa21_lecture08.pdf
https://youtu.be/Jz76hM32C80
https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa23/lectures/383Fa21_lecture09.pdf

Theorem 4.1 Suppose f is holomorphic in an open set that contains

the closure of a disc D. If C denotes the boundary circle of this disc with
the positive orientation, then

o] ()
f(z) 271 J o C —

Corollary 4.2 If f is holomorphic in an open set ). then f has infinitely
many complexr derivatives in 2. Moreover, if C' C €0 1s a circle whose
interior is also contained in ), then

d(: for any point z € D.

Corollary 4.3 (Cauchy inequalities) If [ is holomorphic in an open
' set that contains the closure of a disc D centered at zy and of radius R,
n / f(<)
C

f(n}(z) _ % (C = é)n+1 d¢ then

|| flle
Rn

where || f||c = sup, ¢ | f(2)| denotes the supremum of | f| on the boundary
circle C'.

£ (z0)] <

for all z in the interior of C'.
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Theorem 4.4 Suppose f is holomorphic in an open set Q). If D 1is a
disc centered at zg and whose closure is contained in $), then f has a

power series expansion at zg

(n)(
f (Z0) for all n > 0.

WMM/ 0 < ~bth

for all z € D, and the coefficients are given by On

Proof: Key idea is to add zero and then factor and use the geometric series formula:

1 1 o1 [ ook ke 7 “MA‘:[
Cz_ng(zzg)_ngk sz é@/fé N~ Lo
=) 2

f(’"")_T/R d¢ X Qﬂ'i/g(c— o
2() 71
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Theorem 4.8 Suppose [ is a holomorphic function in a region ) that
vanishes on a sequence of distinct points with a limit point in 2. Then

f is identz'mi{y 0. a5 1= 27, (s L
Pasvore F S ad  Iatall, z2eo
/—f'ézwﬂ/

(2)= a,
2= = @ @- 2) L

nN=—2o M€4’)5 M/7 Po(/ff Nee Zé

L hee ‘9(24:)?-'@, /(i’:‘dzlf:' Zﬂ W L wnshe i« 2%, G,
{/i‘) 2 & @ Lotiqarty () $(x) = X'?gr(,(’/x)

Clzca £ }/s I/uﬁcq/;@o 466?; 24 { =D 225, (V) 15 o 4//
Fﬁ,é (éa Q< ©C W (s @f ?cfS'L' (&) §Q7 'ﬁ(&): ?CE/Q\
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We conclude the proof using the fact that ) is connected. Let U
denote the interior of the set of points where f(z) = 0. Then U is open
by definition and non-empty by the argument just given. The set U is
also closed since if z,, € U and z,, — 2, then f(z) = 0 by continuity, and
f vanishes in a neighborhood of z by the argument above. Hence 2 € U.
Now if we let V' denote the complement of U in (), we conclude that U
and V' are both open. disjoint. and

Q=UUV.

Since 2 is connected we conclude that either U or V is empty. (Here we
use one of the two equivalent definitions of connectedness discussed in
Chapter 1.) Since zg € U, we find that U = {2 and the proof is complete.



Corollary 4.5 (Liouville’s theorem) If f is entire and bounded, then
f is constant.

Corollary 4.3 (Cauchy inequalities) If f is holomorphic in an open 6”1%@1, La (D O 9//

set that contains the closure of a disc D centered at zq and of radius R,

then o F‘ d:

7o) < S

where || f||lc = sup, . | f(2)| denotes the supremum of | f| on the boundary
circle C.

Pﬂﬂé(f— égé < ?44/9/»4/ a/// Q(ﬂ‘ [ZA:& r A2/
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What are solutions to polynomials with different spaces of coefficients?
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Corollary 4.6 FEvery non-constant polynomial P(z) = a,z™ + -+ + ag
with complex coefficients has a root in C.

feseic .ﬂcl-/ Rz %> —ed =
Fz|= Arz" L FP, @ FO
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Corollary 4.7 FEvery polynomial P(z) = anz™ + - - -+ ag of degree n >
1 has precisely n roots tn C. If these roots are denoted by wiq,. ... w,,
then P can be factored as

P@j/#//ﬂ L/f(’bf



Math 383: Complex Analysis: Fall 23 (Williams)
Professor Steven J Miller: siml@williams.edu

Homepage:
https://web.williams.edu/Mathematics/similler/pu
blic html|/383Fa23/

Lecture 12: 10-04-23: https://youtu.be/01xjCbFe8 Y

Singularities, Probabilities, Generating Functions, Trig Integrals



mailto:sjm1@williams.edu
https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa23/
https://youtu.be/01xjCbFe8_Y

Plan for the day: Lecture 12: October 4, 2023:

Riemann's Removable Singularity Theorem
Casorati-Welerstrass

Examples

Infinities

General items.
« Difference between real and complex
« Finding right object to study
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Let f be a function holomorphic in an F)pen set () except possibly at
one point zg in 2. If we can define [ at zp in such a way that f becomes
holomorphic in all of €2, we say that z; is a removable singularity for f.

Theorem 3.1 (Riemann’s theorem on removable singularities)
Suppose that f is holomorphic in an open set ) except possibly at a point

20 in 2. If f is bounded on ) — {20}, then 2y is a removable singularity.
o Sz B2 Golbkls G- B3 :

2=-9 @ dtost 2=L3 (&_? ) z'é—f;s

Surprisingly, we may deduce from Riemann’s theorem a characteriza-

tion of poles in terms of the behavior of the function in a neighborhood
of a singularity.

Corollary 3.2 Suppose that f has an isolated singularity at the point
20. Then zy is a pole of f if and only if |f(2)] — o0 as z — 2.



Isolated singularities belong to one of three categories:
e Removable singularities (f bounded near z)

e Pole singularities (|f(z)| — oo as 2 — 2y5) D-¢ z_q t T3 ZJ*
L . I e 4
e [issential singularities. -
By default, any singularity that is not removable or a pole is defined
to be an essential singularity.

_ (/'2._2- wl MNee Sca
‘9(%) — e )= //% - b o 2= Tl

Theorem 3.3 (Casorati-Weierstrass) Suppose f is holomorphic in
the punctured disc D,(zy) — {20} and has an essential singularity at z.
Then, the image of D, (z0) — {20} under f is dense in the complex plane.
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Figure 5. The Riemann sphere S and stereographic projection
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EtX}

Cauchy: Moment Generating Functions vs Characteristic Functions: E| versus  E(e"*)
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Cauchy: Fourier Transform
it ez
f” dx = = )/
=z Tl
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Cauchy: Finding Residue

Sz)= A=) B=)

._-B _
& Blz)= -2 T 2(2-m T Cany”
~ -
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Contour Integration: Integrals of Trigonometric Functions v oHE / Fg'w 0(‘5'
- o )
g el Lo Sy TFawe T 7 ) = ¢ase
I B [
Jo @+ cost oL Ne ! 3(7/ $e a@a«aaﬁ ?90
—2 Arg[-1+a]+Arg[1-a?]
. Fl
Integrate[1/(a + Cos[x]), {x, 0,2 Pi}] 21 (—pFloert 2m ] T
V1 —a?
27T
Integrate[1/ (a + Cos[x]), {x, @, 2Pi}, —
Assumptions » {a > 1 & Element[a, Reals]}] V-1+a
27T

Integrate[l/ (a+Cos[x]"2), {x, ©8, 2 v}, Assumptions - a > 1] Ja (1+a)
90
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Math 383: Complex Analysis: Fall 23 (Williams)
Professor Steven J Miller: siml@williams.edu

Homepage:
https://web.williams.edu/Mathematics/similler/pu
blic html|/383Fa23/

Lecture 12: 10-06-23: Lecture 11 from 10/06/21: Meromorphic Functions, Log,

Argument Principle, Rouche, Fund Thm Alg, Trig
Integral: https://youtu.be/INRALUT6ckQ (slides)

See also: Lecture 11: 10/02/17: Complex Logarithms, Argument Principle, Rouche’s
Theorem: https://youtu.be/iytAEhHVY-S



mailto:sjm1@williams.edu
https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa23/
https://youtu.be/INRdLUT6ckQ
https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa23/lectures/383Fa21_lecture11.pdf
https://youtu.be/iyt4EhHvy-s

Plan for the day: Lecture 11 from October 6, 2021 (is lecture
12 in 2023):

https://web.williams.edu/Mathematics/similler/public html/383Fa21/course
notes/Math302 LecNotes Intro.pdf

« Characterization of Meromorphic Functions
« Complex Logarithms

« Argument Principle

* Rouche's Theorem (and consequences)
 Integration Example (trig)

General items.

« How do we generalize?

« Pavlovian responses

« Continuous discrete functions are...
 Thoreau: Simplify, simplify

« Multiple proofs...

« Deformations
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https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa21/coursenotes/Math302_LecNotes_Intro.pdf

We now turn to functions with only isolated singularities that are
poles. A function f on an open set () is meromorphic if there exists a

sequence of points {zg, 21, 29, ...} that has no limit points in €2, and such
that

(i) the function f is holomorphic in £ — {zg, 21, 29, ...}, and

(ii) f has poles at the points {29, 21, 22, ...}.
f has a pole at infinity if F(z) = f(1/2) has a pole at the origin

Theorem 3.4 The meromorphic functions in the extended complex plane
are the rational functions.
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Theorem 3.4 The meromorphic functions in the extended complex plane
are the rational functions.

= A .

Near each pole z;, € C we can write f(2) = fr(2) + gr(2)

e

f(1/2) = foo(2) + Goo(2)

H={—fx— ZL , Ji 1s entire and bounded.
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log f(z)is “multiple-valued”
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Theorem 4.1 (Argument principle) Suppose f is meromorphic in

an open set containing a circle C' and its wnterior. If f has no poles
and never vanishes on C, then o C

1P
21t ) f(2)

dz = (number of zeros of f inside C') minus

(number of poles of f inside C'),

where the zeros and poles are counted with their multiplicities.

Corollary 4.2 The above theorem holds for toy contours.

https://www.nbcnhews.com/news/us-news/think-commas-don-t-matter-omitting-one-cost-maine-dairy-

An absent "Oxford comma" will cost a Maine dairy company $5
million.

The suit, brought against Oakhurst Dairy by the company's drivers in
2014, sought $10 million in a dispute about overtime payment.

EATS SHOOTS & LEAVES


https://www.nbcnews.com/news/us-news/think-commas-don-t-matter-omitting-one-cost-maine-dairy-n847151




Theorem 4.3 (Rouché’s theorem) Suppose that f and g are holo-
morphic in an open set containing a circle C' and its interior. If

F(2)] > g(z)]  forall z € C,

then f and f + g have the same number of zeros inside the circle C'.

L[ HG)
Proof. For t € [0,1] define [fi(2) = f(z) +1tg(z) "t = 5 e dz.
00 @ ve, l{_—{_j/? O [Llace ) §1 7/§} o éu,-m%
Qrz. se- MU/W f/f’?“ﬂ(ﬂ- & — -g_bC'a—) = SCa) —(-“'&",7'6%)
(Lin #150 £C, +-8) B, 500% Cmmt Uz Ut o5 T goshom ads 1)

N = "(fa: % i‘f.-—c:—%) Az = fl('(:) ot @’*"Mf’s% N = ALl dov
. s c g»t(?) A % Ste) +t gle) A2 4L 4}“(7,,2
1Q'LW &'ﬂﬁbf’ 2% : & h:S:C%,_) _(--a'yf%) C&’Vhﬂ 101 W



Rouché’s theorem implies

A mapping is said to be open if it maps open sets to open sets.

Theorem 4.4 (Open mapping theorem) If f is holomorphic and non-
constant in a region §), then f 1s open.

Theorem 4.5 (Maximum modulus principle) If f is a non-constant
holomorphic function in a region §), then [ cannot attain a maximum in

€.
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Theorem 4.3 (Rouché’s theorem) Suppose that f and g are holo-
morphic in an open set containing a circle C' and its interior. If

Rouché’s implies

f(z)] > lg(z)] forallz €,

then f and f + g have the same number of zeros inside the circle C.

Fundamental theorem of algebra, Theorem of equations proved by Carl Friedrich Gauss in 1799. It states that

every polynomial equation of degree n with complex number coefficients has n roots, or solutions, in the complex
numbers. BY The Editors of Encyclopaedia Britannica

plE) = @o | A G YT - € R C 2 #4)
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https://www.nbchews.com/news/us-news/think-commas-don-t-matter-omitting-one-cost-maine-dairy-n847151

Think commas don't matter? Omitting one

cost a Maine dairy company $5 million.

A Maine dairy company has settled a lawsuit over an overtime dispute that was the subject of a

ruling that hinged on the use of the Oxford comma.

Feb. 12, 2018, 4:10 PM EST / Updated Feb. 12, 2018, 4:10 PM EST

By Kalhan Rosenblatt and The Associated Press

An absent "Oxford comma" will cost a Maine dairy company $5
million.

The suit, brought against Oakhurst Dairy by the company's drivers in
2014, sought $10 million in a dispute about overtime payment.

A federal appeals court decided to keep the drivers' lawsuit,
concerning an exemption from Maine's overtime law, alive last year.

Court documents filed Thursday show that the company and the
drivers settled for $5 million.

Related: Oxford Comma defenders, rejoice! Judge bases ruling
on punctuation

“For want of a comma, we have this case,” U.S. Court of Appeals for
the First Circuit Judge David Barron said in March, 2017.

The sentence at the heart of the dairy drivers' case referred to
Maine's overtime law and whom it doesn't apply to: “The canning,
processing, preserving, freezing, drying, marketing, storing, packing
for shipment or distribution of:

i

“(1) Agricultural produce;

“(2) Meat and fish products; and

mended

U.S. NEWS CORONAVIRUS

Covid grocery licking hoax sends

0 @ -~
. d) QQO Texas man to federal prison
LS

Tina Turner sells music catalog
spanning 60 years to BMG

“(3) Perishable foods.”

The disagreement stemmed from the lack of a comma after the word
"shipment."

The use of the Oxford comma - also called a serial comma —
delineates the final item on a list. For example: "Milk, cheese, and
yogurt."

Proponents of the punctuation argue it helps to differentiate
subjects, while opponents say it’s cumbersome.

Different style guides have different rules about the Oxford comma,
which gets its name because it was preferred by Oxford University
Press editors.

In 2017, Judge David Barron reasoned that the law's punctuation
made it unclear if "packing for shipping or distribution" is one
activity or if "packing for shipping" is separate from "distribution."

The five drivers who led the lawsuit will receive $50,000 each from
the settlement fund, according to the Portland Press Herald.

The other 127 drivers who are eligible to file a claim will be paid a
minimum of $100 or the amount of overtime they were owed based
on their work from May 2008 to August 2012, the Press Herald
reported. 8


https://www.nbcnews.com/news/us-news/think-commas-don-t-matter-omitting-one-cost-maine-dairy-n847151

Math 383: Complex Analysis: Fall 23 (Williams)
Professor Steven J Miller: siml@williams.edu

Homepage:
https://web.williams.edu/Mathematics/similler/public_html/383Fa23/

Lecture 13: 10/06/23: (lecture from 10/4/21): Meromorphic Functions, Log, Argument Principle, Rouche, Fund Thm Alg, Trig
Integral: https://youtu.be/INRALUT6ckQ (slides from 2021).

Lecture 14: 10/09/23: NO CLASS (Columbus Day)

Lecture Bonus: 10-10-23: Fresnel Integrals
https://youtu.be/R5ICHdPVESQ



mailto:sjm1@williams.edu
https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa23/
https://youtu.be/INRdLUT6ckQ
https://youtu.be/R5lCHdPVESQ

Z'Z__:(’Xz___ ,,Z/l
} ) —(—2_7)(7 6—- —
— & —






(fez)| =7

Cortibifon 15 o Magh
ﬂ/z/e,é/'la ¥ | max V¢/&(/
< _; 2 2
< P (r/ . Qy;e ~XR




Xeg = K Cos( L ~f/z)> Sp = Bsial %«;m)
Cald Ao y/g?" Xe < ﬁre* xé)(?;z "f')(ze)

- /22[@(:{; "5/?)) ~ <= [ﬂ‘/ —’7/'4)8
_ ~—
V(A

/

_ (6T e afey ¥ S0 S1a 9/2)
—Sh% 2 gy T (ZT, £1n7/R)

S~

—

e —









g @é[xz) ~+ §/O(XZJ V| Ax € /[g (@;[x ,5(4(;&)%(9 T

-

i g (BN B = § emlx)Ax Z
H4g = JT — poz= T

‘{(}4,@3:@:5#;@ — @



9 2/,
5 Cx/ﬂ(yzjﬁ

%54”;" L&’L L= Sw

Y,

_fZ: 6_ z/z.p(}(

x=-=

;%(,,/ = >< 45 /x/ ~rrde = Fé(/a/@-
gf"L/‘z. '/‘//'/—9- _L‘T{‘S 6

&

-

— “/L(O

rsd oeo

=27 &

_X%/2
e " Tdx

(et = K O e,

="

ed

ﬂ

—

[N D

=27 s L=

e /\/r

)2z esL>0



Math 383: Complex Analysis: Fall 23 (Williams)
Professor Steven J Miller: siml@williams.edu

Homepage:
https://web.williams.edu/Mathematics/similler/public_html/383Fa23/

Lecture 15: 10-11-23: https://youtu.be/touNug0 flw

Rouche, Open Mapping and Maximum Modulus



mailto:sjm1@williams.edu
https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa23/
https://youtu.be/touNug0_fLw

Plan for the day: Lecture 15: October 11, 2023:

REVIEW:
« Argument Principle
* Rouche's Theorem

CONSEQUENCES:
« Open Mapping Theorem
« Maximum Modulus

OTHER:
* Real Analysis Review
« Differences b/w Real and Complex
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Theorem 4.1 (Argument principle) Suppose f is meromorphic in

an open set containing a circle C' and its wnterior. If f has no poles
and never vanishes on C, then

1P
21t ) f(2)

dz = (number of zeros of f inside C') minus

(number of poles of f inside C'),

where the zeros and poles are counted with their multiplicities.

Corollary 4.2 The above theorem holds for toy contours.

{(z)= (2 &34g(%) (2)= 22 =2 B(a)
/lhoys )
§((2/ - \/I < g[é?/ ‘F,[—(Z):_Z.—ecufi""g@

Z
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Theorem 4.3 (Rouché’s theorem) Suppose that f and g are holo-
morphic in an open set containing a circle C' and its interior. If

f(2)] > g(2)]  forall z € C,

then f and f + g have the same number of zeros inszde the circle C'.

Proof. For t E [0 1] define ft(2) = f(z) + tg(z)jnt — % ;igg

¢
Moy )= o 9 I ot ) s

gf,,/ll S22
/
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Rouché’s theorem implies

A mapping is said to be open if it maps open sets to open sets.

Theorem 4.4 (Open mapping theorem) If f is holomorphic and non-
constant in a region §), then f 1s open.

Yol Doy S+ opa— 1+ o1 (,, (1)
Sn: (2‘7 27y -3 (=1 (] g&

Theorem 4.5 (Maximum modulus pr1nc1ple) ]ff s a non-constant
holomorphic function in a region §), then [ cannot attain a maximum in

€.
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Theorem 4.4 (Open mapping theorem) If f is holomorphic and non-
constant in a region ), then f is open.

Proof. Let wy belong to the image of f, say wg = f(z9). We must
prove that all points w near wg also belong to the image of f.

Define g(z) = f(z) — w and write 2‘0 . . /’9(\?[;}0
g9(z) = (f(z) —wo) + (wo —w) = Q(E\._q/ Zo

= F(z) + G(=). /
Lp,; (st o Zesp
Now choose 6 > 0 such that the disc |z — zp| < ¢ is contained in © and F # &

f(z) # wp on the circle |z — Zol = 0. We then select € > 0 so that we \5259 P&A/ 7 4@(%

have |f(z) — wp| > € on the circle |z — zg| = 0d. Now if |w — wg| < € we
have |F(z)| > |G(z)| on the circle |z — zy| = ¢, and by Rouché’s theorem # of 2(S
we conclude that g = F' + G has a zero inside the circle since F' has one.
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Theorem 4.5 (Maximum modulus principle) If f is a non-constant
holomorphic function in a region §), then f cannot attain a maxrimum in

Q2.

Proof. Suppose that f did attain a maximum at zg. Since f is
holomorphic it is an open mapping, and therefore, if D C € is a small disc
centered at zp, its image f(D)) is open and contains f(zp). This proves
that there are points in z € D such that |f(z)| > |f(z0)|, a contradiction.
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Math 383: Complex Analysis: Fall 23 (Williams)
Professor Steven J Miller: siml@williams.edu

Homepage:
https://web.williams.edu/Mathematics/similler/public_html/383Fa23/

Lecture 16: 10-13-23: Mountain Day
Lecture 17: 10-16-23: https://youtu.be/Uz42Eo0M6yLs

Review of Logarithms, Comments from 2.5 videos to watch before class:
Watch the following videos before class / read the book (better both!):
*Another approach to proving open mapping theorem without using Rouche: watch from 28 minutes till end: https://youtu.be/-

vuwco6irob4?t=1685
«Complex Logarithms, Earlier Material, Functions with Prescribed Zeros/Values: https://youtu.be/CR-sRChclD4 (slides)

*Writing functions as a product over zeros: https://youtu.be/AciyKD17aKM



mailto:sjm1@williams.edu
https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa23/
https://youtu.be/Uz42EoM6yLs
https://youtu.be/-vuwc6irob4?t=1685
https://youtu.be/CR-sRChcID4
https://youtu.be/AoiyKD17aKM

Introduction to
Logarithms

Steven Miller, Williams| College
siml@Williams.edu



Why do we care about Logarithms

* Discuss objects across many orders of magnitude.
* Linearize many non-linear functions (calculus becomes available).

Plot of 100 most populous cities

9,000,000
8,000,000 #

7,000,000

£, D00, D00

5,000,000

" 4,000,000 # Sarlesl M
3,000,000 -

2,000,000 %

[
1,000,000 \ Plot of 100 most populous cities: log-log plot

0
20 40 G0 20 100 ' | &

4

! ]

2




Definition of Logarithms

*If x = b? thenlog, x = y.

* Read as the logarithm of x base b is y.

* Often use base 10, and some authors suppress the subscript 10.

* Other popular bases are 2 for computers, and e for calculus; many
sources write In x for the natural logarithm of x, which is its logarithm
base e (e is approximately 2.71828).

* Examples: log, x = y means we need y powers of b to get x.
*100 = 104 becomes log;, 100 = 2. In base e it is about 4.6.
*1 = 10° becomeslog;y 1 = 0. In base e it is still 0.
*.001 = 1073 becomeslog,,.001 = —3. In base e it is about -6.9.
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Examples of Logarithms

| Order of Magnitude of some Lengths

Distancs to
Rachan of ferst st
warth's orbwt baryorul

&/

" 11 % 7 W

11ight your

Dwtance 10 tarthest

photogr apbwd
plaxy

|
|

4 B

: LENGTH meters Dlomte o (‘,/ 7
radius of proton 10712 Osmeter corpuscle
_ of nuclear O
radius of atom 10°10 P
| radius of virus -7 ¥ o
- . e :
radius of amoeba 1074 H
= , ﬂ & I
height of human being 10 AR '
[adias of st ™ lli“iiilllllllllllllllllllllllllllllllllllllll
| radius of sun 10° I ,m ‘l
- m
earth-sun distance 101! JW ! o
| radius of solar system 1013 of X roy Lo : %f
[ distance of sun to nearest star 106 "m whele ‘ "\
| radius of milky way galaxy 1041 e \ )
| radius of visible Universe 1026 Radin



Examples of Logarithms

Earthquake frequency and destructive power

The left side of the chart shows the magnitude of the earthquake

and the right side represents the amount of high explosive

required to produce the energy released by the earthquake. The middie of the chart shows the relative frequencies.

Magnitude
10
9 Great earthquake; near total
destruction, massive loss of life
8
3 Strong earthquake; damage
($ billions), loss of life
6 Moderate earthquake;
5
Light earthquake;
2 some property damage
Minor earthquake;
felt by humans
3
2

Source: U.S. Geological Survey

Alaska (1964)
Japan (2011)

New Madrid, Mo. (1812)

Mount S1. Helens

Large lightning bolt
> Oklahoma City bombing
Moderate lightning bolt

release

Energy equivalents (equivalent of expiosive)

123 trillion Ib.
(56 trillion kg)

4 tritlion 1b.
(1.8 trilion kg)

123 billion 1b.
(56 billion kg)

4 dlition 1b.
(1.8 billion kg)

123 million 1b.
(56 million kg)

4 miltion 1b.
(1.8 million kg)

12,300 1b.
(56,000 kg)

4,000 Ib.
(1,800 kg)

123 Ib.
(56 kg)
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Examples of Logarithms

AIINDISE LEVELS s

noISy restaurant, Chainsaw,
power lawn Boom box, ATV, leafblo\ve_t Stock car
homem mowef mmofcyde races
AVERAGE 96
DECIBELS [dB] |
Leaves rustling, uounal Vacuum Subway, Sports crowd,  Gun shot,
soft music, conversation,  cleaner, . shouted rock concert,  siren at
whisper background ar:goaee: conversation loudsymohony 100 feet
MUSIC '

Source: www.webmd.com ‘ Sounds above 85 dB are harmful
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Examples of Logarithms
The pH Scale

Acidic Neutral Alkaline

>< )
.-
B,

Yorrato

shutterstock.com - 1216954318



Plots of Exponentiation and Logarithms

* If x = bY thenlog, x = y.
* Read as the logarithm of x base b is y.
Plot of b* for bin {2, e, 10} _ Plot of log_b(x) for bin {2, e, 10}
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Why do we care about Logarithms

* Discuss objects across many orders of magnitude.
* Linearize many non-linear functions (calculus becomes available).

Plot of 100 most populous cities

9,000,000
8,000,000 *
7,000,000
,000,000
5,000,000
" 4,000,000 4 ® Series] s
3,000,000 *
2,000,000 % |
1,000 000 \ Plot of 100 most populous cities: log-log plot
0
0 20 40 G0 20 100 ' | &
7 \“\
i
4 —— SeriRs
. — Series?
2

1 15 2 2134




Why do we care about Logarithms

* Linearize many non-linear functions (calculus becomes available).

Plot of x*r for r in {1/4, 1/2, 2, 4}

10000 -
8000 -
6000 —
4000 -

2000 |

100 -

Plot of x*r for rin {1/4, 1/2, 2, 4}

Notice that even on a small range, from 1 to 10, the polynomial of highest
degree drowns out the others and can barely see.
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Why do we care about Logarithms

* Linearize many non-linear functions (calculus becomes available).

Plot of log_10(x*r) for r in {1/4, 1/2, 2, 4} Log-Log Plot: y = x*r, or log_10(y) = log_10(x"r) or log_10(y) = r log_10(x)
0.25
| — logo(x )101400 4025
10+ logo(x®° 05
_ g1o(x") 41000 X
log14(x?) X
600 4
d — |0910(X4) 0 — X
10200
2000 4000 6000 8000 10000 | 10'55 | 10;55 | 10555 | 10555 | 10;155 |

Left: Semi-log plot: y = log x". Right: log-log plot: log y = logx".
Note that we can now see the four functions on one plot, and the log-log
plot now has linear relations. 136



Review: Exponent Laws

Laws

,bm bn — bm+n

,bm / bn — bm—n
(b‘m)n bmn

Examples

*10310% = (10 %10 *10) * (10 * 10) = 10°
*103/10%2= (10*10%*10)/(10 * 10) = 10*
*(103)%2 = 103 * 103 = (10 * 10 * 10) * (10 * 10 * 10) = 10°
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Logarithm Laws

Remember if x = bY thenlog, x = y.

Parts of a Slide Rule

Figure 0 Cursor (Indicator/Runner)  Body (Stock/Stator)  Brace (Strap/Bridge
_L@me ‘( ) v(” ot ) (Strap/Bridge)

1.5 4 28 | 3

e et

i St e | A TS

CF 'l q ] okl SRARRFBALY AL PRLAL AT e U | A
th 9 ;, R b St 8 T 8 L2 1A, LI AR Bh 8
t Ty AL Y LU L f e ! r agiuu T
ity Ut UM RN 3 ! e

Liuler? | X St BT B

I | [ Nl | UUUY ! | st | ‘lwuu fah!! g:‘\ i

} A SR W N x;v 3 (:' 7 11( s SN J,}frJ ey LW ,:g.é;,_m. ?{:J':;;%;ﬁf]]u
o= \ .

Left Index m Hairline Voiige Body (or Lower Stator) Right Index

Below assume log, x1 = y, and log, x2 = v,

These allow us to simplify computations with logarithms.

THEOREM

log, x = log.x/log. b

Log of a power is that power times the log.

°.o%xn) =n logy, x
‘lo b x1 XZ) — logb (Xl) + logb (XZ) Log of a product is the sum of the logs.
*108p (Xl /XZ) — logb (xl) o logb (XZ) Log of a quotient is the difference of the logs.

If know logs in one base, know in all.
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PROOFS OF THE LOG LAWS
e ‘

' “I think you should be more explicit here in step two.” 139



Logarithm Laws: Proofs

Remember if x = bY thenlog, x = y.
Below assume log, x; = y, and log, x, = v,.

n —
¢ logb (x ) —n logb X. Log of a power is that power times the log.

Proof:
*log, x = ymeans x = b”.
*Thus x™ = (b¥)"* =b"™.

* Taking logarithms: logb(%ﬂzi) = ny = nlog, x.



Logarithm Laws: Proofs

Remember if x = bY thenlog, x = y.
Below assume log;, x; = y, and log, x, = y,.

¢ logb(xl xZ) — logb(xl) + logb(xZ)' Log of a product is the sum of the logs.

Proof:
*Aslog, x; = y, and log, x, = y,, we have x; = bYr and x, = b”~.
* Thus x; x, = bY1bY2 = pY1"Y2,

* Therefore log, (x; x,) =y, +y, =log, x; +10g, x,. n



Logarithm Laws: Proofs

Remember if x = bY thenlog, x = y.
Below assumelog. x = u (sox = c*)andlog.b = v (sob = c").

° logb X = lOgc x/ logc b. Know logs in one base, know in all.

Proof:

* Aslog, x = y have x = b”Y. Similarly x = c* and b = ¢".
*Thusx = bY = (cV)Y = W.Cvj

* As also have x = c* we haveu = vy or y = u/v.

* Substituting gives log, x = log_. x/log. b. u



Example: Factorial Function:
Number ways to order n objects when order matters:
nl=n*mn-—1)*eeex3 x2 x1.

list = {}; semiloglist = {}; logloglist = {};
For[n =1, n <= 200, n++,
{
list = AppendTo[list, {n, n!}];
semiloglist = AppendTo[semiloglist, {n, Log[n!]}];
logloglist = AppendTo[logloglist, {Log[n], Log[n!]}];

};
Print[ListPlot[list]]; Print[ListPlot[semiloglist]]; Print[ListPlot[logloglist]];
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/N 12
. . //)\ n (ﬁ) éﬂ'ﬂ\
Example: Factorial Function: « ™ Ve
Number ways to order n objects when order matters: r, /214>

n'=n *(n—l)*...*/é],{g\fﬁ_ N /A(%B N

1.4x102%

800 800
1.2x 10296
1.0x102% 600 600
8.0x10%% _
6.0x 10295 400 400
4.0x10295 -
200 200
2.0x 10295
50 100 150 200 50 100 150 200 R 3 4 5
Normal Plot Semi-log Plot A (/I( 1 Log-Log Plot
[

For large n, have n! =~ ne™+/2mn, so logrg n (plus a much smaller term).
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Simp]y connected space https://en.wikipedia.org/wiki/Simply connected space

From Wikipedia, the free encyclopedia

In topology, a topological space is called simply connected (or 1-connected, or 1-simply connected!')) if it is path-connected and every path between two points can be continuously
transformed (intuitively for embedded spaces, staying within the space) into any other such path while preserving the two endpoints in question. The fundamental group of a topological
space is an indicator of the failure for the space to be simply connected: a path-connected topological space is simply connected if and only if its fundamental group is trivial.

—
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https://en.wikipedia.org/wiki/Simply_connected_space

Branch cuts [edit]

Roughly speaking, branch points are the points where the various sheets of a multiple valued function come together. The branches of the function are the various sheets of the function.
For example, the function w = z2 has two branches: one where the square root comes in with a plus sign, and the other with a minus sign. A branch cut is a curve in the complex plane
such that it is possible to define a single analytic branch of a multi-valued function on the plane minus that curve. Branch cuts are usually, but not always, taken between pairs of branch
points.

Zz= X Y, /OfC?J = [ep(x) [~ X>o
2:{/\6/*6_ /%.2_//;:1\/7 ~ 4 /’e—

—

S
/



Theorem 6.1 Suppose that ) is simply connected with 1 € €2, and 0 ¢
(2. Then in ) there is a branch of the logarithm F'(z) = logn(2) so that

(1) F' s holomorphic in ).
(ii) ef'®) =2 for all z € Q,

111 F = log r whenever r 1s a real number and near 1.

Cerlaes
)
@(x) i‘i /g)(.: --")(
_
7)(,._ Sl fa’é

G’Kf {g X) = X
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Theorem 6.1 Suppose that ) is simply connected with 1 € €, and 0 ¢
(2. Then in 2 there is a branch of the logarithm F(z) = logn(z) so that

(i) F' is holomorphic in €2,
(ii) ef'®) =2 for all = € Q,

(iii) F'(r) = logr whenever r is a real number and near 1.

Proof. We shall construct F' as a primitive of the function 1/z. Since
0 ¢ €2, the function f(z) = 1/z is holomorphic in €. We define

logn(z) = F(z) = /f(-w) dw .



/&6&( F(r) = logr whenever r is a real number and near 1

= KER e |
O Fle)= FOI= 57 L=l
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Theorem 6.2 If f s a nowhere vanishing holomorphic function in a
simply connected region ), then there exists a holomorphic function g on
() such that

fz) = 5.

150



Theorem 6.2 If f s a nowhere vanishing holomorphic function in a
simply connected region ), then there exists a holomorphic function g on
() such that

f(z) = 2.

Proof. Fix a point zg in {2, and define a function
el dehod a5 S (A #0052

/' (u
/ du + cp. JC.Z,D:::‘ Cﬂ 6['4¢ gl g@);&&

Mm”; c-f'cs %gzj u/fv a.c&:mdan/—
L% j((g}: ,?((Z)/_f/(.y
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Theorem 6.2 If f is a nowhere vanishing holomorphic function in a
stmply connected region (), then there exists a holomorphic function g on

Q) such that

f(z) = ),

The function g(z) in the theorem can be denoted by log f(z), and deter-
mines a “branch” of that logarithm.

Proof. Fix a point zg in (), and define a function

q(

Z

-

f'{u

Flw

)) dw + cq,

where ~ is any path in ) connecting zg to z, and ¢q is a complex number
so that e® = f(zp). This definition is independent of the path ~ since €2
is simply connected. Arguing as in the proof of Theorem 2.1, Chapter 2,
we find that g is holomorphic with

: f'(2)
g(z) =
f(z)
and a simple calculation gives
d —9(z)
- (f(z)e™9*)) =0,

so that f(z)e™9%) is constant. Evaluating this expression at zg we find
f(zo)e ° =1, so that f(z) = e9%) for all z € Q, and the proof is com-
plete.



Exponentlal Function: Properties and Relation to Trig.
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Writing a function with prescribed zeros....

Much of math is about solving equations.

Example: polynomials:
@ ax +b=0,root x =—-b/a.
@ ax?+ bx + ¢ =0, roots (—b + Vb2 — 4ac)/2a.

@ Cubic, quartic: formulas exist in terms of coefficients; not
for quintic and higher.

In general cannot find exact solution, how to estimate?
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Cubic: For fun, here’s the solutionto ax® + bx2 +cx+d =0

Solve[ax”™3 + bx*2 + cx + d = 0, x]
- b 2*3 (-b* +3ac]
----x»-:”fs- /5 &

3a(-2b*+9abc-27a’d=++/4 (-b*+3ac)®+ (-2b>+9abc-27a%d)? |

| 3 2 (o [_k2 5 . 1 3 57 3 e
-2b° +9abc-27a"d++/4 (-b*+3ac) "+ (-2b"+9abc-27a"d|
3 .23 v

B b 1+i43) (-b?2s+3ac
(X = =-— =+ - - — - e
' 338 3 223, (-2b%:9abc-27a%d=++/4 (-b?+3ac)?+ (-2b%+9abc-27a%d)?

/ . I | 3 2 { f ~ . 3 3 - 2 1/3

(1-1v3) (-2b°+9abc-27a°d++/4 (-b"+3ac)” + (-2b" +9abc-272°d)" |

6 23a g

. b (1-i+3) (-b*+3ac
| Sl = . ' ' . 1/3
‘ 38 3 2235(-2b*:9abc-27a%d++/4 (-b*:3ac)?: (-2b*:9abc-272a%d)?

. . I | 3 2 [ 7 2 = = - ey

1+1iv3) (-2b°+9abc-27a°d+-+/4 (-b“+3ac)”" + (-2b"+9abc-27a d ‘
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One of four solutions to quartic ax* + bx3 +cx2 +dx +e =0

Solve[ax"8 + bx"3 + cx"2 + dx + € = @, x]

. b1 | b? 2c
(K= —— = = — - — %
. 4a 2" |a4a* 3a
I| 1%
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1/3
1 3 a 2 |II 3 3 q " 3 s | 1 b? 4
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|I 13
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1 f 13
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Mathematica Programs

Links to LaTeX and Mathematica tutorials / templates:
https://web.williams.edu/Mathematics/sjmiller/public html/math/handouts/latex.htm

Program on plotting zeros of a sequence of functions:
https://web.williams.edu/Mathematics/sjmiller/public html/383Fa23/mathematicaprograms/PlotZerosExpApprox.nb
https://web.williams.edu/Mathematics/sjmiller/public html/383Fa23/mathematicaprograms/PlotZerosExpApprox.pdf



https://web.williams.edu/Mathematics/sjmiller/public_html/math/handouts/latex.htm
https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa23/mathematicaprograms/PlotZerosExpApprox.nb
https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa23/mathematicaprograms/PlotZerosExpApprox.pdf

Math 383: Complex Analysis: Fall 23 (Williams)
Professor Steven J Miller: siml@williams.edu

Homepage:
https://web.williams.edu/Mathematics/similler/public_html/383Fa23/

Lecture 18: 10-16-23: https://youtu.be/WzJhBEwPwpA

Watch the following videos before class / read the book (better both!):
*Weierstrass Products, Conformal Maps: https://youtu.be/cIP3ZO5HpV4
eIntroduction to Conformal Maps: https://youtu.be/kzPm-0X_HWS8 (slides)

Topic: Zeros of functions, Weierstrass products


mailto:sjm1@williams.edu
https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa23/
https://youtu.be/WzJhBEwPwpA
https://youtu.be/clP3ZO5HpV4
https://youtu.be/kzPm-0X_HW8
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Theorem 6.2 If f is a nowhere vanishing holomorphic function in a
stmply connected region €2, then there exists a holomorphic function g on

Q) such that
f(z) = e,

The function g(z) in the theorem can be denoted by log f(z), and deter-
mines a “branch” of that logarithm.
Proof. Fix a point zg in €2, and define a function

f'(w)
g(z) = dw + cg,
=) [y T(w)

where ~ is any path in 2 connecting zg to z, and cg is a complex number
so that e = f(zg). This definition is independent of the path ~ since 2
is simply connected. Arguing as in the proof of Theorem 2.1, Chapter 2,
we find that g is holomorphic with

and a simple calculation gives

d

- (f(z)e79®) =0,

so that f (z)e_g(z) is constant. Evaluating this expression at zg we find
f(z0)e™® =1, so that f(z) = 9 for all z € Q, and the proof is com-
plete.



Jensen’s formula

Theorem 1.1 Let £ be an open set that contains the closure of a disc
Dpg and suppose that f is holomorphic in Q, f(0) =0, and f vanishes

nowhere on the circle Cr. If z1....,zN denote the zeros of f inside the
disc (counted with multiplicities),! then

_ 27 .
(1) log [ £(0 |—Zlog (%) +%/ log | f(Re™)| df.



2 Functions of finite order

Let f be an entire function. If there exist a positive number p and
constants A, B > 0 such that

1f(2)] < AeBEP for all = € C,

then we say that f has an order of growth < p. We define the order
of growth of f as

pr=1infp,

where the infimum is over all p > 0 such that f has an order of growth
< p.
For example, the order of growth of the function e is 2.

Theorem 2.1 If f is an entire function that has an order of growth < p,
then:

(1) n(r) < CrP for some C' > 0 and all sufficiently large r.

(ii) If z1,z9,... denote the zeros of f, with =z, # 0, then for all s > p
we have

= 1
Z - < oc.
k=1




3 Infinite products

3.1 Generalities

Given a sequence {a, },—; of complex numbers, we say that the product

H(l + ap)
n=1

converges if the limit

N

lim H(l + ay)

N—o
n=1

of the partial products exists.

/\5"



Taylor series of log(1-x) and Harmonic Series
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Proposition 3.2 Suppose {F,,} is a sequence of holomorphic functions
on the open set ). If there exist constants ¢, > 0 such that

Y en<oo and  |Fn(2) =1/ <c, forallz e,

then:

(i) The product[],_, Fn(z) converges uniformly in §) to a holomorphic
function F(z).

(ii) If F(2) does not vanish for any n, then

3

F'(2) _ s Fh(2)

n=1 B




4 Weierstrass infinite products

We now turn to Welerstrass’s construction of an entire function with
prescribed zeros.

Theorem 4.1 Given any sequence {a,} of complex numbers with
(an| — o0 as n — oo, there exists an entire function f that vanishes at
all 2 = a,, and nowhere else. Any other such entire function is of the
form f(2)e9?), where g is entire.



— -
The integer k is called the degree of the canonical factor. -2~

Lemma 4.2 If |z| <1/2, then |1 — Ei.(2)] < c|z|*T for some ¢ > 0.
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Math 383: Complex Analysis: Fall 23 (Williams)
Professor Steven J Miller: siml@williams.edu

Homepage:
https://web.williams.edu/Mathematics/similler/public_html/383Fa23/

Lecture 19: 10-16-23: No class, take-home exam.

Lecture 20: 10-23-23: https://youtu.be/xftsOF-6yUs

Watch the following videos before class / read the book (better both!):
*Weierstrass Products, Conformal Maps: https://youtu.be/cIP3ZO5HpV4
eIntroduction to Conformal Maps: https://youtu.be/kzPm-0X_HWS8 (slides)

Topic: Zeros of functions, Weilerstrass products (Continued)
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https://youtu.be/kzPm-0X_HW8

3 Infinite products
3.1 Generalities

Given a sequence {a, },—; of complex numbers, we say that the product

-
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For each integer k& = 0 we define canonical factors by
Eo(z)=1—2 and Eg(z) = (1 — 2)ez+= /2++2"/k  for | > 1.

The integer £ is called the degree of the canonical factor.
Lemma 4.2 If |z| < 1/2, then |1 — Ei.(2)] < c|z|*T for some ¢ > 0.
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https://en.wikipedia.org/wiki/Elementary matrix

Elementary matrix % 26 languages v

Article Talk Read Edit View history Tools v

From Wikipedia, the free encyclopedia

In mathematics, an elementary matrix is a matrix which differs from the identity matrix by one single elementary row operation. The elementary matrices
generate the general linear group GL,(F) when F is a field. Left multiplication (pre-multiplication) by an elementary matrix represents elementary row
operations, while right multiplication (post-multiplication) represents elementary column operations.

Elementary row operations are used in Gaussian elimination to reduce a matrix to row echelon form. They are also used in Gauss—Jordan elimination to
further reduce the matrix to reduced row echelon form.

The first type of row operation on a matrix A switches all matrix elements on row i with their counterparts on a different row j. The corresponding
elementary matrix is obtained by swapping row i and row j of the identity matrix.

1



https://en.wikipedia.org/wiki/Elementary_matrix

Suppose that we are given a zero of order m at the origin, and that
1. as ... are all non-zero. Then we define the Weierstrass product by

o0

f(z)==" 1] En(z/an).

n=1
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Below are the Slides for Lecture 16 from
2021: 10-22-21: https:/lyoutu.be/kzPm-0X_HWS

10/18/17: Introduction to Conformal Maps: https://youtu.be/5klb8gxnQTc

178


https://youtu.be/kzPm-0X_HW8
https://youtu.be/5klb8gxnQTc

Plan for the day: Lecture 16: October 22, 2021

https://web.williams.edu/Mathematics/similler/public html/383Fa2l1/course
notes/Math302 LecNotes Intro.pdf

* Review inverse functions: f(g(z)) = g(f(z)) = z, application to derivatives
(arctan)

« Conformal maps

« Specific conformal maps

General items.

« Differences b/w real and complex
« Seeing what theorems to use

179


https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa21/coursenotes/Math302_LecNotes_Intro.pdf

Inverse functions: f(g(z)) = z, get formula for g’(z) (do for exp-log)
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Given two open sets U and Vin C, does there exist a holomorphic bijection between them?
Given an open subset Q of C, what conditions on QQ guarantee that there exists a holomorphic bijection from Q to
D?
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Prop osition®1.1 If f:U —=V is holomorphic and injective, then
f'(z) #0 for all z € U. In particular, the inverse of f defined on its
range is holomorphic, and thus the inverse of a conformal map is also
holomorphic.

First prove f'(z) is never zero, then prove its inverse is holomorphic.
Comment: Is this true if f is real analytic?
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Math 383: Complex Analysis: Fall 23 (Williams)
Professor Steven J Miller: siml@williams.edu

Homepage:
https://web.williams.edu/Mathematics/similler/public_html/383Fa23/

Lecture 21: 10-25-23: https://youtu.be/C9JCKkm]VrEg

«Conformal Maps, Automorphisms of the unit disk

Lecture from 2021: Lecture 17: 10/25/21: Schwarz Lemma, Automorphisms of the Disk:
https://youtu.be/g4eZRrVPGAQ (slides)
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https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa23/
https://youtu.be/C9JCkmjVrEg
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Prop osition®1.1 If f:U —=V is holomorphic and injective, then
f'(z) #0 for all z € U. In particular, the inverse of f defined on its
range is holomorphic, and thus the inverse of a conformal map is also
holomorphic.

First prove f'(z) is never zero, then prove its inverse is holomorphic.
Comment: Is this true if f is real analytic?
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Proposition 1.1 If f:U —V is holomorphic and injective, then Theorem 4.3 (Rouché’s theorem) Suppose that f and g are holo-
f'(2) #0 for all z € U. In particular, the inverse of f defined on its morphic in an open set containing a circle C' and its interior. If

range is holomorphic, and thus the inverse of a conformal map is also ()] > g(2)]  forallzeC

holomorphic.
then f and f + g have the same number of zeros inside the circle C.

Proof. We argue by contradiction, and suppose that /(@) = 0 for
some )< U. Then

f(2) Wi = a(z= — O)" + G(=z) for all = near &.

with a #£ 0, k£ > 2 and G vanishing to order k + 1 at &. For sufficiently
small w, we write

f(z) MW— w= F(z)+ G(z), where F(2)=a(z — @&)F — w.

Since |G(z)| < |F(z)| on a small circle centered at zg, and F' has at

least two zeros inside that circle, Rouché’s theorem implies that f(z) —

W — w has at least two zeros there. Slnc*e f'(z) ## 0 for all z £ £ but E‘;‘&
sufficiently close to € it follows that the roots of f(z) $44G¥ — w are

distinct, hence f is not injective, a contradiction.
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Real vs complex maps: f(x) = x3 on [-1,1] and unit disk
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Below is the rest of the proof of the theorem, the differentiability of the inverse.
The proof is standard, following from the definition and the fact that the derivative of f is never zero.

Note this is different than the real case, where we can have a real analytic bijection whose derivative vanishes at
a point, namely f(x) = x3.

Now let ¢ = f~! denote the inverse of f on its range, which we can
assume is V. Suppose wo € V and w is close to wg. Write w = f(z) and
wo = f(zo). If w # wp, we have

g(w) — g(wo) 1 1

. w—wWo f(z)—f(z0) "
e wo g(w)—g(wo) zZ—2Z2p )

Since f'(zp) # 0, we may let z — zp and conclude that ¢ is holomorphic
at wo with ¢'(we) = 1/ f"(g(wo)).
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P — z l—u*
F(z) = T and  G(w) = T

Theorem 1.2 The map F': IHI - ]D) 15 a conformal map with inverse

G : D — H.
€2= Xyt 570 T farf"—”f

F[z.] (= (I -2)/ (I + z)
f[z_] := {Re[F[z]], Im[F[z]]}; .

) _ -t‘ Jt
Manipulate[ParametricPlot[f[t], {t, -c, c}], {c, .01, 10}] /6\ - = I
Manipulate[ParametricPlot[f[t + .5I], {t, -c¢, c}], {c, .01, 10}] F -/.t -+t

-e2) £2 &
=\ —
Lt

(P
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Show[Manipulate[ParametricPlot[{{r Cos[t],r Sin[t]}, f[t + ¢ I]}, {t, —15,15}], {c,0,100}, {r, 1,2}”

— '
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Fractional Linear Transformations




Matrix Form of FLT....

@‘,ﬁ tnde abust— (:i)

'/\6‘(6’6 ﬁ?;‘é C, 4( éy Gy N0 LET ﬁym/-:.-—

@ L) — ﬂ.”('—é < < Z or— O
5?’/ CJ["'?) a(e/‘f"é el ’
_P (%’)) flz a ,b ,c ,d ] = (az + b) / (cz + d)
— Simplify[f[f[z, al, b1, c1, d1], a2, b2, c2, d2]]
"PﬂéCa( ( ﬁgdb Simplify[f[f[z, a2, b2, c2, d2], al, bl, c1, d1]]

Simplify[Simplify[f[f[1/2, al, b1, c1, d1], a2, b2, c2, d2]] -
Simplify[f[f[1/2, a2, b2, c2,d2], al, bl, cl1, d1]]]

- a{/}'f'fc 2/) )"L\ a2bl+b2dl+ala2z+b2clz

blc2+dld2+alc2z+cld2z

alb2+bld2+ala2z+blc2z
b2cl+dld2+a2clz+c2dlz

ala2+2alb2+blc2+2bld2 ala2+2a2bl+b2cl+2b2dl

+

_32c1+2b2c1+c2d1+2d1d2 alc2+2blc2+cld2+2dld2

Simplify[f[f[z, al, b1, c1, d1], a2, b2, c2, d2]]

a2bl+b2dl+ala2z+b2clz FL{{
F

blc2+dld2+alc2z+cld2z
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f(z) =z«

- f(z) = =

g

';

0
0
- ﬁ
0



¥

1T

—_— -
0 1 0
fi(z) = e** fa(z) = iz fa(z :_Tl(z—l—%)
A — i"ll — —
: m
= w 0 iy
2 2

e (O F g
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L — 2 1 —w

F(z)=—— and G(w)=i——

-2 1 +w
Theorem 1.2 The map F : H — D is a conformal map with inverse
G:D— H. : Q
- : 5 : &
Flz. ] := (I - 2) /(I + 2) 22“ Ao T {2 (=] /f

f[z_] := {Re[F[z]], Im[F[z]]};

Manipulate[ParametricPlot[f[t], {t, -c, c}], {c, .01, 10}]
Manipulate[ParametricPlot[f[t + .51I], {t, -¢, c}], {c, .01, 10}]
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‘[z ,alpha 1 := (alpha - z) / (1 - Conjugate[alpha] z);
ef[r , theta , alpha ] := Re[f[rExp[I theta], alpha]]
mf[r , theta , alpha 1 := Im[f[rExp[I theta], alpha]]

lanipulate [ParametricPlot[{{Cos[t], Sin[t]}, {ref[r, t,a+IDb], imf[r, t, a+IDb]}},

{t, @, 2Pi}], {r, @, 1}, {b, @, Sqrt[1-a~2]}, {a, @, 1}]

Valz) =

v — Z

1 —az’
os | = 4] [ARll] (=]
s | |=r |+ Al >
0% =1 [+ (&l =]

where a € C with |a| < 1.

and s (a) = 0.

y_ L

5
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Ua(2) = = where o € C with || < 1. Ua(0)=a and u(a) =0.
—az 2. eih |
i0 . i
0\ o — € W (= - € s
@a(fﬁ ) — 8"’:9(8_1.9 — a) — € :»('f\ [w(# 0 (l[/‘a R ¢&) (z) _ v T =>
| 1 _ala—_azz
= — [C 2. - a—lafz—a+z
6’6 (/J) 1l -az— o2+ Tz
‘ Ces . _ (1 o ‘a|2)z
(9] = | = =/ =[P
[% = (-G) = 2,
@ F/y&"\—éﬂé"
ﬁ /Ylﬂ 1 077 Mbé/[//yg Emw G leet € D lorspty

WJ?’/‘ e(D € (=(</ Z = Rl

@S Coprt attza /qu\qb/aﬁé e, H(z) = (L,g,(r;{,(c.,))
=



Math 383: Complex Analysis: Fall 23 (Williams)
Professor Steven J Miller: siml@williams.edu

Homepage:
https://web.williams.edu/Mathematics/sjmiller/public html/383Fa23/

Lecture 22: 10-27-23: https://youtu.be/n43JVHOQIQBE

*Schwarz Lemma, Conformal Maps

Lecture from 2021: Lecture 17: 10/25/21: Schwarz Lemma, Automorphisms of the Disk:
https://youtu.be/g4eZRrVPGAOQ (slides)



mailto:sjm1@williams.edu
https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa23/
https://youtu.be/n43JVHQigBE
https://youtu.be/q4eZRrVPGA0
https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa23/383Fa23_lectures.pdf

oy — Z

ha(z) = where a € C with |af < 1.

1 —az’

@

S Comp ) = (00 S/~ é@ (WLMMM)

EM@A —C/\( w & D -4 2 S
&L (Y=




. o —z _ |
Vo(2) = ——, where a € C with |a| < 1. Y_F 0 I‘L 1/0 —
1 —@z b a (-1

C—_ v

psi[z , point ] := (point - z) / (1 - Conjugate[point] z) én

Simplify[psi[psi[z, a], a]]

Simplify[psi[psi[z, a], b], Assumptions » {Abs[a] < 1&& Abs[b] < 1}] .

psi[z, psi[b, a]]

(«*Simplify [Numerator [-(1-a Conjugate[b]) psi[z,psi[a,b]]]] / Simplify[Denominator[-(1-a Conjugate[b]) psi[z,psi[a,b]]]]x)

glz , a , b ] :=Simplify([psi[psi[z, a], b] - psi[z, psi[b, a]], Assumptions » {Abs[a] <1&&Abs[b] <1}]
Abs[g[.2 - I/11, .3 + I/2, .4 + I/5]]

z . <D O —= <
q/a'/b > D c—> O

a-b-z+bzConjugate[a]

-1+ zConjugate[a] + (a-z) Conjugate[b]

a-b
1-bConjugate[a]

1 - z {Cunjugate[af—Cunjug_ate[b: ] (# ’LF :D ~7 a - b
1-a Conjugate[b] L é .@ O - %b (Q)

1.03072

-Z +

O\ Climee 15 ¢ - V(o)



| v —z + |
Po(z) = ——. where a € C with |of < 1.
1 — @z

h{z , a , b ] := Abs[psi[psi[z, a], b] /psi[z, psi[b, a]]]
N[h[Exp[IPi/7] /13, Exp[IPi/4] /2, Exp[IPi/3] / 2]]
N[h[Exp[IPi/5] /12, Exp[IPi/4] /2, Exp[IPi/3] / 2]]
N[h[Exp[IPi/Sqrt[2]] /19, Exp[IPi/4] /2, Exp[IPi/3] / 2]]

1. e

W, - wley = €74/ 3



oy — Z

ha(2) = where a € C with |a| < 1.

1 —az’

Theorem 2.2 If f is an automorphism of the disc, then there exist 6 €
R and o € D such that

_ g YT =

flz)=e

1 —az
5&% /, —§ D=2D ¢ ab mw,aétay ;_l 4 cuh [het 4 =0
o — O L‘ﬂ /o) -
(§ %\ 2) y L(7) o



The Schwarz lemma
Lemma 2.1 Let f: D — D be holomorphic with f(0) = 0. Then

(1) |f(2)| < |z| for all z € D.
(ii) If for some zq # 0 we have |f(zq)| = |z0|, then f is a rotation.

(iii) |f'(0)] <1, and if equality holds, then f is a rotation.
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() [f()| < 2| for all = € D.

Expand in a power series, study f(z)/z, look at in D(r)

_ )CKZ/ ke aF2= 0
Z2E D s lzler SAhg gz S o (970

éa’O /W‘/é(

U/& I \(/ Z)

V)| € + Ho- ol 21T (Aox Matids)
‘%’E‘e (’W'/ < f\'>// j&c /‘?(ZS(S/

Mezng (F(Z)(é (Z

= 1z ¥ SiOsp fral £/



(ii) If for some zg # 0 we have |f(zg)| = |z0|, then f is a rotation.

For (ii), we see that f(z)/z attains its maximum in the interior of D and
must_therefore be constant, say f(z) = cz. Evaluating this expression

at zg and taking absolute values, we find that |¢| = 1. Therefore, there
exists 6 € R such that ¢ = ¢*?, and that explains why f is a rotation.

j(’Z)? Ff) }f‘/ipw ,7/?’)/_4)

Z
0 Iz, o Wrz)l= (2 = (@)= = 7 evhrl
BN oA s

*

s £ = Lraym e =
6
we |22 [ = |2 = [C]=( o~ C=c&
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(iii) |f(0)| < 1, and if equality holds, then f is a rotation.

View g(z) = f(z)/z as a derivative at z=0....

f(z)/z, then |g(z)| <1 throughout D,
and moreover 5

£(2)— £(0] = el |

Finally, observe that if g(z)

9(0) = lim = 1'(0). koo 1l

z—0 z -0

Hkanc:e: if | f/(0)| =1, then |g(0)| = 1, and by the maximum principle g is
constant, which implies f(z) = ¢z with |¢| = 1. :

</
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The "Real' Schwarz lemma (w’ David Thompson): American Mathematical Monthly. (118 (October 2011), no. 8, page 725) pdf

https://web.williams.edu/Mathematics/similler/public html/math/papers/realschwarz10.pdf

Lemma 2.1 Let f: 1D — D be holomorphic with f(0) =0. Then
(1) [f(2)| < |z| for all z € D,
(i1) If for some zg # 0 we have |f(z9)| = |z0|, then f is a rotation.

(i) (0)] <1, and if equality holds, then f is a rotation.

i o hes
g: é-_..«- /] ‘——">("""'/ /) reazhgch/)f;é} ) oo 2 %45 1

&/]/wf/ s Hve_ ad o l—? G
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https://web.williams.edu/Mathematics/sjmiller/public_html/math/papers/realschwarz10.pdf
https://web.williams.edu/Mathematics/sjmiller/public_html/math/papers/realschwarz10.pdf

It’s interesting to consider the real analogue. In that situation, we’re seeking a real analytic map
g from (—1,1) to itself with g(0) = 0 and derivative ¢'(0) as large as possible. After a little ex-
ploration, we quickly find two functions with derivative greater than 1 at the origin. The first 1s
g(x) = sin(wx/2), which has ¢’(0) = 7w/2 € (1,2). The second is actually an infinite family: let-
ting g.(x) = (a + 1)z /(1 + az?) we see that g, is real analytic on (—1, 1) so long as |a| < 1, and
g.(0) = 1 + a. Using this example, we see we can get the derivative as large as 2 at the origin.
Unfortunately, if we take |a| > 1 then g, is no longer a map from (—1, 1) to itself; for example,
g1.01(.995) > 1.00001.

elx_, a_] t= (a+1) x / (L + ax"2)
Simplify [D[g[x, al., x]]
Manipulate[Plot[ {1, —1, x, g[>x, al X, {xs —1, 13}] . {a, 88, 3}1]

(L +a) (-1 +ax?)

(:1+ax2:]2

— >+ ==
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THE ‘REAL' SCHWARZ LEMMA
STEVEN J. MILLER AND DAVID A. THOMPSON

ABSTRACT. The purpose of this note is to discuss the real analogue of the Schwarz lemma from
complex analysis. We give two versions of a potential article: one is written to be a short note, while
the other is written to be a box. We have tried to make the note and box versions as short as possible,
but of course would be happy to add (or delete) details / images if that is desirable. We prefer the note
version, as it gives us a chance to tell more of the story / set the stage.

1. NOTE VERSION

One of the most common themes in any complex analysis course is how different functions of
a complex variable are from functions of a real variable. The differences can be striking, ranging
from the fact that any function which is complex differentiable once must be complex differentiable
infinitely often and further must equal its Taylor series, to the fact that any complex differentiable
function which is bounded must be constant. Both statements fail in the real case; for the first con-
sider x” sin(1/x) while for the second just consider sin z. In this note we explore the differences
between the real and complex cases of the Schwarz lemma:

The Schwarz Lemma: If [ is a holomorphic map of the unit disk to itself that fixes the origin, then
| F1(0)| < 1; further, if | f'(0)| = 1 then [ is an automorphism (in fact, a rotation).

What this means is that we cannot have [ locally expanding near the origin in the unit disk faster
than the identity function, even if we were willing to pay for this by having f contracting a bit near
the boundary. The largest possible value for the derivative at the origin of such an automorphism
15 1. This result can be found in every good complex analysis book (see for example [Al, La, SSJ),
and serves as one of the key ingredients in the proof of the Riemann Mapping Theorem. For more
information about the lemma and its applications, see the recent article in the Monthly by Harold
Boas [Bo].

I’s interesting to consider the real analogue. In that situation, we're seeking a real analytic map
¢ from (—1,1) to itself with g(0) = 0 and derivative ¢'(0) as large as possible. After a little ex-
ploration, we quickly find two functions with denvative greater than 1 at the origin. The first is
glx) = sin(wx/2), which has ¢'(0) = #/2 € (1,2). The second is actually an infinite family: let-
ting g.(z) = (a + 1)x/(1 + ar®) we see that g, is real analytic on (—1,1) so long as |a| < 1, and
gL(0) = 1 + a. Using this example, we see we can get the derivative as large as 2 at the origin,
Unfortunately, if we take |a| > 1 then g, is no longer a map from (~1,1) to itself; for example,
91 01(.995) > 100001,

Notice both examples fail if we try to extend these automorphisms to maps on the unit disk. For
example, when = = 3:/5 then already sin(rz/2) has absolute value exceeding 1, and thus we would
not have an automorphism of the disk. For the family g,, without loss of generality take o > 0. As
= =+ i then g,(z) — +=={, which is outside the unit disk if a > 0.

While it is casy to generalize our family {g,} to get a larger derivative at 0, unfortunately all the
examples we tried were no longer real analytic on the entire interval (1, 1). As every holomorphic
function is also analytic (which means it equals its Taylor series expansion), it seems only fair to

Dare: December 10, 2010

We thank our clussmates from Math 302: Complex Analysis (Williams College, Fall 2010) for many enlightening
conversations, especially David Gold and Liyung Zhang, as well as Jonathan Sondow for comments on an carlier draft.
The first named author was partially supported by NSF grant DMS0970067.

2 STEVEN J. MILLER AND DAVID A. THOMPSON

FIGURE 1. Plot of the scaled error functions. (1) Left: Erf(kr)/Erf(z) for k €
{1,5,10,50} and x € (—1,1); (2) Right: Plot of |Exrf(2)| for |z| < 1.

require this property to hold in the real case as well. Interestingly, there is a family of real analytic
automorphisms of the unit interval fixing the origin whose derivatives become arbitrarily large at 0.
Consider hy(x) = erf(kx)/erf(k), where exf is the error function:

erf(z) = -72;:/ e at
T Ja

We conclude with our main result, which is another example of the striking differences between
functions of a real and functions of a complex variable.

The Real Analogue of the Schwarz Lemma: Ler F be the ser of all veal analytic automorphisms
of (—1,1) that fix the origin. Then sup .z |f'(0)| = oc, in other words, the first derivative at the
origin can be made arbitrarily large by considering [i(x) = exf(kr)/erf(k).

Proof: The error function has a series expansion converging for all complex =,

(_[)n Jantl 2 i :.‘l :& :7
- TZ n!(2n+1) —W(' T*m-l—'l")
(this follows by using the series expansion for the exponential function and interchanging the sum
and the integral), and is simply twice the area under a normal distribution with mean 0 and variance
1/2 from 0 to . From its definition, we see crf(—x) = ~erf(x), the error function is one-to-one, and
forr € (—1,1) our function exf(kr)/exf(k) is onto (~1,1),

Using the Fundamental Theorem of Calculus, we see that b (r) = 2exp(—A*z%)k)/ /merf(k),
and thus i, (0) = 2k//Terf(k). As erf(k) = 1 as k = o0, we find hi(0) ~ 2k/\/T - 2, which
shows that, yet again, the real case behaves in a markedly different manner than the complex one, As
My is an entire function with large derivative at 0, if we regard it as a map from the unit disk it must
violate one of the conditions of the Schwarz lemma. From the series expansion of the error function,
it's clear that if we take = = iy then hy(iy) tends to infinity as y —» 1 and k& — oc; thus /i, does not
map the unit disk into itself, and cannot be a conformal automorphism (see Figure | for plots in the
real and complex cases). (@]



2. BOoX VERSION

The Schwarz lemma states that if f is a holomorphic map of the unit disk to itself that fixes
the origin, then |f'(0)| < 1: further, if |f’(0)| = 1 then f is an automorphism. It’s interesting to
consider the real analogue. In that situation, we’re seeking a real analytic map g from (—1,1) to
itself that fixes the origin and has derivative ¢’(0) as large as possible. After a little exploration, we
find /. (z) = erf(kx)/erf(k), where erf is the error function:

2 *
erf(z) := ﬁ/ e " dt.
0

The error function has a series expansion converging for all complex z,

£ 2 o0 (_l)rl:2n+l 2 X 23 25 37

ilE) = O ) (“_?+ﬁ_ﬁ+'”)'

and is simply twice the area under a normal distribution with mean 0 and variance 1/2 from 0 to x.
We have h)(z) = 2exp(—k%2?)k)//merf(k), and thus h}(0) = 2k/\/merf(k). As erf(k) — 1

as k — oo, we see h) (0) ~ 2k/\/m — oo, which shows that, yet again, the real case behaves in a

markedly different manner than the complex one.
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Extra Credit: What other generalizations can we do?
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Let €2 be an open subset of C. A family F of holomorphic functions on

(2 is said to be normal if every sequence in F has a subsequence that
norma .

converges uniformly on every compact subset of {2 (the limit need not be

in F).
£, 2) =7 +(-4)=2
_p(%) — = ws -2, —(;1 (2) — =
, PR

2

s Hezo JJ s¢& Exo st [ X-9 < 7de,
/‘C(V“' Fen| < & e = 4C8)

(ontinity - HE70 5 =80x,6) s€ o wlh Prol<d I,
“7 | C(n-KD)s €.



The family F is said to be uniformly bounded on compact subsets
of () if for each compact set K C {2 there exists B_> 0, such that

f(z)| € Bl forall z€ K and f € F.

_jC(_Z) = en% = fj/}X ézjﬂj S (\‘Fn(z’/)]: -

(E5 m@
@ TN =2

V2D
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Also, the family F is equicontinuous on a compact set I if for every
e > 0 there exists § > 0 such that whenever z,w € K and |z — w| < 4,
then

1f(z) — f(w)| <e forall feF.

g/%;i/%: He 70 JJd st Exo st (X-9 &~ 7R,
[fen- $en| < € e 5= ()

/(H%”‘“’ 6 W o « @m/j
Botsre ! Gien £ {4 = J (e, §) s& -~

o Gun € 35 =30e,7) st --



’
Montel’s theorem
Theorem 3.3 Suppose F is a family of holomorphic functions on $) that

is uniformly bounded on compact subsets of 2. Then:
(i) F 1is equicontinuous on every compact subset of €2.

(ii) F is a normal family.
o [‘”T(x 77‘7 o (- 7

f //lbcﬁ 'F[x._,n_] i= Sin[(dFloor[n]+il) x] '
Manipulate[Plot[f[x, n], {x, Pi/2 - 1/Sqrt[n], Pi/2}],

Lﬁ)u/n'(’a?fﬂ’?(7 é"/m'(’/( éy / {n, 1, 100}]

il AN
x AN




Math 383: Complex Analysis: Fall 23 (Williams)
Professor Steven J Miller: siml1@williams.edu

Homepage:
https://web.williams.edu/Mathematics/sjmiller/public html/383Fa23/

Lecture 23: 10-30-23: https://youtu.be/uMyZ5maqy3sO

*Bijections on the boundary, from the Geometric Series to the Riemann Zeta Function

No class Friday November 3'9; watch the following videos:

Lecture 18: 10/27/21: Montel's Theorem and Results from Analysis: https://youtu.be/Y AWP7TXRGJA (fix on error

here: https://youtu.be/A2ESfVKYKXw) (slides) Already watched this....

Lecture 20: 10/30/17: Riemann Mapping Theorem Overview): https://youtu.be/FhphhYFxIPO (slides)

Lecture 20: 11/01/21: Riemann Mapping Theorem (Proof), Differences between Real and Complex: https://youtu.be/yivEV2yhxgA (slides)
Lecture 21: 11/03/21: Finishing Proof of the Riemann Mapping Theorem, Introduction to the Riemann Zeta Function, Partial

Summation: https://youtu.be/-TpU7PdIEfO (slides)



mailto:sjm1@williams.edu
https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa23/
https://youtu.be/uMyZ5mgy3sQ
https://youtu.be/YAWP7TXRGJA
https://youtu.be/A2E5fVKyKXw
https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa23/lectures/383Fa21_lecture18.pdf
https://youtu.be/FhphhYFxIP0
https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa23/lectures/383Fa21_lecture19.pdf
https://youtu.be/yivEV2yhxgA
https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa23/lectures/383Fa21_lecture20.pdf
https://youtu.be/-TpU7PdIEf0
https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa23/lectures/383Fa21_lecture21.pdf

https://www.math.ucdavis.edu/~hunter/m20l1a 16/continuous.pdf

Theorem 9. The continuous image of a compact set is
compact.

Proof. Suppose that f: X — Y is continuous and X is compact. If {G,, :
o € I} is an open cover of f(X), then {f~1(G,) : « € I} is an open cover of
X, since the inverse image of an open set is open. Since X is compact, it has

a finite subcover {f~1(G,,) :i=1.2,...,n}. Then {G,, :i=1,2....,n} is
a finite subcover of f(X), which proves that f(X) is compact. O

Ya(2) = —,  where a € C with |af < 1.


https://www.math.ucdavis.edu/~hunter/m201a_16/continuous.pdf
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From Shooting Hoops
to the Geometric Series Formula
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The Geometric Series Formula

The Geometric Series Formula is one of the most important in
mathematics. It is one of the few sums we can evaluate exactly.

1
If |r| <1then1+r+r2+r3+r4+...=:.

This is often proved by first computing the finite sum, up to r", and
taking a limit. Note since |r| < 1 that each term r" gets small fast.....

/\/V({‘f/\f/\‘zf..J
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The Geometric Series Converges if |r]| <1

1
L +r+ri+ri4+rt +00 =—

17
Why does this converge? Take r = %. We thenhave 1 + %2+ a + ... = - . T = 2,

2
and we can view this as we start at 0, and each step covers half the distance
to 2. We thus never reach it in finitely many steps, but we cover half the
ground each time.

]
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The Geometric Series Converges if |[r| <1

1
L +r+re+ri4+rt +00 =—

17
Why does this converge? Take r = %. We then have 1 + 2+ 4 + ... = - . T = 2,

2
and we can view this as we start at 0, and each step covers half the distance
to 2. We thus never reach it in finitely many steps, but we cover half the
ground each time.
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The Geometric Series Converges if |[r| <1

1
L +r+ri+ri4+rt +00 =—

17
Why does this converge? Take r=%. We thenhave 1 + %2+ Vo + ... = - . T = 2,

2
and we can view this as we start at 0, and each step covers half the distance
to 2. We thus never reach it in finitely many steps, but we cover half the
ground each time. O
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The Geometric Series Converges if |r| <1

1
L+r+r+ri+rt 400 =—,
Why does this converge? Take r = %. We thenhave 1 + 2+ V4 + ... = 11 T = 2,

2
and we can view this as we start at 0, and each step covers half the distance
to 2. We thus never reach it in finitely many steps, but we cover half the
ground each time.
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The Geometric Series Formula

The Geometric Series Formula is one of the most important in mathematics. It is
one of the few sums we can evaluate exactly.

1 _TTL+1

Lemma: If [r| <1lthenl+r+r2+3+r*+ ... +r"=
1-r

Proof: LetS, =1+r+r2+r3+rt+ .+

Then rS, = r+r2+r3+rt+. .+ +rmH

What should we do now?
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The Geometric Series Formula

The Geometric Series Formula is one of the most important in mathematics. It is
one of the few sums we can evaluate exactly.

1 _rTl+1

Lemma: If [r| <1lthenl+r+r2+3+r*+ ... +r"=
1-r

Proof: LetS, =1+r+r2+r3+rt+ .+

Then rS, = r+rP+r3+rt+. .+ +r!

Subtract: S, —r S, =1-r",

So (1-r)S, =1-r", orS,
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The Geometric Series Formula

The Geometric Series Formula is one of the most important in mathematics. It is
one of the few sums we can evaluate exactly.

1 _rTl+1

Lemma: If [r| <1lthen1l+r+r2+r3+rt+ . +1"= —

Proof: LetS, =1+r+r2+r3+rt+ .+

Then rS, = r+rP+r3+rt+. .+ +r!
Subtract: S, —r S, =1-r",

1 _TTL+1
So(1-r)S, =1-r", orS, = —

If we let n go to infinity, we see r"*! goes to
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The Geometric Series Formula

The Geometric Series Formula is one of the most important in mathematics. It is one of
the few sums we can evaluate exactly.

1 _rn+1

Lemma: If [r| <1lthen1l+r+r2+r3+rt+ . +1" = —

Proof: LetS, =1+r+r2+r3+rt+ . +1"
Then rS. = r+r2+r3+rt+ .+ +r!

Subtract: S —rS, =1-r", | r
- — 1 — ¢+l — 1—rn*t T L — -
So(1-r)S, =1—-r", orS, — e s

If we let n go to infinity, we see r"*! goes to 0, so we get the infinite sum is p—

n+f
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Simpler Game: Hoops

Game of hoops: first basket wins, alternate shooting.

We will prove the Geometric Series Formula just by studying this basketball game!
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Simpler Game: Hoops: Mathematical Formulation

Sird and (I'm old!) alternate shooting; first basket
wins.

e Bird always gets basket with probability p.

) always gets basket with probability g.

Let x be the probability Bird wins — what is x?
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Solving the Hoop Game

Classic solution involves the geometric series.

Break into cases:
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Solving the Hoop Game

Classic solution involves the geometric series.

Break into cases:
e Bird wins on 15t shot: p.
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Solving the Hoop Game

Classic solution involves the geometric series.

Break into cases:

e Bird wins on 15! shot: p.
@ Bird wins on 2"¥ shot: (1 — p)(1 — q) - p.
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Solving the Hoop Game

Classic solution involves the geometric series.

Break into cases:
e Bird wins on 15! shot: p.
@ Bird wins on 2"? shot: (1 — p)(1 — q) - p.
e Bird wins on 3" shot: (1 —p)(1—q)-(1—=p)(1—9q)-p.
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Solving the Hoop Game

Classic solution involves the geometric series.

Break into cases:
e Bird wins on 15t shot: p.
e Bird wins on 2" shot: (1 — p)(1 — q) - p.
e Bird wins on 3" shot: (1 —p)(1—q)-(1—p)(1—9q)-p.
@ Bird wins on n" shot:
(1=p)1—q)-(1—p)(1—9q)---(1=p)(1—-9)p.
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Solving the Hoop Game

Classic solution involves the geometric series.

Break into cases:

e Bird wins on 1% shot: p.

@ Bird wins on 2" shot: (1 — p)(1 — q) - p.

@ Bird wins on 3" shot: (1 —p)(1—q)-(1—p)(1—q)-p.

@ Bird wins on n'" shot:
(1=p)(1=q)-(1=p)(1=q)---(1=p)(1-q)-P.

Letr = (1 —p)(1 —q). Then
x = Prob(Bird wins)
= p+mo+rp+rip+-..
= p(A+r+rr+ri+...),
the geometric series.
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Solving the Hoop Game: The Power of Perspective

Showed
x = Prob(Bird wins) = p(1 +r+r*+r°+...);
will solve without the geometric series formula.
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Solving the Hoop Game: The Power of Perspective

Showed
X = Prob(Bird wins) = p(1 +r+r*+r° +...);
will solve without the geometric series formula.

Have
x = Prob(Bird wins) = p +
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Solving the Hoop Game: The Power of Perspective

Showed
X = Prob(Bird wins) = p(1 +r+rc+r°4...):
will solve without the geometric series formula.

Have
x = Prob(Bird wins) = p+ (1 —p)(1 —q) = 277
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Solving the Hoop Game: The Power of Perspective

Showed
x = Prob(Bird wins) = p(1 +r+r*+r°+...);
will solve without the geometric series formula.

Have
X = Prob(Bird wins) = p+ (1 — p)(1 — g)x
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Solving the Hoop Game: The Power of Perspective

Showed
x = Prob(Bird wins) = p(1 +r+r*+r°+...);
will solve without the geometric series formula.

Have
X = Prob(Bird wins) = p+ (1 —p)(1 —q)x = p+rx.
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Solving the Hoop Game: The Power of Perspective

Showed
X = Prob(Bird wins) = p(1 +r+r°+r°4+...);
will solve without the geometric series formula.

Have
X = Prob(Bird wins) = p+ (1 —p)(1 —q)x = p +rx.

Thus
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Solving the Hoop Game: The Power of Perspective

Showed
X = Prob(Bird wins) = p(1 +r+r°+r°+...);
will solve without the geometric series formula.

Have
X = Prob(Bird wins) = p+ (1 —p)(1 —q)x = p +rx.

Thus
p

1—r

(1—rx =p or x =

As x =p(1+r+r*+r’+...), find

T+r+rf+ri4... =

1—r
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Advanced Geometric Series Comments

Always carefully look at what you did, and be explicit on what you proved.

The geometric series formula is:
1
If [r]<1thenl+r+r’+r3+ r4+...=:.

We proved this when r = (1-p)(1-g), where p and q are the probabilities of
making a basket for Bird and Magic. What are the ranges for p and q? We have
what range of p and g?
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Advanced Geometric Series Comments

Always carefully look at what you did, and be explicit on what you proved.

The geometric series formula is:

1
If |r| <1then1+r+r2+r3+r4+...=:.

We proved this when r = (1-p)(1-g), where p and q are the probabilities of
making a basket for Bird and Magic. What are the ranges for p and q? We have

0<p, g<1BUT we cannot have p=q=0, or the game never ends. Thus we only
proved the Geometric Series Formula for what range of r?
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Advanced Geometric Series Comments

Always carefully look at what you did, and be explicit on what you proved.

The geometric series formula is:

1
If |r| <1then1+r+r2+r3+r4+...=:.

We proved this when r = (1-p)(1-q), where p and g are the probabilities of
making a basket for Bird and Magic. What are the ranges for p and q? We have
0<p, g<1BUT we cannot have p=q=0, or the game never ends. Thus we only
proved the Geometric Series Formula for 0 < r < 1. Is there a way to deduce the
formula for |r| <1 and r negative from what we have already done? (YES)



From the
Geometric Series
Formula to Primes



Application of the Geometric Series Formula:
Infinitude of Primes!

One of the most important applications of the Geometric Series
Formula is in Number Theory.

It is used in creating / understanding the Riemann Zeta Function, which
gives us tremendous information about primes.

Remember primes are numbers with exactly two factors, 1 and
themselves: 2, 3,5, 7,11, 13, 17, 19, 23, .... If you are divisible by two or
more primes you are called composite, while 1 is called a unit. We will
see it is convenient NOT to have 1 be a prime.
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Fuclid and the Infinitude of Primes

There are many proofs that there are infinitely many primes. This one
goes back over 2000 years to Euclid....

Assume there are only finitely many primes, say p, =2,p, =3,p; =5, ..,
Ppn-

Consider the new number x=p, *p, *p3 *...* p, + 1. F,,#:/Zvﬂ_“- 2
Can this be divisible by p,?

254



Fuclid and the Infinitude of Primes

There are many proofs that there are infinitely many primes. This one goes
back over 2000 years to Euclid....

Assume there are only finitely many primes, say p, =2, p, =3,p3=5, ..., p

n.

Consider the new numberx=p, *p, *p3* ... *p, + 1.
Can this be divisible by p,? No, the remainder is 1.
Can this be divisible by p,?

255



Fuclid and the Infinitude of Primes

There are many proofs that there are infinitely many primes. This one goes back over 2000
years to Euclid....

Assume there are only finitely many primes, say p, =2, p, =3,p3=5, ..., p,.
Consider the new numberx=p, *p, *p3*...*p, + 1.

Can this be divisible by p,? No, the remainder is 1.
Can this be divisible by p,? No, the remainder is 1.

Continuing we see it cannot be divisible by ANY prime in our list. As we assumed our list was

complete, we have found a new prime (either this number is prime, or it is divisible by a
prime not on our list).

Uix) = £Spames p< xf Ths St T 2> Got Lhx,



Fuclid and the Infinitude of Primes

Consider the numbers generated by Euclid’s method; it’s fun to try this
process.

* We start with 2, then look at 2+1 and get 3 as the next number.
* Then 2 +3+ 1 =7 for our next prime.
* Then2*3*7+1=43 which is also prime.

Do we always get a prime when we apply this? Do we get all the
primes?

257



Fuclid and the Infinitude of Primes

Consider the numbers generated by Euclid’s method; It’s fun to try this process.
* We start with 2, then look at 2+1 and get 3 as the next number.

« Then 2 * 3+ 1 =7 for our next prime.

e Then2 *3 *7+1=43which is also prime.

Do we always get a prime when we apply this? Do we get all the primes?

We do not always get a prime — look at the next term!
e 2*%3*7*43 +1=1807=13 *139.

https://www.youtube.com/watch?v=NOCsdhzo6Jg (How They Fool Ya: Math parody of Hallelujah)

The other questions are open..... We don’t have to go far to find open questions
about primes (others include are there infinitely many pairs of primes differing by
2, and can every even number at least 4 be written as the sum of two primes).
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https://en.wikipedia.org/wiki/Euclid—Mullin sequence

Euclid—Mullin sequence

From Wikipedia, the free encyclopedia

The Euclid—Mullin sequence is an infinite sequence of distinct prime numbers, in which each element is the least prime factor
of one plus the product of all earlier elements. They are named after the ancient Greek mathematician Euclid, because their
definition relies on an idea in Euclid's proof that there are infinitely many prnimes, and after Albert A. Mullin, who asked about

the sequence in 1963 [1]
The first 51 elements of the sequence are

2,3, 7,.43,13,53, 5, 6221671, 38709183810571, 139, 2801, 11, 17, 5471, 52662739, 23003, 30693651606209, 37, 1741,
1313797957, 887, 71, 7127, 109, 23, 97, 159227, 643679794963466223081509857, 103, 1079990819, 9539,
3143065813, 29, 3847, 89, 19, 577, 223, 139703, 457, 9649, 61, 4357,
87991098722552272708281251793312351581099392851768893748012603709343, 107, 127, 3313,
227432689108589532754984915075774848386671439568260420754414940780761245893, 59, 31, 211___ (sequence
A000945& in the OEIS)

These are the only known elements as of September 2012. Finding the next one requires finding the least prime factor of a

335-digit number (which is known to be composite).
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The Riemann Zeta Function {(s)
https://en.wikipedia.org/wiki/Greek alphabet

Greek alphabet

From Wikipedia, the free encyclopedia

The Greek alphabet has been used to write the Greek language since the
late ninth or early eighth century BC B4l It is derived from the earlier
Phoenician alphabet [°] and was the first alphabetic script in history to have
distinct letters for vowels as well as consonants. In Archaic and early
Classical times, the Greek alphabet existed in many different local variants,
but, by the end of the fourth century BC, the Euclidean alphabet, with twenty-
four letters, ordered from alpha to omega, had become standard and it is this
version that i1s still used to write Greek today. These twenty-four letters (each
in uppercase and lowercase foorms)are: Aa,Bp, Ny, Ad, Eeg, 72, Hn, OO,
ILKK, AAMU, Nv, 2 Oo, 1, Pp, 20/, TT,Yu, @@ Xy, Wy and O
w.

(s)

There are many
different ways of writing
a Greek letter zeta; here
is how Powerpoint
displays it.

il



https://en.wikipedia.org/wiki/Greek_alphabet

The Riemann Zeta Function {(s)

We define this function as follows:

(s) = Z =1+ > P A
c S) = o 3s 4s 5s

and for us we will take s > 1 which ensures the infinite sum converges (for
those knowing more, s can be any complex number with real part at least 1).

Looking at this function, it is NOT clear why it is worth studying....



Integers and Primes

Most of us are familiar with the positive integers: 1, 2, 3,4, 5, ....

What is the next integer after 20237
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Integers and Primes

Most of us are familiar with the positive integers: 1, 2, 3,4, 5, ....
What is the next integer after 20237 2024

What is the next integer after 20247
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Integers and Primes

Most of us are familiar with the positive integers: 1, 2, 3,4, 5, ....
What is the next integer after 20237 2024

What is the next integer after 2024? 2025

As you have hopefully noticed, there is not much mystery in the spacings
between integers!
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Integers and Primes
What about the primes: 2, 3,5, 7, ....

What is the next prime after 20237
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Integers and Primes
What about the primes: 2, 3,5, 7, ....

What is the next prime after 20237 2027

What is the next prime after 20277
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Integers and Primes
What about the primes: 2, 3,5, 7, ....

What is the next prime after 20237 2027
What is the next prime after 20277 2029

What is the next prime after 20297
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Integers and Primes
What about the primes: 2, 3,5, 7, ....

What is the next prime after 20237 2027
What is the next prime after 20277 2029
What is the next prime after 20297 2039

As you have hopefully noticed, it is a lot harder to find the next prime than to
find the next integer!
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The Riemann Zeta Function {(s) and Primes

We defined the Riemann Zeta Function (for s > 1) by

(s) = z 1+ +1+1+1+
o 1 3 % 5
n=

and now we note a remarkable property; we also have
1\ 1\ 1\~ 1\~
S) = 1 — — =1 — — 1 — — 1 — —
) n ( PS‘) ( 25) ( 33) ( 53)

p prime

Two questions: (1) Why is this true, and (2) Why do we care?



The Riemann Zeta Function {(s) and Primes

=Y L - s ——) |

pT’IHlP ) )
or1+%+%+é+. (1—;) (1—%)_ (1—%)_
Why do we care?

The integers are completely understood. We even have a great formula for the
nthinteger!

The Riemann zeta function connects the integers and the primes.

Perhaps we can pass from knowledge about the integers to knowledge about
the primes....



The Riemann Zeta Function {(s) and Primes

c(s)—z ﬂ(l——) ,

n=1 pp‘rmw
or1+—+—+—+ (1—%) (1—%)_1(1—%)_1....

If we take s=1 the sum becomes the Harmonic Series, which we showed
diverges!

If there were only finitely many primes the product would 777,



The Riemann Zeta Function {(s) and Primes

“5)—2 ﬂ(l——) ,

pp‘rzme
0r1+—+—+—+ (1—%) (1—%)_1(1—é)_1....

If we take s=1 the sum becomes the Harmonic Series, which we showed
diverges!

If there were only finitely many primes the product would converge!

Thus there are infinitely many primes! (Advanced: can prove more, can prove
the sum of the reciprocals of the primes diverges.)



The Riemann Zeta Function ((s) and Primes

c(s)—z ﬂ(l——) ,

pprmw
or1+—+—+—+ (1—%) (l—%)_l(l—%)_l....

The followmg IS beyond the scope of this talk, but if we take s=2 then the sum is
n* / 6, which is an irrational number (this means we cannot write it as a ratio of
two integers).

If there were only finitely many primes then the product would be a finite product
of rational numbers, and hence rational! For example, if only 2 and 3 are prime:

[L0-5) =03 (-5) () () -3

p prime

le



The Riemann Zeta Function {(s) and Primes

4(s) = Z | (1——)_ ,

pp‘rzme
0r1+—+—+—+ (1—%) (1—%)_1(1—%)_1....

The followmg is beyond the scope of this talk, but if we take s=2 then the sum
is > / 6, which is an irrational number (this means we cannot write it as a

ratio of two integers).

If there were only finitely many primes then the product would be a finite
product of rational numbers, and hence rational!

Thus there are infinitely many primes!



The Riemann Zeta Function {(s) and Primes

c(s)—z 1_[(1——) ,

pT’l?HE‘

or1+—+—+—+ (1—%) (1—%)_1(1—%)_1....

We thus see the importance of the formula above, which connects sums over
integers with products over primes.

It allows us to pass from knowledge of integers to knowledge of primes.

We now prove it, or at least sketch the proof.



The Riemann Zeta Function {(s) and Primes

4(s) = Z [ | (1 - —)

pp*rmw
1 1 1 1 1 —1 1 —1
or 1 > T T T (1 B E) (1 B ;) (1 B E)

We need the Fundamental Theorem of Arithmetic: Every positive integer can

be written uniquely as a product of prime powers, where we write the primes
in increasing order, and we let the empty product be 1.

Thus 12 =2%2+3and 90 =2 = 3%+ 5, and there are no other ways to write these
numbers. If 1 were prime, we would lose uniqueness: 22 3 = 12020 « 22«3,



The Riemann Zeta Function {(s) and Primes

c(s)—z ﬂ(l——) ,

pp‘rzme
0r1+—+—+—+ (1—%) (1—%)_1(1—%)_1....

We will not give a fully rigorous argument.

What we do is consider a finite product, the product over the first P primes,
and show that as P gets larger and larger we get more and more of the terms
in the sum (once and only once), including all the terms up to P, and thus in
the limit as we take all the primes we get the sum.



The Riemann Zeta Function {(s) and Primes

c(s)—z ﬂ(l——) ,

pprmw
1 1\~ 1 1\~ 1!
or —+ —+ _+ —+ (1 —;) (1—;) (1—;)
We use the Geometﬂc Serles Formula to expand each factor.
1\~ 1 1 . . . .
(1 — j) = — and this is a Geometric Series with r = 1/p°.
P (1-7)
. > 3. 1 1\"1 1 1
Sincel+r+ri+r’+.=— wehave |l — — =1 +=+ =+
1-r p p p




The Riemann Zeta Function {(s) and Primes

C(S)—z ﬂ(l——) ,

pprmw

1+—+—+—+ (1—1) (1—1)_1(1—1)_1
Or 2.5' 35‘ 53 remon
We use the Geometrlc Serles Formula to expand each factor. If p = 2:

1\~ 1 1 . . . .
(1 — ;) = — and this is a Geometric Series with r = 1/p*.
(1-)
-1

- 2434 = ( _ i) _ R
Sincel+r+r?+r +...—1__r,wehave 1 = —1+25+45+85+

since (2%)° = 4, (23)° =85, ...



The Riemann Zeta Function {(s) and Primes

(s)—Z ﬂ(l——) ,

n=1 p p*rz:rne

or1+—+—+—+ (1—%) (1—%)_1(1—$)_1....
Let’s Iook at mu]tfpﬁ/fﬂg the factors
(-3 (-)" s i da e asie et

When we multiply out we get
1 1 1 1 1 1 1 1 1 1
l+—4+—-4+—-+—-+—-4+ +—+—+  +—+—+—+ +
2 3° 4 6° 8 12° 16 24° 275 32

We get exactly the numbers that have only 2 and 3 as prime factors....




My worse proof ever (this is the fixed version)

[rrationality measure and lower bounds for 7(z)
Irrationality measure and lower bounds for
\(\pi(x)\) (with David Burt, Sam Donow, Matthew

Schiffman and Ben Wieland), The Pi Mu Epsilon David Burt Sam Donow Steven J. Miller*
Journal (14 (2017), no. 7, 421-429) pdf Matthew Schiffman Ben Wieland

August 10, 2017

Abstract

In this note we show how the irrationality measure of ((s) = 7°/6
can be used to obtain explicit lower bounds for 7(z). We analyze the key
ingredients of the proof of the finiteness of the irrationality measure, and
show how to obtain good lower bounds for 7(z) from these arguments as
well. While versions of some of the results here have been carried out
by other authors, our arguments are more elementary and yield a lower
bound of order z/log z as a natural boundary.


http://www.pme-math.org/journal/overview.html
https://web.williams.edu/Mathematics/sjmiller/public_html/math/papers/LowerBoundCardPrimes50.pdf

Math 383: Complex Analysis: Fall 23 (Williams)
Professor Steven J Miller: siml@williams.edu

Homepage:
https://web.williams.edu/Mathematics/sjmiller/public html/383Fa23/

Lecture 24: 11-01-23: https://youtu.be/0OXjpgP9F5uw

*Stirling’s formula, evaluating and estimating sums
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For s > 0 (or actually %(s) > 0). the Gamma function I'(s) 1s

o0 o0 d
['(s) := / e *r* ldr = / e T .
Jo Jo T

Existence of ['(s)
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The Gamma function. The Gamma function ['(s) 1s

P [(s) = /:O e, 0> 0. X 5
N=~( 7 7/() = g e Az~ ==
pezn [(2): S, xe ™ dx iy = |
- < X
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) -% S‘o/( = "‘U/O ‘—g “
_ e Y X d
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Functional equation of ['(s): The Gamma function satisfies
T(s+1) = sI(s). [7(//> — T
4
This allows us to extend the Gamma function to all s. We call the extension the
Gamma function as well, and it’s well-defined and finite for all s save the negative ( 1 ) [ — ﬁ
integers and zero. — .

ed >
/M/YI o o Y ( p
1(z L
2 = 7 < — /2 ~t
LU= XU so e 1 u-l/z%u - > ‘U *dy
d((_(_s_ Yézx 04:/ 0(><: E =
5(/)7: Z—M/z et : — [ — (/2 -1l C
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M opocs M/ — o i
I A 14 "//LZL (A = Z € y(l/( - Z y
= o ALl A Moo= /L)
k4 waleas THRLTLE Tp e =)= s



The cosecant identity. If s 1s not an integer. then

[(s)[(1 —s) = mese(ms) = Sinag).
(1/2) = /7
,%1/2/
1 Ganders
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The Gamma function. The Gamma function ['(s) 1s

K\

4z _ —r Js—l e :
ﬂ(n ol ’i,, ['(s) /0 e "z Tdr, R(s)>0. K

Stirling’s formula: As n — oo, we have

n! =~ n"e "V2mn:

by this we mean

_ n!
lim = 1.

n—oo nlte~M\/2mn

More precisely, we have the following series expansion:

] 1 139
= n"eT"V2mn |1+ — a 30 )
n n € mn ( + 12n + 288n2 51840n )




Crude upper/lower bounds.
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Note (n+1)!/n! = n+1; let’s see what Stirling gives:
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Integral Test and the Poor Mathematician’s Stirling A /)

Poor man’s Stirling. Let n > 3 be a positive mteger. Then é/l'lc )

n mn

ne".e < nl < n"e . en.

logP = logn! = logl +log2+---+logn

I
=}
oS
-
=}
0=
Lo
&
|/
=}
o=
e
A
t:..-""‘:
T
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o
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-
=

,- + 6 8 10 1 - 6 8 10

Lower and upper bound for log n! when n = 10.



Stirling’s Formula: Lower bound from Integral Test: 6'6655 /6 éfé ) ‘= (-legb — £ - ’.é‘ > At -/
({: (cyéc “ 6) = /cgzL

n n+1

(tlogt —t)

i=1 =2

nlogn—n+1 < logn! < (n+1)log(n+1)—(n+1)—(2log2 —2).

IA
IA

log n! (tlogt —t)

We’ll study the lower bound first. From Deg. 1 //45/76/»7 74
nlogn —n+1 < logn!, | N
we find after exponentiating that \Wf/
enlogn—n+l _ ymo—n_, o o1 Drn

7!
%l —+ /‘74 = /a}o’)//L°
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Euler-Maclaurin formula
From Wikipedia, the free encyclopedia: https://en.wikipedia.org/wiki/Euler%E2%80%93Maclaurin_formula

If m and n are natural numbers and f{x) is a real or complex valued continuous function for real numbers x in the interval [m,n], then the integral

- /: f(z)dz

can be approximated by the sum (or vice versa)
S=fm+1)+---+ f(n—1)+ f(n)

(see rectangle method). The Euler-Maclaurin formula provides expressions for the difference between the sum and the integral in terms of the higher derivatives f(k)(x) evaluated at the
endpoints of the interval, that is to say x =m and x = n.

Explicitly, for p a positive integer and a function f{x) that is p times continuously differentiable on the interval [m,n], we have

§-1=3 B4 (10m) - f6D(m)) + By,

k=1
where By is the kth Bernoulli number (with B = %) and Rp is an error term which depends on n, m, p, and f'and is usually small for suitable values of p.

The formula is often written with the subscript taking only even values, since the odd Bernoulli numbers are zero except for By. In this case we havel'll2]

316 = [ o) ao+ 22 Z P (D) - V) + By,

or alternatively

.. ” n m |-§J
Z f(i)=/m f(z)dz + f(n) — - I )+Z s (f(2k 1 (n) — f(2k-—l)(m))+Rp_

i=m+1 k=1
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Stirling’s Formula: Estimates from Dyadic Decompositions

So = {1,2,....n} = {1.2,...,n/2} U {?1/2+1 n/2+2,.
W
poctect £(2)72  Pottis L 2"

n! ~n"e="\/2mn
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18 Stirling’s Formula 493

A IS TOM R E A STULL SUIDE l18.1 Stirling’s Formula and Probabilitied 405
|13.2 Stirling’s Formula and Convergence of Seriesj 497
18.3 From Stirling to the Central Limit Theor 408

s Stigli 502

18,5 Flementary Approaches towards Stirling’s Formulal 505
[18.5.1 Dvadic Decompositiond 505
18.52 Lower bounds towards Stirling. ] 507
[18.5.3 Lower bounds towards Stirling, II 500
18.5.4 Lower bounds towards Stirling. T 510

l18.6 Stationary Phase and Stirling 511
imi tigli 513

13.8 Additional Problemd 514

Extra credit: Can you expand on the dyadic interval arguments / the
Farmer Brown idea to get in the limit, at least for a sequence of n? In
other words, can you show that it converges to n"/e™ times something
small relative to the main term?

Additionally, can you prove the claims from class about the sums of
powers? In particular, perturb and prove that the sum of the k-th
powers is a polynomial of degree k+1 with constant term 0 and leading
term n*1 / (k+1)? Can you use the telescoping method and induction to
show that the sum is a polynomial?

Looks like some of these results, with telescoping, are known: see
https://www.jstor.org/stable/pdf/3026439.pdf

STEVEN J. MILLER
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As this 1s such an important concept, let's work slowly and carefully through its
application here. Our goal is to bound n! = n(n — 1)---2 - 1. As each factor is at
least 1 and at most n, we start with the trivial bound

Notice the enormous spread between our upper and lower bounds. The problem i1s
our set Iy = {1,2.....n}is very large as n — oc, and thus it is horrible trying
to find one upper bound for each factor, and one lower bound for each. The idea
behind dyadic decompositions is to break this large interval into smaller ones, where
the bounds are better, then put them together.

Explicitly, let’s split our set in half:

So = {1,2,..., n} = {1,2,....n/2} U {n/24+1,n/2+2,....,n} = S1US.
In the first inferval, each term 1s at least 1 and at most n/2, and thus we obtam
12 < 1.2.-.(nf2-1)(n/2) < (n/2)"2

Similarly in the second interval each term is at least n/2 + 1, though we’ll use n /2
as a lower bound as that makes the algebra cleaner, and at most n. Thus we find

(n/2)*? < (n/24+1)(n/242)---(n—1n < n™2

Notice that we're still just using the trivial 1dea of bounding each term by the
smallest or largest; the gain comes from the fact that the sets 5; and &5 are each half
the size of the oniginal set &;. Thus the upper and lower bounds are much better, as
these sets have less variation Multiplying the two lower (respectively, upper) bounds
together gives a lower (respectively, upper) bound for n!:

1" (n/2)™? < [1-2---(n/2)] [(n/2 4+ 1)(n/2+2)---n] € (n/2)"2n"/2,

which simplifies to
a2 < nl < atVa T
Notice how much better this 15 than our original trnivial bound of 1 < n! < n™;

the upper bound 15 very close (we have a ﬁ_n mstead of an e~ ™/2wn), while the
lower bound i3 significantly closer.

We now use the advice from shampoo: lather, rinse, repeat. We can break &
and &; into two smaller intervals. argue as above, and then break those new intervals
further (though in practice we’'ll do something slightly different). We do all this in the
next subsection; our purpose here was to introduce the method slowly and describe
why it works so well. Brieflv, the success 15 from a delicate balancing act. If we
make things too small, there 1s no variation and no approximation — the numbers are
what they are; if we have things too large, there is too much vanation and the bounds
are trivial. We need to find a happv medinm between the two.
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18.5.2 Lower bounds towards Stirling, I

We continue our elementary attack on n!. and build on the dvadic decomposition
idea from the previous subsection. Instead of breaking each smaller set in half what
we will do is just break the earlier set (the one with smaller numbers). We thus end
up with sets of different size, getting a chain of sets where each is half the size of the
previous.

Explicitly, we study the factors of n! in the intervals [y = (n/2.n|, I =
(n/4,n/2. 13 = (n/8 n/d]..... Iy = (1,2). Note on I that each of the n/2*

factors is at least n/2". Thus

n!

I Il
—= =
™
= 0
*--._.-;!I 3

2

/A 4n /8 4n/2¥ g —nf2 g —n/ig—n/8 (gl‘f']—n;-p_-*'_

Let’s look at each factor above slowly and carefully. Note the powers of n almost
sum to n; they would if we just add n /2" — 1 (since we’re assuming n — 2). Re-
member, though, that n — 2% there is thus no harm in multiplying by (n/2V)/2"
as this is just 1' (multiplying by one is a powerful technique: see §A 17]for more
applications of this method). We now have n! is greater than

”n_.-'i+n_.-' 1+'I't_.-"3+---+n_l."-'_:l""r+nll.-2-'\'2_1-3_,"24 —n,-"-ig—n.-"ﬂ e s (QJ“"J—TI_-":?N (Q]‘_ﬂ;iﬁr )
Thus the n-terms gives n™. What of the sum of the powers of 27 That’s just

q—?‘!.-":zd—ﬂ..'"lﬁ—]'l_."ﬂ . {21”}—1’2,-“1‘” . 2—!1_,-"2”

9-
o—n(T{ g k/2%)g—2" 2%
o

=

> (T k2% ) g1
1

o —In—-1 _ ~4-TN

= 2 = 94 .

To see this, we use the following wonderful identify:

ok _ T
Zkr R EESEE

k=0

n[1;2+f_=;»t+3,x3+---N,ﬂ_=”}2-f_=";2”

for a proof, see 11.1] (on differentiating identities involving the geometric series
formula).

Putting everything together, we find
= %ﬂnri_ﬂ.
which compares favorably to the truth, which is n™e~". It's definitelv much better
than our first lower bound of n™/?2-7/2

!
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7

As with many things in life, we can get a better result if we're willing
more work. For example. consider the interval [y = (n/2.n|. We canj
at the beginning and theend: nandn/2+1,n—landn/2+2 n—2 anc
so on until 3n /4 and 3n /4 + 1; for example, if we have the interval (8
pairs are: (16.9), (15,10}, (14.11). and (13,12). We now use one of the ¢
problems from caleulus: if we want to maxinuze ry given that r + y -
maximum occurs when r = y = L /2. This is frequently referred to a
Bob (or Brown) problem, and 1s given the riveting interpretation that if
fo find the rectangular pen that encloses the maximum area for his o
given that the perimeter is L, then the answer is a square pen. Thus of
the one that has the largest product is 3n/4 with 3n /4 + 1, and the sma
n/2 + 1. which has a product exceeding n” /2. We therefore decreast
of all elements in I; by replacing each product with /n2/2 = n//2.
thought gives us that

n/2 .j“ll
n.tﬂ_]_}...g}—n._.(ﬂ+1)_n = (i) — (ﬂ;fr:

|4

]
4 V2 <)
anice improvement over (1) 21%/2 and this didn’t require too much add
We now do a similar analysis on [s; again the worst case is from we pan iy s
and n/4 + 1 which has a product exceeding n? /8. Arguing as before, we find
'4

H . (%)n; ) (%)n;q ) (%ﬁ)m |

e d =
At this point hopefully the pattern 1s becoming clear. We have almost exactly
what we had before; the only difference 15 that we have a n+/2 in the numerator each
time instead of just an n. This leads to very minor changes in the algebra, and we
find

1 1
n! = 5{?1\!@]”4'” — 3?1”{2»@,1_”.

Notice how close we are to n"e ", as 2,/2 == 2.82843 which is just a shade larger
than e == 271828 It's amazing how close our analysis has brought us to Stirling;
were within striking distance of it!

We end this section on elementary questions with a few things for vou to try.

* Can vou modify the above argument to get a reasonably good upper bound for
n!?

7

i i

o After reading the above argument, yvou should be wondering exactly how far
can we push things. What if we didn’t do a dvadic decomposition; what if
instead we did say a triadic: (2n/3,n|. (4n/9,2n/3], .... Maybe powers of
2 are nice, so perhaps instead of thirds we should do fourths? Or perhaps fix
an r and look at (rn, n]._ (r'zn__ rn]__ ... for some universal constant r. Using
this and the pairing method described above, what is the largest lower bound
attainable. In other words, what value of r maximizes the lower bound for the
product.

Our proof in this section was almost entirely elementary. We used calculus in
one step: we needed to know that 3~ kz* equals =/(1 — x)?. Fortunately it’s
possible to prove this result without resorfing to calculus. All we need is our work
on memoryless processes from the basketball game of §1.7 I'll outline the argument
in Exercize[I18.8.17
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18.5.3 Lower bounds towards Stirling, II

We continue seeing just how far we can push elementary arguments. Of course, in
some sense there 15 no need to do this; there are more powerful approaches that yvield
better results with less work. As this 1s true, we're left with the natural. nagging
question: wiy spend time reading this?

There are several reasons for giving these arguments. Even though they re weaker
than what we can prove, they need less machinery. To prove Stirling’s formula, or
good bounds towards it. requires results from calculus, real and complex analysis;
it’s nice to see what we can do just from basic properties of the integers. Second,
there are numerous problems where we just need some simple bound. By carefully
going through these pages, vou'll get a sense of how to generate such elementary
bounds, which we hope will help vou in something later in life.

Again, the rest of the material in this subsection is advanced and not needed in
the rest of the book. You may safely skip it, but I urge you to ar least skim these
arguments.

We now generalize our argument showing that n! > (n,/4)" forn = 2V to any
integer ni: in other words. it was harmless assuming n had the special form n = 2°V.
Suppose 2% < n < 2! Then we can write n = 2% + m for some positive m < 2%,
and use our previous result to conclude

n!l = n-(n—1)---(2¥4+1)- (2% = (25y™. (2F) = (2Fy™. ﬂgkf"lfr-

QOur goal, then, is to prove that this quantity is greater than (n/4)". Here’s one
possible method: write
gkm ok i0)2* _ (m/4),

If o > n, then we're done. Taking logarithms, we find

k-m-log2+ 2% -log(2)(k — 2) = a(log(n) — 21log 2).
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Solving fof o gives

k-m-log2+ 2% .log(2)(k — 2)

¢ log(n) — 2log2

Remember, we want fo show that o > n. Substituting in our prior expression n =
2% + m. this is equivalent to showing

E-m-log2+ 2% . log(2)(k — 2)

k
log(2*¥ +m) — 2log2 > 3 4m.

So long as 2¥ + m > 4. the denominator is positive, so we may multiply through
without altering the mequality:

log(2)(k(2% + m) — 251) = (2% 4+ m)log(2* + m) — log(2)2%*! — 2mlog 2.
With a bit of algebra, we can turn this into a nicer expression:

log(2¥)(2¥ + m) > (2 + m)(log(2* + m) — 2mlog2
2mlog2 > (2% +m)log(1l + m/2%)
-

21og 2 (1+ 2% /m)log(1 + m,/2%).

Let’s write t = m/2%. Then showing that & > n is equivalent to showing
2log2 = (14 1/t)log(l + )

fort € (0,1). Why (0,1)? Since we know 0 < m < 2% then 0 < m /2% < 1,
so {15 always between 0 and 1. While we're only really interested in whether this
equation holds when ¢ is of the form m /2% if we can prove it for all ¢ in (0.1),
then it automatically holds for the special values we care about. Letting f(f) =
(1 +1/t)log(1 +t), we see f'{t) = (t — log(1 + t))/t*. which is positive for all
t = 0 (fun exercise: show that the limit as ¢ approaches 0 of f'(t) is 1/2). Since
f(1) = 2log 2, we see that f(t) < 2log2 forall ¢ < (0, 1). Therefore & > n, so
n! = (n/4)" for all integer n.
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18.5.4 Lower bounds towards Stirling, ITI

Again, this subsection may safely be skipped; it’s the last in our chain of seeing just
how far elementary arguments can be pushed. Reading this is a great way fo see how
to do such arguments, and if you continue in probability and mathematics there is a
good chance you 'll have fo argue along these lines someday.

We've given a few proofs now showing that n! > (n/4)" for any integer n.
However, we know that Stirling’s formula tells us that n! > (n/e)™. Why have we
been messing around with 4, then, and where does ¢ come into play? The following
sketch doesn’t prove that n! = (n/e)™. but hints suggestively that ¢ might come
enter info our equations.

In our previous arguments we ve taken n and then broken the number hine up into
the following intervals: {[n,n/2), [n/2,n/4),...}. The issue with this approach is
that [n,n/2) is a pretty big interval, so we lose a fair amount of information by
approximating n - (n — 1)--- & by (n/2)™ 2. It would be better if we could use a

smaller interval. Therefore, let’s think about using some ratio v < 1, and suppose
n = (1/r)*. We would like to divide the number line into {[n,rn), [rn,r*n),...}.
although the problem we run into is that ¥*n isn’t always going to be an integer for
every integer £ < k. Putting that issue aside for now (this is why this isn't a proaf?),
let’s proceed as we typically do: having broken up the number line. we want to say
that ni! is greater than the product of the smallest numbers in each interval raised to
the number of integers in that interval:

:r'i-l:l—f']ft__ ke rf-lil—rin

‘ﬂ_:l

nl = [rn]l:l—f']ft[r'lﬂ]r-{l—r}ﬂ_[ 3

) “r

Since r*+™n < 1 for all m > 1. we can extend this product to infinity-

nl = [r?ﬂ[I—r]ntrinilf'-[l—f']ﬂ . tr:iﬂ;lr!-[] —-rin “‘k . T'tilrk Lil—rin .

While this lowers our value, it shouldn’t change it too much. The reason is that
lim, ,p " = 1. Let’s simplify this a bit. Looking at the n terms. we have

_ L P T
ﬂ;[] r4r—ro4r In _ gn

because the sum telescopes. Looking at the r terms we see

n{l—rii14+2r4+3ri4+...) n{l—ry/rir+2r? $3ri 4. )

prl1-r) | B
il—ryr-r/il— 2
_ f,.ntl ryfr-rfil—r)
— f,.n..-'[l—r_l_.
where in the third step we use the identity
= o)
Z C - rJ

k=1

remember we used this identity earlier as well! Combining the two terms, we have
n! > (r/U-Tig)yn,

To make this inequality as strong as possible, we want to find the largest possible
value of r'/1'=7) for r £ (0, 1). Substituting = = 1/(1 — ). this becomes: what is
the limit as © — oo of (1 — 1/2)77 Hopefully you've encountered this limit before;
the first exposure to it is often from continuously compounded interest. It’s just e~
(see §B.3). There are two definitions of e, one as a series and one as this limit.
Thus we see that this argument gives a heuristic proof (remember we only looked at
special n that were a power of r) that n! = (n/e)™.
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Plan for the day: Lecture 25: November 6, 2023:

e Continuation of Zeta(s)

* Theta Functions

* G@Gregory-Leibniz Formula
* [ntro to Fourier Series:

General items.
* Find the source of “miracles”
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manuscript/

German version:
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denn das Integral [dlogé&(t) positiv um den"Inbegriﬂ' der Werthe von t er-
streckt, deren imaginarer Theil zwischen %z und —%i und deren reeller Theil

zwischen 0 und 7T liegt, ist (bis auf einen Bruchtheil von der Ordnung der
Grosse %) gleich (T log 21 - T) i; dieses Integral aber ist gleich der Anzahl
m

der in diesem Gebiet liegenden Wurzeln von £(t) = 0, multiplicirt mit 2mi.
Man findet nun in der That etwa so viel reelle Wurzeln innerhalb dieser Gren-
zen, und es ist sehr wahrscheinlich, dass alle Wurzeln reell sind. Hiervon ware
allerdings ein strenger Beweis zu wiinschen; ich habe indess die Aufsuchung
desselben nach einigen fliichtigen vergeblichen Versuchen vorlaufig bei Sei-
te gelassen, da er fiir den niachsten Zweck meiner Untersuchung entbehrlich
schien.



because the integral [ dlog&(t), taken in a positive sense around the region
consisting of the values of ¢ whose imaginary parts lie between %i and —%i

and whose real parts lie between () and 7', is (up to a fraction of the order
T
of magnitude of the quantity —}-) equal to (T log% - T) i; this integral

however is equal to the number of roots of £(t) = 0 lying within in this
region, multiplied by 27i. One now finds indeed approximately this number
of real roots within these limits, and it is very probable that all roots are
real. Certainly one would wish for a stricter proof here; I have meanwhile
temporarily put aside the search for this after some fleeting futile attempts,
as it appears unnecessary for the next objective of my investigation.



Exercise 3.1.9. Use the product expansion to prove ((s) # 0 for Rs > 1, this
important property is not at all obvious from the series expansion. While it is clear
from the series expansion that ((s) # 0 for real s > 1, what happens for complar

$ is not apparent. , J)= £ 75 = T (-*/‘) Ke(s) >/
P

Prove sum converges without calculus! Dyadics!
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The following theorem 1s one of the most important theorems i mathematics:

Theorem 3.1.20 (Analytic Continuation of the Completed Zeta Function). Define
the completed zeta function by

() = —%s(s— Hr (g) TT_%QIS_); (3.17)

&(s), originally defined for s > 1, has an analvtic continuation to an entire
Junction and satisfies the functional equation £(s) = £(1 — s).
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Do you believe in miracles? (Or: Do you believe in unlikelihoods?)
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n(s) =) ———=(1-2""")((s)

n=1

The above is the Dirichlet eta function. It differs from the Riemann zeta function by the presence of (-1) raised to
the n-th power, so it alternates in sign (the zeta function has all of its terms +1, while here we alternate +1, -1, ...). It
IS amazing the consequences this has. The series for the zeta function converges if Re(s) > 1, but it does not
converge if Re(s) > 0 for all such s; for example, if s = %2 we have the sum of the reciprocals of the square-roots of
integers, which clearly diverges!

The eta function converges for all Re(s) > 0 — prove this! The following summation formulas may be useful. These
are key tools of analytic number theorists, and are essentially discrete versions of integration by parts (in a shocker,
called partial summation). In the argument below A n=a M+a {m+1}+ ... +a n.

Lemma 2.1 (Partial Summation: Discrete Version)

N N=1
Z anby, = Anby — Apr—1bpr + Z ;"!”IIJ'J;., — bpi1)
MM A

Lemma 2.2 (Abel’s Summation Formula - Integral Version) Let h(z) be a continuously

differentiable function. Let A(x) =5 . a,. Then

Z ahin) = Alz)h(x) — ] Al(u)h' (u)du
1

n<.r



LECTURE 27

Class on Wednesday will be asynchronous. Please watch the following two videos (we may have covered a good amount of the
first in class on Monday)

«2021: Lecture 24: 11/12/21: Gregory-Leibniz Formula, Dirichlet L-functions, proof of RH (not!),
Duality: https://youtu.be/K8RhtDyts7s (slides)

«2021: Lecture 25: 11/15/21: Introduction to Fourier Analysis, Approximations to the

Identity: https://youtu.be/YiFtCBbYe | (slides)



https://youtu.be/K8RhtDyts7s
https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa23/lectures/383Fa21_lecture24.pdf
https://youtu.be/YiFtCBbYe_I
https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa23/lectures/383Fa21_lecture25.pdf

Math 383: Complex Analysis: Fall 23 (Williams)
Professor Steven J Miller: siml@williams.edu

Homepage:
https://web.williams.edu/Mathematics/sjmiller/public html/383Fa23/

Lecture 28: 11-10-23: https://youtu.be/gfFtYYb4xPQO

*Number Theory and Complex Analysis

See also:
L-Functions and Random Matrix Theory:
eIntroductory lectures on Random Matrix Theory and L-functions:
Part | (Classical RMT, Intro L-fns, Dirichlet): http://youtu.be/2PuUbk6gUMM (slides: part 1)
Part 11 (Convolving families, cusp forms: slides here): http://youtu.be/vJz6W24tDik  (slides part 2)
«From the Manhattan Project to Elliptic Curves: MASON IV (3/7/20). pdf (video here: https://youtu.be/p15X3ERNVLS)
eIntroduction to L-functions for SMALL students:
2021: https://web.williams.edu/Mathematics/similler/public_html/math/talks/intronumbertheory/



mailto:sjm1@williams.edu
https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa23/
https://youtu.be/gfFtYYb4xPQ
http://youtu.be/2PuUbk6gUMM
https://web.williams.edu/Mathematics/sjmiller/public_html/math/talks/Michigan2012Part1.pdf
http://youtu.be/vJz6W24tDik
https://web.williams.edu/Mathematics/sjmiller/public_html/math/talks/Michigan2012Part2.pdf
https://web.williams.edu/Mathematics/sjmiller/public_html/math/talks/ManhattanToEC_Colloq_MASONIV2020.pdf
https://youtu.be/p15X3ERNvLs
https://web.williams.edu/Mathematics/sjmiller/public_html/math/talks/intronumbertheory/

Today’s lecture was a trimmed / adjusted version of the talk below. For more details and the slides, see below
(as well as the links on the previous slide to more related talks). NOTE: The pages following this are the
comments I made during class on the details of the contour integrals, finding the residues and contributions....
You are strongly urged to try to write things down with all the details, or read the book, and if you have
questions reach out to me.

It is also a great exercise to show how sum_{p < x} log p ~ x implies sum_{p < x} 1 ~ x/log(x).

Part | (Classical RMT, Intro L-fns, Dirichlet): http://youtu.be/2PuUbk6gUMM ( slides: part 1)

See the link to the slides above for most of the slides from today’s lecture; there were a few comments on the
final slides discussed, which follow.

Note: in case the hyperlink is not working, here is the link:
https://web.williams.edu/Mathematics/similler/public _html/math/talks/Michigan2012Part1.pdf



http://youtu.be/2PuUbk6gUMM
https://web.williams.edu/Mathematics/sjmiller/public_html/math/talks/Michigan2012Part1.pdf
https://web.williams.edu/Mathematics/sjmiller/public_html/math/talks/Michigan2012Part1.pdf
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Math 383: Complex Analysis: Fall ‘23 (Williams)
Professor Steven J Miller: siml@williams.edu

Homepage:
https://web.williams.edu/Mathematics/similler/public _html|/383Fa23/

Lecture 29: 11-10-23: https://youtu.be/8TIW3bFroXE

*Number Theory and Complex Analysis, Introduction to Fourier Analysis

See also:
L-Functions and Random Matrix Theory:
eIntroductory lectures on Random Matrix Theory and L-functions:
Part | (Classical RMT, Intro L-fns, Dirichlet): http://youtu.be/2PuUbk6gUMM (slides: part 1)
Part 11 (Convolving families, cusp forms: slides here): http://youtu.be/vJz6W24tDik  (slides part 2)
«From the Manhattan Project to Elliptic Curves: MASON IV (3/7/20). pdf (video here: https://youtu.be/p15X3ERNVLS)
eIntroduction to L-functions for SMALL students:
2021: https://web.williams.edu/Mathematics/sjmiller/public_html/math/talks/intronumbertheory/



mailto:sjm1@williams.edu
https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa23/
https://youtu.be/8TIW3bFr6XE
http://youtu.be/2PuUbk6gUMM
https://web.williams.edu/Mathematics/sjmiller/public_html/math/talks/Michigan2012Part1.pdf
http://youtu.be/vJz6W24tDik
https://web.williams.edu/Mathematics/sjmiller/public_html/math/talks/Michigan2012Part2.pdf
https://web.williams.edu/Mathematics/sjmiller/public_html/math/talks/ManhattanToEC_Colloq_MASONIV2020.pdf
https://youtu.be/p15X3ERNvLs
https://web.williams.edu/Mathematics/sjmiller/public_html/math/talks/intronumbertheory/

Explicit Formula (Contour Integration)

/ d d —1
i((:)) —  —oglogd(s) = —£|09];[(1 —P)

d —s
= E;IOQ (1—p7)

logp - p~—° log p
= — + Good(s).
; 1 - p—s ; pS ( )

Contour Integration:

¢'(S) s
/ (s) »(s)ds vs ;Iogpfqﬁ(s)p as.




Explicit Formula (Contour Integration)

/ d d —1
i((;) — —oclog((s) = dslog];[U—ps)

d —s
_ E;Iu:::;g (1 —p~%)

logp - p° log
— — - Good(s).
321992 2" _ 57198 . Gooa(s).

5:f—6 1

Contour Integration (see Fourier Transform arising):

/ (s) »(s)ds vs ZIogp/@(s)e—”'ngae—”'”’gpd&
p

¢(s)
| Knowledge of zeros gives info on coefficients.




Explicit Formula: Examples

Riemann Zeta Function: Let ), denote the sum over the
zeros of {(s) in the critical strip, g an even Schwartz

function of compact support and ¢(r) = [~_g(u)e™du.
Then
I . 2logp
Zqﬁ(f}/ﬁ’) — 2¢ E >..-f D pkfz g(klogp)
p p k=1

1/~ 1 [Z+2) 1
+—/m (iy - —— 2Iogw)¢5(y)dy.



Explicit Formula: Examples

Dirichlet L-functions: Let h be an even Schwartz function
and L(s, x) = > _, x(n)/n® a Dirichlet L-function from a
non-trivial character v with conductor m and zeros

p = % + ivy,; if the Generalized Riemann Hypothesis is

true then v € R. Then L/é,ﬂﬁr {7%
| T > 7
> (/S [ ey

.

logp 4/ logp x(p)
22 log(m/ﬂ)h (log(m/w)) p'/2

logp - logp  \ x*(p) | 1
_2¥Iog(m/¢r)h (Zlog(m/:rr)) p 'o(logm)'




Theorem 3.1.20 (Analytic Continuation of the Completed Zeta Function). Define
the completed zeta function by

1 S -
§(s) = 5s(s— D (5) 7= 5¢(s)
£(s), originally defined for Rs > 1, has an analvtic continuation to an entire
function and satisfies the functional equation £(s) = £(1 — s).

Do you believe in miracles? (Or: Do you believe in unlikelihoods?)

9(17) = f e—rrn2:r w(I) — 9(;1‘)2—1 9(.1,‘—1) = 1‘%9(.’17) e i || w(l‘

Nn=-—oc




itroduction to Fourier Series | -

https://www3.nd.edu/~powers/ame.20231/fourier1878.pdf

AN(X}J%ICAL THEORY OF HEAT

BY A
Oo”o\ \%"

L Bopr-t JOSEPH ___EOUBIEB.

TRANSLATED, WITH NOTES,
" .

~ ALEXANDER FREEMAN, MA,

FELLOW OF ST JONN'S COLLEOE, CAMBRIDOE,

EDITED FOR THR SYNDICS OF THE UNIVERSITY PRESS

Jean-Baptiste Joseph Fourier Cambridge :
AT THE UNIVERSITY PRESS.

LONDON: CAMBRIDGE WAREHOUSE, 17, PATERNOSTER ROW.
CAMBRIDGE: DEIGHTON, BELL, AND (0,

21 March 1768 Auxerre,Burgundy,Kingdom of France (now in Yonne, France) to s X p—“—
16 May 1830 Paris,Kingdom of France

[4U Rights reserved.]


https://www3.nd.edu/~powers/ame.20231/fourier1878.pdf
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Exercise 11.1.3. Let f, g and h be continuous functions on |0, 1], and a,b € C.
Prove

1. (f,f) >0, and equals O if and only if [ is identically zero,
2. (f,9) =9, f);
3. (af +bg,h)=alf h)+b(g,h)

Definition 11.1.5 (Orthogonal). Two continuous functions on |0, 1] are orthogonal

(or perpendicular) if their inner product equals zero. f foo < £
‘§"‘6 T{m- MX A x @ §{fb ® o dh—
For us, we use: v | e
en(r) = p2mine (em(z), en(x)) = {l if m :.-n.. f;te}.‘&fe oo
W Q— lj t ,X 0 otherwise N s



Definition 11.1.8 (Periodic). A function f(x) is periodic with period a if for all
reR, flr+a)=f(x).
Let [ be continuous and periodic on R with period one. Define the n™ Fourier
coefficient f(n) of f to be

LN X =N

1
2Rz f(n) = (f(z),e,(z)) = /{; f(x)e=2mne s (11.13)

Returning to the intuition of R™, we can think of the e, (x)’s as an infinite set
of perpendicular unit directions. The above 1s simply the projection of f in the

direction of e, (). Often one writes a,, for f(n).
Exercise 11.2.1. Show
(f(x) = f(n)en(x), en(x)) = 0. (11.14)

This agrees with our intuition: after removing the projection in a certain direction,
what is left is perpendicular to that direction. 335



The N'™ partial Fourier series of f is \ Vr
P f ZP e cm’, <Sd \ ;ﬂﬁ)PJK)

N
. . ™ . ~ 1 .
Sn(z) = ) f(nen(2). fn) = (f@).ent@) = [ fl@)emrda
n=—N v
Exercise 11.2.2. Prove (@S me. J7¢5 perestsc) _ TN oy

|f(m( 3 Si\ \ § ©
ol

I. {f(x)— Sn(x),e,(x)) =0if|n| < N.

2. |f(n)| < fgl f(x)|de. = (le Li=ne

o ]

L

‘ Z
. Bessel’s Inequality: if (f, f) < oothen >~ __ |f('1’1.)|2 < (f, )= ]l-?“i ﬂ'gw)‘&

E

4. Riemann-Lebesgue Lemma: if (f.f) < oo then lim),|_.o f(n) = 0 (this

| 1 | at 46
holds for more general [ it suffices that [, | f(x)|dz < o). yle s an V8
Gt S bl a7/
S feo e doms | T 1 et &
5. Assume f is differentiable k times; integrating by parts, show |f(n)| < T \Bem) -
and the constant depends only on [ and its first k derivatives. \% f

336



Give examples of L1 and L™2: when is one contained in the other?

O,
[6:1] o T L) e L)
Ay = L !
\go %! (- ° I S[#{x)/ze/)( <<
[aE ik r RADrz o
G G </ C (i’ N
Congrote Lor0= Vs H—(x)l £ (£ +/
| i€ [§rcl ok
£0a € L, (C"’(]> w ga I3 (4l scc o0 ‘uf li/; De, 161% 71 14/
[
L 169 & L, (Con) ac () [ft91¥lx=ar  Hoace \(:@(ﬁ(y(kég'(((%(zﬂ\/x
L( /@l']) § LZ_(CO.O) CM\’;

o VZ; C‘bﬂ’#f(ﬂa(/ F(_R(/"
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We assume the reader 1s familiar with the basics of probability functions (see Chap- Pb
ter 8, especially §8.2.3). A sequence Aj(x), Aa(x), A3(x), ... of functions is an

approximation to the identity on [0, 1] if ( f
1. forall zand N, Ay (x) > 0: =
2. forall N. fol An(x)dx = 1: | N
|

3. foralld. 0 < § < % My oo f;_é An(z)dr = 0.

Similar definitions hold with [0, 1] replaced by other intervals: it 1s often more

convenient to work on [—%} %] replacing the third condition with
: 1
lim / Ay(x)dr = 0 1if 0<0 < —. (11.17)

Aearn £ 52 foppertey DISTR B TI0n

/ _ ot &
et Ap(o= = = VSWx Ten

8
Nocsrs



Math 383: Complex Analysis: Fall 23 (Williams)
Professor Steven J Miller: siml@williams.edu

Homepage:
https://web.williams.edu/Mathematics/sjmiller/public html/383Fa23/

Lecture 30: 11-15-23: https://youtu.be/sGUVKUYhEYO0

*Fourier Analysis Il: Convergence Theorems

Material taken from my book “Invitation to Modern Number Theory” (joint with Ramin Takloo-Bighash).


mailto:sjm1@williams.edu
https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa23/
https://youtu.be/sGUVKUYhEY0

Exer{:lse 11.2.8 (Important). Let An(x) be an approximation to the identity on

[— ] Let f(x) bq(eamnrzmmus function on |— % 1] Prove
P&fly ,()
(-4 5 - -/i _
frl;V g dim [ f@)Ax(@)dr = f(0). (11.21)
app” o
€ g(/ £¢50 Ald/()dp/)(@g Qx) A (O0=x) X Stpe Mot wton,
2 — 1z
Sty § CSx) Al g e oaly X tear o mtts!
-l 1re
Gt ) or= § £0a Auls-Lx Loy
-1/2 ‘ez }Vt g— &

= ( HA9-€) AN AL
Z
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11.2.3 Dirichlet and Fejer Kernels

We define two functions which will be useful in investigating convergence of Fourier
series. Set

N
sin((2N + 1)7x) e (x|
Du(a) = ), enl®) = — 0 e
n——N h = 2T/ /N¥X
N-—1 <
1 — sin®(Nx)
Fnlx) = — D, (x) = .
v () 1 Z () N sin? 7o

[ s (or € X/l riea o517 Jrﬁ(x/ 285 Nezly
DMO(/ 7 Céw(c, 342



Here F' stands for Fejér, D for Dirichlet. Fy(x) and Dy (2) are two important
examples of (integral) kernels. By integrating a function against a kernel. we obtain
a new function related to the original. We will study integrals of the form

1
g(z) = /D fly) K(z —y)dy. (11.25)

Such an integral 1s called the convolution of / and KA. The Fejer and Dirichlet
kernels yield new functions related to the Fourier expansion of f(x).

D)z £ Feer
n=-a/

(- i

Tl
X\
~
X
3
N
~
\
RS
>
(
w
ﬁ
S

343



Theorem 11.2.11. The Fejér kernels F'\(x), Fy(x), F53(x),... are an approxima-
tion to the identity on |0, 1].

Wk? 0 \Lfﬂ((/
\& i O
X0 {2
0
| | |
[y sin?(N7z) N —1 ~
vt N :-;J Dulz) = N sin? 1z FN (:F) - ED(:E) ™ N (€_1(:1‘.) T (:1‘.)) T
B . —~—
z ! < / £ (x/ 5 I
= Sl TT) B ,V,qu'?h/\ é "
The Dirichlet kernels are not an approximation to the identity. SHeer /7< S‘ F el \7/;(
[ X(>
al sin((2N + 1)maz) << 6 o

DN(:E) — Z gn(;r) —

n=—N

sin T
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Theorem 11.3.1 (Fejér). Let f(x) be a continuous, periodic function on [0, 1].
Given € > 0 there exists an Nq such that for all N > Ny,

flz) —=Tn(z)] < € (11.28)

forevery x € 0,1]. Henceas N — oo, Tn f(x) — f(x).
L—\/

/g,x/‘;;/\{x

/)12 ﬁ/%/ Do s A

P s g Ot 12 THe
Z D& 7 TY
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Definition 11.3.3 (Trigonometric Polynomuals). Any finite linear combination of
the functions ey, (x) is called a trigonometric polynomial.

From Fejer’s Theorem (Theorem 11.3.1) we immediately obtain the

Theorem 11.3.4 (Weierstrass Approximation Theorem). Any continuous periodic
function can be uniformly approximated by trigonometric polynomials.

Remark 11.3.5. Weierstrass proved (many years before Fejer) that if [ 1s continu-
ous on |a, b|. then for any € > 0 there 1s a polynomial p(2) such that | f(x)—p(2)| <
e forall € |a, b]. This important theorem has been extended numerous times (see,
for example, the Stone-Weierstrass Theorem in [Rud]).

Exercise 11.3.6. Prove the Weierstrass Approximation Theorem implies the origi-
nal version of Weierstrass’ Theorem (see Remark 11.3.5).

https://en.wikipedia.org/wiki/Stone%E2%80%93Weierstrass theorem  https://mast.queensu.ca/~speicher/Section14.pdf

347


https://en.wikipedia.org/wiki/Stone%E2%80%93Weierstrass_theorem
https://mast.queensu.ca/~speicher/Section14.pdf

N
Z f(n)e?mne / f(z)Dn(x — 20)d / f(zog —2)Dn(z)dx.

n=—N
Theorem 11.3.8 (Dirichlet). Suppose
1. f(x) is real valued and periodic with period 1,
2. |f(x)| is bounded;
3. f(x) is differentiable at xy.

Then limy _oc Sn(20) = f(20).

54/ X> @*Dﬂ/wﬁﬁ

348



Proof. Let Dy (x) be the Dirichlet kernel. Previously we have shown that Dy (x) = sin{{2N+1)xx)

sinf )
. )
and f_ﬂ% Dpy(z)dxr = 1. Thus

fxo) — Sn(wa) = f(zo) | = Dn(z)dzr— | flzo — =) Dn(x)dx

1 1
2 2

1

_ f * [f(xo) — fao — z)] Dy (z)dz

- _ f{“:'s;{g:‘: ~ ) _sin((2N + 1)mz)dz
_ f ? guo (@) sin((2N + 1)mz)dz. (39)

We claim g, () = {20 —Jr0—7) j5 hounded. As f is bounded, the numerator is bounded. The

sin(wx)

denominator is only troublesome near r = (; however, as f is differentiable at x,

: lf['l-'n‘FI]_f{'-rﬂj

lim = f'(z0). (40)
r—s T
Multiplying by 1 in a clever way (one of the most useful proof techniques) gives
lim f'i'-rnf-’f]— flxg) — lim flxo +x) — f(xp) _ nr _ M‘. 41)
-y sin(mx) - TE sin(mx) iy
where we used L'Hospital’s rule to conclude that lim, .o -~ = 1. Therefore g.,(z) is bounded

everywhere, say by B. As g, 1s a bounded function, it is square-integrable, and thus the Riemann-
Lebesgue Lemma (see Exercise 1.13) implies that its Fourier coefficients tend to zero. This com-
pletes the proof, as

= L |
i/j Gup () SIn( (2N + 1)mx)dr = 3 (f s (T}Ezmtznurljrdi.) : (42)

2

2

thus our integral is just the imaginary part of the 2N + 1% Fourier coefficient, which tends to zero
as N — no. Hence as N — oo, Sy (xg) converges (pointwise) to f(xg).



Theorem 11.3.11 (Parseval’s Identity). Assume fﬂl | () |2 dar < oo. Then
o . 1
ST TR = [ 1r@)Pde.
TrE— — D 0
One common application of pointwise convergence and Parseval’s identity is to
evaluate infinite sums. For example. if we know at some point xg that Sy (xo) —
f(xp). we obtain

o

Z f‘(ﬂ)ezwmmo = f(xo).

TL— — O

Additionally, if fol | f(x)|?dr < oo we obtain

o &

. 1
S 1FwE = [ 1@

= —>0 0

2 da.

Thus. if the terms 1n a series correspond to Fourier coefficients of a “‘nice”™ function.
we can evaluate the series.

Exercise 11.3.15. Ler f(x) = 3 — |z| on [—3. 3], Calculate 377 ﬁ Use

this to deduce the value of > | niﬂ This is ofien denoted ((2) (see Exercise

3.1.7). See [BP] for connections with continued fractions, and [Kar] for connec-
tions with quadratic reciprocity.

Exercise 11.3.16. Ler f(x) = a on [0, 1]. Evaluate > .7 | —5.

7.2

Exercise 11.3.17. Ler f(2) = x on [—3.,3]. Prove T = >"7° | %; See also
Exercise 3.3.29; see Chapter 11 of [BB] or [Sc] for a history of calculations of .

Exercise 11.3.18. Find a function to determine > il ?1{ compare vour answer

with Exercise 3.1.26.



FOURIER TRANSFORM
f) = [ s

The Schwartz Space S(R) is the space of all infinitely differentiable functions
whose derivatives are rapidly decreasing. Explicitly.

Vi k>0, sup(|z| +1)7|f® ()] < oo.
rclR

{‘ ~SE Uiffy-“
. & | fed
= -\ [}~] ve T =
&

(X/< 0 0M”/W§L
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Math 383: Complex Analysis: Fall ‘23 (Williams)
Professor Steven J Miller: siml@williams.edu

Homepage:
https://web.williams.edu/Mathematics/similler/public _html|/383Fa23/

Lecture 31: 11-17-23: https://youtu.be/d4OZPmR LXA

*Fourier Analysis I11: Poisson Summation, Probability

Notes from my book with Ramin Takloo-Bighash: An Invitation to Modern Number Theory (see also my book page here)



mailto:sjm1@williams.edu
https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa23/
https://youtu.be/d4QZPmR_LXA
https://press.princeton.edu/books/ebook/9780691215976/an-invitation-to-modern-number-theory
https://web.williams.edu/Mathematics/sjmiller/public_html/book/index.html

We say a function f(x) decays like ¢ if there are constants 2o and ' such that
for all || > zo, [f(2)| < C/|x|*.

Theorem 11.4.6 (Poisson Summation). Assume [ is twice continuously differen-
tiable and that f, ' and f" decay like =1 for some n > 0. Then

Y f)y = ) fn),

where f is the Fourier transform of f.

Fros &5 (<o

z

N

/

Exercise 11.4.7. Consider | N- —q /) /)< _(_‘
() nb (A —|n—=2|) if|lz —n| < 2 forsomen € Z . n7
r) =
‘ 0 otherwise. ‘(;0 'G(X)t@( <p0

Show f(x) is continuous but F'(0) is undefined. Show F'(x) converges and is well
defined for any x & 7.
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Sketch of proof of Poisson Summation:

PS F(X)': 5 ?‘(X’f‘//) ZX/::?'Z é,'ﬂ{ ’s P(//d/((
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FOx)= &~ £(x+a) éwmx = e 272G 4m)

{

A ( 2T rax o
- — X
F () g Fes & |
= §{ Z F(x+0) € Tt %/é/m
7 M=-eo 2 ey

= ( 2T AX
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Convolutions and Probability:

X‘C e P /Mf/é« —Qﬁ- ast— X, +Y;
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Definition 19.6.2 (Moment generating function) Ler X be a random variable with
density f. The moment generating function of X, denoted Mx (t), is given by
My (t) = Ele'X]. Explicitly, if X is discrete then

® @
Mx (t) = Z . f('Lm) L j](
nmM=—0o0 ‘.... S_)(t _&ﬁt)
N— . . kg o
while if X is continuous then /U y
if . /M

My (1) = / " et f(z)da.

J —o00

Note M x (t) = Gx (e'), or equivalently G x (s) = Mx (log s).
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Theorem 19.6.3 Let X be a random variable with moments yi;,.

1. We have

132 s
1+u'11‘.+“2 + b3

Mx(t) = 2 3

in particular, ), = d*Mx (t)/dt*| .
t=0

2. Let v and 3 be constants. Then

Maox+5(t) = e’ Mx(at).

Useful special cases are Mx ,3(t) = eP'Mx(t) and M,x(t) = Mx(a
when proving the central limit theorem, it’s also useful to have M x 4 gy /a(t)
ePt/eMx (t/a).

t),

3. Let X, and X. 2 be independent random variables with moment generating

Sunctions MI x, (t) and M x, (t) which converge for |t| < 8. Then
MXx,+x,(t) = Mx,(t)Mx,(t).
More generally, if X1,..., XN are independent random variables with mo-

ment generating functions M x, (t) which converge for |t| < 8, then

Mx,+..+xn(t) = - Mxy (t).

If the random variables all have the same moment generating function M x (t),
then the right hand side becomes M x (t) N

Mx, (t)MXx,(t) - -




Faeot (Lot Mxle) = E[2X /= 5: et ¥ §_(x dx

My )= E[ 5] o 53,5, e ke
c/

=)

- £ (% +><?—) ¢/
g § - ‘EZ’ ( X.) ‘fzz_ (X2) efx, ”‘/ Xz
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There exist distinct probability distributions which have the same moments. In other '

words. knowing all the moments doesn’t always uniquely determine the probability
distribution.

Example 19.6.6 7he standard examples given are the following two densities, de-
fined for x > 0 by

) A 1 2
1.2_— “ fl((L‘) — _— e_(log 1')/2
; ’!' V2mz?
) | | fo(z) = fi(z)[1 +sin(27logz)]. (19.2)
08l || |
e s a nice calculation to show that these two densities have the same moments,
] Ir lculation to show that these two densities have 1l r
- | g .
"SIl / \ they re clearly different (see Figure[19.1).
04f \
Wil A
20\ -
(| \/ e
!, \/ N ol g ———

Figure 19.1: Plot of f1(z) and f2(z) from (19.2).




o(z) = {exp(l/.?:?) ifz #0

0 otherwise.

035

-1.0 -05

Figure 19.2: Plot of g(x) from

19.3)).
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Characteristic functions, Convolutions and Random Variables:

Mg(t) = fj v et dx
i . = X
p/@) = /é(f(:f} = _g; = e Ax

be /20078
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Characteristic Function of the Standard Normal: An old friend returns....
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Math 383: Complex Analysis: Fall ‘23 (Williams)
Professor Steven J Miller: siml@williams.edu

Homepage:
https://web.williams.edu/Mathematics/similler/public _html|/383Fa23/

Lecture 32: 11-20-23:

Fourier Analysis I1V: Probability, Differential Equations, Fun Problems

Notes from my book with Ramin Takloo-Bighash: An Invitation to Modern Number Theory (see also my book page here)
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Characteristic Function of the Standard Normal: An old friend returns....
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Sketch of the Proof of the Central Limit Theorem:
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One can also study problems on R by using the Fourier Transform. Its use stems
from the fact that it converts multiplication to differentiation, and vice versa: if

o(x) = f'(x) and hx) = xf(x). prove that Gy) = 2riy](y) and L2 —
—ZWiﬁ(y). This and Fourier Inversion allow us to solve problems such as the heat

equation E—

P

Qu(xz,t)  I*u(z,t)
o Ox2 7

Fogt« G00= wcl(x
Do G (500 T cAr ame  ae aes

dLC‘\‘}' - Y Qﬁcaé
R N VoS o SN SCet

U =
. —xe VE (K
Jcﬁeurryi

o
VAGE 9/4‘ SVO/:{ =z “{a £09€7" 7 e <258 (s)

¥
agﬁC Q‘}r 370

reR, t>0 (11.95)



Laplace transform 3 60 languages v

Article  Talk Read Edit View history Tools v

From Wikipedia, the free encyclopedia

real variable (usually t, in the time domam) to a function of a complex variable s (in the complex frequency domain, also known as s-domain, or s-plane).
The transform has many applications in science and engineering, mostly as a tool for solving linear differential equations.!"! In particular, it transforms
ordinary differential equations into algebraic equations and convolution into multiplication.!2®! For suitable functions f, the Laplace transform is defined by

the integral Ln%@ﬁ’%/ /(e/ﬂa /
o5

L{f}(s) = f f(t)e ™ dt. https://en.wikipedia.org/wiki/Laplace transform !( (5, )=
0

(" TS )r(f,e/o(zé


https://en.wikipedia.org/wiki/Laplace_transform

Laplace transform 3 60 languages v

Article  Talk Read Edit View history Tools v

From Wikipedia, the free encyclopedia

real variable (usually £, in the time domain) to a function of a complex variable s (in the complex frequency domain, also known as s-domain, or s-plane).
The transform has many applications in science and engineering, mostly as a tool for solving linear differential equations.!"! In particular, it transforms
ordinary differential equations into algebraic equations and convolution into multiplication.!2®! For suitable functions f, the Laplace transform is defined by

the integral

o0
L{f}(s) = [ ft)e ™ dt. https://en.wikipedia.org/wiki/Laplace_transform
0

f (W) = F{f(t)}
= ,ﬁ{f(t)}[&.:iw = F(S)lsziw

= [m e " f(t)dt.

o0


https://en.wikipedia.org/wiki/Laplace_transform

Property
Linearity

Frequency-domain
derivative

Frequency-domain
general derivative

Derivative

Second derivative

General derivative

Frequency-domain
integration

Time-domain
integration

Frequency shifting
Time shifting

Time domain

af(t) + by(?)
tf(t)

t" f(t)

7®)

')

7t
10

ff ) dr = (ux f)(2)

a.tf t)
f(t— a)u(t — a)

Properties of the unilateral Laplace transform

s domain

F(s) + bG(s)

—F'(s)

(—1)"F™) (s)

sF(s) - f(07)

$F(s) — s£(07) — /(0°)

T

§" F(S) _ Z gk f(k—l} {0—)

k=1

];00 F(o)do

“F(s)

F(s—a)
e “F(s)

Comment

Can be proved using basic rules of integration.

F" is the first derivative of F' with respect to s.

More general form, nth derivative of F(s).

fis assumed to be a differentiable function, and
its derivative is assumed to be of exponential
type. This can then be obtained by integration
by parts

fis assumed twice differentiable and the
second derivative to be of exponential type.
Follows by applying the Differentiation property

to f(7).

fis assumed to be n-times differentiable, with
nth derivative of exponential type. Follows by
mathematical induction.

This is deduced using the nature of frequency

differentiation and conditional convergence.

u(t) is the Heaviside step function and (u * f)(7)

is the convolution of u(f) and f{%).

a > 0, u(r) is the Heaviside step function



Time scaling f(at) lp (i) R
a a
c4iT The integration is done along the vertical line
Multiplication | f(t)g(t) — lim f F(0)G(s — ) do | Re(o) = c that lies entirely within the region of
2‘?‘1“1 T—oc
convergence of F.124]
t
Convolution (f*g)(t) = f f(n)g(t —7)dr | F(s)-G(s)
0
cireular t) = ' t dr | F(s)-G(s) F iodic functi ith period T
convolution (f*g)(t) —/[; f(”')g( —T7)dr or periodic tunctions with period 1.
Complex . ..
1 (t) F*(s*)

conjugation

Cross-correlation

(% 9)(t) = ]D " ) ot +7) dr

Periodic function

f(t)

fit) is a periodic function of period T so that
fit)=f(t + 1), for all t = 0. This is the result of
the time shifting property and the geometric

series.

Periodic
summation

fo®) =Y f(t—Tn)
n=0

o0

fe(t) =D (-1)"f(t — Tn)

n=0

1
FP(S) - 1 — e Ts
1
Fp(s) =
P( ) 1+E—T5




Fourier transform [edit]

Further information: Fourier transform § Laplace transform

The Fourier transform is a special case (under certain conditions) of the bilateral Laplace transform. While the Fourier transform of a function is a complex
function of a real variable (frequency), the Laplace transform of a function is a complex function of a complex variable. The Laplace transform is usually
restricted to transformation of functions of f with 1 = 0. A consequence of this restriction is that the Laplace transform of a function is a holomorphic function
of the variable 5. Unlike the Fourier transform, the Laplace transform of a distribution is generally a well-behaved function. Techniques of complex variables
can also be used to directly study Laplace transforms. As a holomorphic function, the Laplace transform has a power series representation. This power

series expresses a function as a linear superposition of moments of the function. This perspective has applications in probability theory.

The Fourier transform is equivalent to evaluating the bilateral Laplace transform with imaginary argument s = i or s = 27i27! when the condition

explained below is fulfilled,

f(w) = F{£(1)}
= LU (O Homio = F(8)]mie

= /: " e ft)dt.

o0

This convention of the Fourier transform (f3 (w) in Fourier transform § Other conventions) requires a factor of % on the inverse Fourier transform. This

relationship between the Laplace and Fourier transforms is often used to determine the frequency spectrum of a signal or dynamical system.

The above relation is valid as stated if and only if the region of convergence (ROC) of F(s) contains the imaginary axis, ¢ = 0.



Function
unit impulse

delayed impulse

unit step

delayed unit step

rectangular impulse

ramp

nth power
(for integer n)

qth power
(for complex q)

rith root

nth power with frequency shift

delayed nth power
with frequency shift

Selected Laplace transforms

Time domain

£(t) = L7H{F(s)}
5(t)

5(t — 7)
u(t)
ult — 7)
u(t) — u(t — )

t - u(t)

— )t ) Lyt —7)

Laplace s-domain

F(s) = L{f(2)}

1

Region of convergence Reference
all s inspection
time shift of
unit impulse
Re(s) > 0 integrate unit impulse
time shift of
Re(s) > 0 _
unit step
Re(s) > 0
integrate unit
Re(s) >0 resre s
impulse twice
Re(s) > 0 integrate unit
(n=-1) step n times
Re(s) > 0 B031]
Re(q) > —1
Re(s) > 0 Set ¢ = 1/n above.
Integrate unit step,
Re(s) > —a J 2
apply frequency shift
integrate unit step,
Re(s) > —a apply frequency shift,

apply time shift



Frequency shift of

exponential decay e . ult) - Re(s) > —a N
sta
two-sided exponential decay —alf 200 B Frequency shift of
(only for bilateral transform) € a? — §2 sl < unit step
) o unit step minus
exponential approach (1 —e ) -u(t) ss+a) Re(s) >0 exponential decay
w
sine sin(wt) - u() 2 o? Re(s) > 0 [32]
s
cosine cos(wt) - u(t) 2 1o Re(s) > 0 [32]
o
hyperbolic sine sinh(at) - u(t) R Re(s) > |a| [33]
s
hyperbolic cosine cosh(at) - u(t) 2o Re(s) > | (23]
exponentially decaying ab o B 32]
<ine wave e sin(wt) - u(t) (5t a) +o? Re(s) > —a
exponentially decaying ot s+« B (32]
cosine wave e * cos(wt) - u(t) (s + ) + w? ) e e
natural logarithm In(t) - u(t) 1 [In(s) + 7] Re(s) > 0 (23]
8
Bessel function ( 3 5 )'”“
V8 tw — 8 R 0
of the first kind, T (wt) - u(t) E(i)j (34
of order n w™ /8% + w? A
Error function erf(t) - u(t) Leame (1 — erf%) Re(s) > 0 4]

S




https://web.williams.edu/Mathematics/similler/public html/209/HW/209HWmay12.pdf

Question 1 (40 points) : Find the Laplace Transforms of: (1)
cos(2t); (2) 4t7 — 11t3 + 1; (3) 12e%; (4) cosh(t) = <.

Question 2 (30 points) : Find the Inverse Laplace Transform of
the following (the table in the book or online at
http://en.wikipedia.org/wiki/Laplace_transforms#Table_of
_selected_Laplace_transforms might be useful): (1) F'(s) =

3 (2) F(@) _ 2 (3) F(‘E) _ 852—-—134—12'

s2447 s243s5—4" s(s2+44)

Question 3 (10 points) : Use the Laplace transform to solve y"” —
y' — 6y = 0 with y(0) = 1, ¥/(0) = —1.

Question 4 (10 points) : Use the Laplace transform to solve ¢ —

4y = 0 with y(0) =1, ¥'(0) = 0, ¥”(0) = 2 and »¥"'(0) = 0. (NOTE:
for those looking for additional problems, #17 from Section 6.2 is a
good one.)

Question 5 (10 points) : Solve y”" + y = f(t), where f(t) =1
for 0 < t < 3w and 0 if 37 < ¢t < oo and subject to the initial
conditions y(0) = 0 and y'(0) = 1.


https://web.williams.edu/Mathematics/sjmiller/public_html/209/HW/209HWmay12.pdf
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Math 383: Complex Analysis: Fall ‘23 (Williams)
Professor Steven J Miller: siml@williams.edu

Homepage:
https://web.williams.edu/Mathematics/similler/public _html|/383Fa23/

Lecture 32b: 11-20-23:
*Bonus Lecture: Fourier Analysis V: Complex to CLT: https://youtu.be/YwDJh6V8C3Y

Notes from my book with Ramin Takloo-Bighash: An Invitation to Modern Number Theory (see also my book page here)



mailto:sjm1@williams.edu
https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa23/
https://youtu.be/YwDJh6V8C3Y
https://press.princeton.edu/books/ebook/9780691215976/an-invitation-to-modern-number-theory
https://web.williams.edu/Mathematics/sjmiller/public_html/book/index.html
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Math 383: Complex Analysis: Fall 23 (Williams)
Professor Steven J Miller: siml@williams.edu

Homepage:
https://web.williams.edu/Mathematics/similler/public _html|/383Fa23/

Lecture 33: 11-27-23: https://youtu.be/65b0Jh1DIns

*Method of Stationary Phase
*Previous year’s iteration: Lecture 27: 11/15/17: Laplace's Method, Stirling's Formula: https://youtu.be/AycMIf4Mbyo (2015

lecture: https://youtu.be/GvKI5I cfDQ)



mailto:sjm1@williams.edu
https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa23/
https://youtu.be/65b0Jh1DIns
https://youtu.be/AycMlf4Mbyo
https://youtu.be/GvKI5I_cfDQ

Math 383: Complex Analysis: Fall 23 (Williams)
Professor Steven J Miller: siml@williams.edu

Homepage:
https://web.williams.edu/Mathematics/similler/public _html|/383Fa23/

Lecture 33: 11-27-23: https://youtu.be/65b0Jh1DIns

*Method of Stationary Phase
*Previous year’s iteration: Lecture 27: 11/15/17: Laplace's Method, Stirling's Formula: https://youtu.be/AycMIf4Mbyo (2015

lecture: https://youtu.be/GvKI5I cfDQ)



mailto:sjm1@williams.edu
https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa23/
https://youtu.be/65b0Jh1DIns
https://youtu.be/AycMlf4Mbyo
https://youtu.be/GvKI5I_cfDQ

Plan for the day:

https://web.williams.edu/Mathematics/similler/public html/383Fa2l1/course
notes/Math302 LecNotes Intro.pdf

« Stirling’s formula: intuition

 Stirling Approximation (Integral Test Review)
 Stirling from Central Limit Theorem

« Taylor Series Review

« Stationary Phase / Critical Points

General items.

« Often easier to pass to a continuous analogue to study discrete problem
« Intuition from Taylor series: “higher” terms eventually negligible....
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https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa21/coursenotes/Math302_LecNotes_Intro.pdf

The Gamma function. The Gamma function ['(s) 1s
5—?[

['(s) = / .E_T;Es_ld-;??, R(s) > 0.
Jo

X p{)(s)(.-—

o
-

Stirling’s formula: As n — oo, we have
n! = n"e "V2mn:

by this we mean
_ n!
lim — = 1.
n—oo nle—"y/2Tn

More precisely, we have the following series expansion:

12n  288n2  51840n3

1 1 139
n! = n"e "V2mn (1 4+ — + — — .. ) .
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Poor man’s Stirling. Let n > 3 be a positive mteger. Then

n"e ".e < nl < n"e "-en

lgﬂ{ — Z/L/{/’k 'y fﬂ/oyifﬁ/‘b é/”/(/ﬂ)ff/;
=1 (

4 &g 8 10

https://en.wikipedia.org/wiki/Integral test for convergence
and my Math 150 (Calc Ill) lecture on the integral test: https://youtu.be/ujJbUpCab6M
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https://youtu.be/ujJbUpCab6M

Crude upper/lower bounds.

|<n <& N’ < /)

Note (n+1)!/n! = n+1; let’s see what Stirling gives:

Nl = e 'Sz
_ (1)
@*)1 ﬁ@n-ﬂ)w e ) ﬁm

el —A-( T ()
C/)-{r).l " (/Hf) 2 ﬁ}/

TR o
/\ o
~ (1) ((-VJ—A) ¢ (ff-i4 "f_’_(ﬂ—fﬂ
Y N

c. e
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~¥ - -
[ - Lt e px" = > & XM(’X*/’)‘@S”K’O

LP /4/;(5} 1/4/0(
(2L x= n+T

6{# e-—(ﬂ—é&)
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The Central Limit Theorem and Stirling /X: A %r_-x--'-'- A

X has a Poisson distribution with parameter A means

i JILHE—J'-L
Prob(X =n) = ¢ ™ |
0 otherwise.

if n > 0 1s an integer

\

If X1,...,Xn are mndependent, identically distributed random variables with
mean /¢, variance o and a little more (such as the third moment is finite, or the
moment generating function exists), then X + - .- 4+ X converges to being

normally distributed with mean 7t and variance no?.

_.Y—t”“ Forss (Nﬂ) Do X5t X 0 ~ Poes( N+~ +>1)
(& all Neel Thar 1Fes ?%,g(/))
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Proof Poisson + Poisson = Poisson (if independent: stable distribution!): Algebra!

Al " ifn > 0is an infeger
PrOb(X — n) — n! i g

0 otherwise.

"Z—l ~Faiss /A') X-== =21 //\z> S&cu/z =X, r X s //\/ﬁé
(=) = E FllE=) Fol(Ee= a-2)

M=o B
-\ A =M — M2 (
- Zﬂ )\’me / Az - n.l
'-[)‘l"(')'l.\ N L
- & /1 - 0
i 7 i'— M) /\l '>\'z.
| T )
1 - /1‘/1
_ >\,">w) &
- &
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Definition 19.6.2 (Moment generating function) Ler X be a random variable with
density f. The moment generating function of X, denoted Mx (t), is given by
My (t) = Ele'X]. Explicitly, if X is discrete then

® @
Mx (t) = Z . f('Lm) L j](
nmM=—0o0 ‘.... S_)(t _&ﬁt)
N— . . kg o
while if X is continuous then /U y
if . /M

My (1) = / " et f(z)da.

J —o00

Note M x (t) = Gx (e'), or equivalently G x (s) = Mx (log s).
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Proof Poisson + Poisson = Poisson (if independent; stable distribution!);: MGF!

oo

Ale—A . . : ) .,
PI’Ob(X - n) - { = ifn > 01s an imntegel ﬂfx(t) — Z el mf(mm)

0 otherwise. m=—oc

X ~ s (> ,b/, P
X

My (£) = f[éé’] & prs”l ?if; A

_ —X\ | ot 2r

- f e

e 2 Lety e el

A== "'
Mgy £)= My (6] Al (£) (€ Koo ~Foues(heylinky)
_ Z £ e ¢ [
= e )Iee /\( €‘>\z eﬁ Az = ~ [\l ;\z)ég 61‘)\7)
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Definition 20.2.1 (Normal distribution) 4 random variable X is normally dis-
tributed (or has the normal distribution, or is a Gaussian random variable) with

mean 1 and variance o? if the density of X is

flx) = ﬁ exp ((3:205)2)-

We often write X ~ N(u,c?) to denote this. If 1 = 0 and 0? = 1, we say X has
the standard normal distribution.

Theorem 20.2.2 (Central Limit Theorem (CLT)) Let X,,..., XN be indepen-
dent, identically distributed random variables whose moment generating functions

converge for |t| < & for some & > 0 (this implies all the moments exist and are
finite). Denote the mean by v and the variance by o2, let

— X, 4+ -+ X
Xy = 1—|—N—I— N

and set _
XN —p

N = )
N o/VvV N
Then as N — oo, the distribution of Zx converges to the standard normal (see

Definition|20.2. I|for a statement).




Stirling b
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Math 383: Complex Analysis: Fall 23 (Williams)
Professor Steven J Miller: siml@williams.edu

Homepage:
https://web.williams.edu/Mathematics/sjmiller/public html/383Fa23/

Lecture 34: 11-29-23:

*Method of Stationary Phase II: https://youtu.be/NCalCkFs2a0
*Previous year’s iteration: Lecture 27: 11/15/17: Laplace's Method, Stirling's Formula: https://youtu.be/AycMIf4Mbyo (2015

lecture: https://youtu.be/GvKI5I cfDQ)



mailto:sjm1@williams.edu
https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa23/
https://youtu.be/NCalCkFs2a0
https://youtu.be/AycMlf4Mbyo
https://youtu.be/GvKI5I_cfDQ

Taylor Series

Goalis to see how well Taylor Series approximate functions,

how listtle later terms change approximation....

For definiteness, will do Cos[x]
coeff[x0 , n_] := If[Mod[n, 4] == 0, Cos[x0],

If[Mod[n, 4] == 1, - Sin[x0],

If[Mod[n, 4] == 2, - Cos[x0], Sin[x0]]

1I;
approx[x_, x0_, n_] := Sum[coeff[x0, nn] (x=x0)Ann/nn!, {nn, 0, n}]
Manipulate[Plot[{Cos[x], approx[x, x0, n]}, {X, x0 - 2 Pic, x0 + 2Pic},

Epilog = {PointSize[.025], Point[{x0, Cos[x0]}]}], {x0, 0, 20 Pi/2}, {n, 1, 40},
{c, 4,.01}]
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Manipulate[Plot[Exp[—1/x"2],{x, —c, c}], {c, 10,.25}]
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Consider SSo

b
/ e 5@y (2) da

where the phase @ is real-valued, and both it and the amplitude v
are assumed for simplicity to be indefinitely differentiable. Our hypoth-
esis regarding the minimum of ® is that there is an xg € (a,b) so that
Q' (zg) =0, but ®”"(x ) > 0 throughout |a,b| (Figure 2 illustrates the

situation.) < @ ()():_‘@/ %g) —eﬁc@Wa\o
)

P (x LN (et
z

cr o & /
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Proposition 2.1 Under the above assumptions, with s > 0 and s — o0,

b
(5) [ et )dreﬂ“w[f o(l)],
. s1/2 S

where

(o)
A= VI

Isthisreasonable?@(x) = i—(xb)+ ’_ I ()6\()( )(e\a z= X v

14
é ><o /‘-\P(x‘\ "HT/QVO /9

_éf(% ——75 /za‘
F e C @7«5@%
ST (%) A-¥




j €—S(D—(X) V(?«)/x )og TCr)= S

Trxr= 2T (x-xf+ Ot (<239 ) e o

L= X-% )
sT(x) =sL &"() " +t ST& (£7) L= £
< - \57 -
S(fzuifv g'gze (&= 4:_(351)3
<. S sts —/gg/z <
S §'3€
_—. ¢ CE L
§§(><) S’IJ‘I(M-}:Z o e Qe (C ZECT Sy
. S'Oo(n,[ﬁ‘»') 2 <l
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Consider

Theorem 2.3 If |s| — oo with s € S5, then

b
/ e 2@y (z) da
slogs —s \/ 2';‘;’ 1 where the phase @ is real-valued, and both it and the amplitude
(11) ['(s) =e*%% 1+ 0 :

172 175 are assumed for simplicity to be indefinitely differentiable. Our hypoth-
S / |S‘ / esis regarding the minimum of ® is that there is an zq € (a.b) so that

O’ (z9) =0, but ®"(z¢) > 0 throughout [a,b]

Proposition 2.1 Under the above assumptions, with s > 0 and s — oo,

o0 00 d;}; b B B ) 1
F(S) — e TS 2 — E—m+slug:r: o (8) fa e 5@ () do = ¢ 52(0) [W+O(Eﬂ’
0 <L 0 r

where

X—=> S X Ac—= colx X< &Ex° < o Xs; ( ;s SAzx
1) =5 | Y e ST dx )
, . : x O (2 x—rlsx
_ < < X —les <) \ ! = - A

S f e = e £
J Z(r1)=0 A=/
Jiq e =), 279 e >0
5 L] |/v , ( ,%@/, (
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Math 383: Complex Analysis: Fall 23 (Williams)
Professor Steven J Miller: siml@williams.edu

Homepage:
https://web.williams.edu/Mathematics/similler/public _html|/383Fa23/

Lecture 35: 12-1-23: No class (midterm)
Lecture 36: 12-4-23: The Uncertainty Principle: https://youtu.be/D8onKzVKIGA4



mailto:sjm1@williams.edu
https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa23/
https://youtu.be/D8onKzVK9G4

Plan for the day: Lecture 35: December 10, 2021

https://web.williams.edu/Mathematics/similler/public html/383Fa2l1/course
notes/Math302 LecNotes Intro.pdf

« Cauchy-Schwarz Inequality
* Fourier transform
« Uncertainty Principle (in mathematics)

General items.

« (Generalizations (matrix exponentiation)

« Unreasonable effectiveness of mathematics: Wigner:
https://www.maths.ed.ac.uk/~vlranick/papers/wigner.pdf
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Statement of the inequality [eait;
The Cauchy—Schwarz inequality states that for all vectors ¢ and v of an inner product space it is true that
|<'|_]_3 v) |2 E {u, u} . (v, ‘U"), {Cauchy-ﬁchwarz inequality [written using only the inner prnduct]]

where (-, ) is the inner product. Examples of inner products include the real and complex dot product; see the examples in inner

product. Every inner product gives rise to a norm, called the canonical or induced norm, where the norm of a vector u is denoted and
defined by:

[ul| == \/ (u,u)

so that this norm and the inner product are related by the defining condition ||u||2 = (u,u), where (u, u) is always a non-negative
real number (even if the inner product is complex-valued). By taking the square root of both sides of the above inequality, the Cauchy-
Schwarz inequality can be written in its more familiar form:[6I[7]

|(1.l, V)l £ ||'I.l|| ||'V”. {Cauchy-Schwarz inequality [written using norm and inner prnduct]]

Moreover, the two sides are equal if and only if w and v are linearly dependent.[fIFI10]

https://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz inequality
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https://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz inequ

ality
Let (V/, (-, -}) be a real inner product space. Consider an arbitrary pair u,v € V and the functionp : R — R defined by

For real inner product spaces [edit]

p(t) = (tu + v, tu + v). Since the inner product is positive-definite, p(t) only takes non-negative values. On the other hand, p(t)
can be expanded using the bilinearity of the inner product and using the fact that {u, *u} = {1}, u) for real inner products:

p(t) = [[ull*t® + ¢ [(u,v) + (v, uw)] + [[v]|* = [lul*t* + 2t(u, v) + ||v]*.

Thus, p is a polynomial of degree 2 (unless u. = 0, which is a case that can be independently verified). Since the sign of p does not
change, the discriminant of this polynomial must be non-positive:

A = 4 ((u,v)? — [[ul?[[v]]?) <o

The conclusion follows.

Use xTyo ¢ K&K N
ol ato el cager Va4V T 70 @t Fs TN ) - (F - AD)

- (A
so sglBlfrzy 55 HIVEEE

(ol ! G-l £ gt - ol Feedk Dok U m 25

S,
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Baker-Campbell-Hausdorff formula:
https://en.wikipedia.org/wiki/Baker%E2%80%93Campbell%E2%80%93Hausdorff formula

In mathematics, the Baker—Campbell-Hausdorff formula is the solution for Z to the equation 0 | X/'
& Z
for possibly noncommutative X and Y in the Lie algebra of a Lie group. There are various ways of writing the formula, but all ultimately

yield an expression for Z in Lie algebraic terms, that is, as a formal series (not necessarily convergent) in X and Y and iterated

commutators thereof. The first few terms of this series are:
1 1 1

where "- - -" indicates terms involving higher commutators of X and Y. If X and Y are sufficiently small elements of the Lie algebra g
of a Lie group GG, the series is convergent. Meanwhile, every element g sufficiently close to the identity in G can be expressed as

g = e for a small X in g. Thus, we can say that near the identity the group multiplication in G—written as eXe¥ = eZ—canbe
expressed in purely Lie algebraic terms. The Baker—Campbell-Hausdorff formula can be used to give comparatively simple proofs of

deep results in the Lie group—Lie algebra correspondence.

C%(l)jf" X(I/" (/X/ ¢ e U Commite
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https://en.wikipedia.org/wiki/Uncertainty principle

180 W. Heltanberg,

srmBglichan, alx ¢a der Glemhony (1) entspricht. s0 wilre dir Quanisn.
mochanik unmiglich. Diese Ungenenigkeit, dis darch Gleichung (1) feat-
golegt sk, schalft alvo omt Reum Jitr die Gtiltigkeit der Deziehungen,
die in dan quantepmechanigcaen Vertauschnngerelationen
R
Pg—gp = T

ihren pragnanten Ausdruck finden; me ermiglicht dicze (leichung, olne
dal der physikalisch® Sinn der Grofen p und ¢ zesndert werden mufte

Jcrng

where /i is the reduced Planck constant, ///(27). o


https://en.wikipedia.org/wiki/Uncertainty_principle

f(e) = [_ fx)e ™ dx, VEER.

15.2. The Fourier transform of the derivative: if ¢ = df /dz then §(&) = i€ f(€). (Inte-
grate by parts).

P/ﬁﬂé{ 4/[( '(;1_5' e ANlICe /?/0\/’%""(_64/ \ L‘/ZZ

’0 (-]
17 = S, g0 e T dx ,
-f“ £l )e""x;a(x u= e % do= Floady
= x

Au = - l?e'm vz (x|
A

= fw fog e s 77 BC)
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15.3. The Fourier transform under multiplication by z: if h(z) = z f(z) then df(€)/dé =
~ih(€).

Pk, o £()) = C S0

A C = 2% !

Zn AL £ -’Xf’]/(

g, £x £1x e x

‘ L7 5. )éf ,
‘:—»TS-.V E<F(><\ e—lx?/(k

._adw X

S =70 Jrme Nk

(Al

= <~/ L(7) [~
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15.4. The Fourier transform under translation: find g(£) if g(z) = f(z — a), a fixed.

A =/ -
Hae 39(7)-= f_‘“ T = T Ak
i —.{@ oa(x—“B ‘@'—/(x—qw{ H A<

Lz X—« X - — av
/'L/:/S( - ad S oo

& s .

_ -1 £ — | @

_ o

_ 6.—74? ?(?)

a—



15.5. The Fourier transform under scaling: find h(¢) if h(z) = f(pz), p > 0.

Coster YNz §7 hisg e /% st

§ Fox) e PP g

G,

-é:& /)( 2o /ZL, :///X

Y& e dd = 2o A28 E - ad s oo
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=15 (%)



f (&) =/: f(z) e ¢ dr, YVE{€R. (Eq1)

15.6. The Fourier transform of a Gaussian function: let f(z) = e~* /2 /\/2r. Show that
f(€) = e=€'/2, (Note that f satisfies the differential equation df /dz = —z f(z). Show that
f satisfies the same equation (with respect to the £ variable), by using results of preceding

problems. Deduce that f is a multiple of e=¢" /2. Because f has integral = 1, it follows
that f(0) = 1.
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Prob{z € I} = fif(m)l“dr- E:/ z| f(x)* dz. V=ffx—EF|f(zJ|“’-dm-
! R R

= — = | €-E 3
5 | sy 2Ax=/ E= fR ff©ra V=3 [€-ErI©re

7 X X s dersth T 1 EEK"‘]—f R
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Proposition. If f is an element of L?(R) such that ||f|| = 1, then the product of the
variances of f and off, V -V, is at least 1.
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Qf(z) =2f(x)y  Pfla)=5"
PQ-QP=—iI; (Qf,9)=(f,Q9); (Pf,9)=(f, Pg)
oo GE ) = R ( : g’) :ZIY°C/(X)
P& €] = P ( X—F)“"L[—S:(X)‘FX—F'(X]
@& GU’ 4= "[?(x\—f xF ‘ex) = x £ “ox :] s —P(></
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Then the Fourier transform of Pf is £ f(£), so

(16.6) V=(Q-E)|* V=|(P-Ef
%,
(@ 5 [E15Ax = /
&

=

= (T 4174w = -7
— »
[ &
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Now it is also true that
(P - EIYQ — EI)—(Q — EI)(P - EI) = —iI

5o we may repeat the calculation (16.8) with Q — EI in place of Q and P — EJ in place of
P to obtain the desired inequality.
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In the usual representation of the wave function, the position operator is the operator
Q above and the momentum operator is hP, where P is the operator above and h >
015 Planck’s constant. Thus the inequality proved above gives the quantitative form
of the relationship between uncertainty in measurement of position and uncertainty in
measurement of velocity known as the Heisenberg Uncertainty Principle:

(16.10) VVa  VVip > %
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Math 383: Complex Analysis: Fall ‘23 (Williams)
Professor Steven J Miller: siml@williams.edu

Homepage:
https://web.williams.edu/Mathematics/similler/public _html|/383Fa23/

Lecture 37: 12-6-23: Eigenvalues: https://youtu.be/47xCLUs12|lK

_ —
— U — \/ / U \:’—’0 +See for a longer introduction (or happy to meet and chat):

eLecture 31: 12/03/21: Eigenvalues and Random Matrix Theory:
Part I https://youtu.be/On9hT2ZFpdw (slides)

eLecture 32: 12/06/21: Random Matrix Theory to L-Functions:

— 7- ' Part I https://youtu.be/FOKKIMs9wV8 (slides)



mailto:sjm1@williams.edu
https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa23/
https://youtu.be/47xCLUs12lk
https://youtu.be/On9hT2ZFpdw
https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa23/lectures/383Fa21_lecture31.pdf
https://youtu.be/FoKKIMs9wV8
https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa23/lectures/383Fa21_lecture31.pdf

Gershgorin circle theorem % 13 languages v
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From Wikipedia, the free encyclopedia

In mathematics, the Gershgorin circle theorem may be used to bound the spectrum of a square matrix. It was first published by the Soviet mathematician
Semyon Aronovich Gershgorin in 1931. Gershgorin's name has been transliterated in several different ways, including Gersgorin, Gerschgorin, Gershgorin,
Hershhorn, and Hirschhorn.

Statement and proof [edit]

Let A be a complex i X 1 matrix, with entries ;- Fori € {1, e ,'n.} let R; be the sum of the absolute values of the non-diagonal entries in the %-th
row:
Rf, — Z |£I.-§,j| .
i#i

Let D{ﬂ-ﬁ . R1) C C be a closed disc centered at a;; with radius R;. Such a disc is called a Gershgorin disc.

Theorem. Every eigenvalue of A lies within at least one of the Gershgorin discs D{aﬁ, Ri].

https://en.wikipedia.org/wiki/Gershqgorin circle theorem
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The Limiting Spectral Measure for Ensembles of Symmetric Block Circulant Matrices (with Murat Kolo“glu, Gene

S. Kopp, Frederick W. Strauch and Wentao Xiong), Journal of Theoretical Probability 26 (2013), no. 4, 1020—
1060. http://arxiv.org/abs/1008.4812

Slides for the rest of the talk here:
https://web.williams.edu/Mathematics/similler/public _html/math/talks/ManhattanTOEC Collog MASONIV2020.pdf
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We construct the characteristic function® of the limiting spectral distribution. Let X, be a random
variable with density f,,. Then (remembering the odd moments vanish)

‘:};lt[” = E[E!”x'” Z ‘-”:I "-FI' 2o

(]

o Z |:1”' ‘lfll. 1
- {2k)!

k=l

B Z(Ekjf v 2k — 1) ek, m)(—£%)". (3.6)

k=0
In order to obtain a closed form expression, we rewrite the characteristic function as

k

1 — 1 —t*
dm(t) = EZ:.—H;.ij (E) . (3.7)

k=0

using {2k - 1)1 = L,,ET The reason for this is that we can interpret the above as a certain coefficient
in the convolution of two known generating functions, which can be isolated by a contour integral.
Specifically, consider the two functions

s

(3.8)

Fly) = ((if;’ ) = 1) = ictk-m}f and Gly) = i

k=0

Note that ¢,,(t) is the function whose power series is the sum of the products of the * coefficients
of (7 =" /2m) (which is related to the exponential distribution) and F(y) (which is related to the
generating function of the £, (&)). Thus, we may use a multiplicative convolution to find a formula
for the sum. By Cauchy’s residue theorem, integrating F(z~')(3{—2/2m) 2" over the circle of

radius 2 yields
1 e [ EEY Az
~ 2mwim _ﬁ;l_g P06 ( Zm) L (9)

since the constant term in the expansion of F[z71)G( —©zfam) is exactly the sum of the products of
coefficients for which the powers of y in F{y) and (i) are the same.* We are integrating along the

Do L)

LIMITING SPECTRAL MEASURE FOR SYMMETRIC BLOCK CIRCULANT MATRICES 17

circle of radius 2 instead of the unit circle to have the pole inside the circle and not on it. Thus

- 1 f' 1 1+ z"134™ : Bz dz
Pmit) Zrim e 2271 1-2:"1 - -
1 zZ+ 1 " |:';_,-':rm -
T dmim _%:_2 ((ﬁ) B 1) ’ dz

= £_ _?{ ((1+—2 ) —1);.- Fx-tifam g
dmim Jjz)-2 =1
= fm - ni 2 P 1 =2y
— - — z=1)dz
dmim Jiz)=2 § (: - ) ; &l ('J‘r:u) (= P
i -':rm.
£ PFiz—1)f2m
- . dz. 310
4mim fi.l- ‘ ( )

By Cauchy’s Residue Theorem the second integral vanishes and the only surviving terms in the
first integral are when [ — s = 1, whose coefficient is the residue. Thus

F: 2 fam

e i
e my ;1 —_!'2
alt) = =5 2(1)2(:—1;1!(2;:1)
1 . " m 1 — 2 1 - 1 e (1) 2
— e Z(i)m(ﬁ) = —e L () (B

l=1

which equals the spectral density function of the m = m GUE (see [Led]).

As the density and the characteristic function are a Fourier transform pair, each can be recovered
from the other through either the Fourier or the inverse Fourier transform (see for example [S51,
552]). Since the characteristic function is given by

Ga(l) = E[e¥n] = f Yt p () de (3.12)

{where X, is a random variable with density f,,), the density is regained by the relation
ful) = dmlx) = %fx.: it (8) dt. (3.13)
Taking the Fourier transform of the characteristic function dw,(t), and interchanging the sum and

the integral, we get

1 0 Py, ™
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Math 383: Complex Analysis: Fall ‘23 (Williams)
Professor Steven J Miller: siml@williams.edu

Homepage:
https://web.williams.edu/Mathematics/similler/public _html|/383Fa23/

Lecture 38: 12-8-23: Several Complex Variables: https://youtu.be/tvKfVNy72SY
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Little Picard Theorem: If a function f : C — C is entire and non-constant, then the set of values that :1: 1, )
f(z) assumes is either the whole complex plane or the plane minus a single point. aso ‘: w2
Ienilz) :z 1 o
Sketch of Proof: Picard's original proof was based on properties of the modular lambda function, 028 "
usually denoted by A, and which performs, using modern terminology, the holomorphic universal o ve [l
covering of the twice punctured plane by the unit disc. This function is explicitly constructed in the theory T:m _— :a .
Rez)

1Dahs arg
of elliptic functions. If f omits two values, then the composition of f with the inverse of the modular
Domain coloring plot of the function =

exp(l@), centered on the essential

singularity at z = 0. The hue of a point
This theorem is a significant strengthening of Liouville's theorem which states that the image of an entire non- Z represents the argument of exp('%),

function maps the plane into the unit disc which implies that f is constant by Liouville's theorem.

constant function must be unbounded. Many different proofs of Picard's theorem were later found and Schottky's the luminance represents its absolute
value. This plot shows that arbitrarily

close to the singularity, all non-zero
values are attained.

theorem is a quantitative version of it. In the case where the values of f are missing a single point, this point is
called a lacunary value of the function.

Great Picard's Theorem: If an analytic function f has an essential singularity at a point w , then on any
punctured neighborhood of w, f(z) takes on all possible complex values, with at most a single
exception, infinitely often.

This is a substantial strengthening of the Casorati-Weierstrass theorem, which only guarantees that the range of f is dense in the complex plane. A result
of the Great Picard Theorem is that any entire, non-polynomial function attains all possible complex values infinitely often, with at most one exception.

The "single exception” is needed in both theorems, as demonstrated here:

e 27 is an entire non-constant function that is never 0, o . . e s
) https://en.wikipedia.org/wiki/Picard theorem
» ez has an essential singularity at 0, but still never attains 0 as a value.



https://en.wikipedia.org/wiki/Picard_theorem

Some references:

https://haroldpboas.qitlab.io/courses/650-2013c/notes.pdf

https://arxiv.org/pdf/1507.00562.pdf

https://abel.math.harvard.edu/~knill/////////teaching/severalcomplex 1996/severalcomplex.pdf

https://en.wikipedia.org/wiki/Function of several complex variables
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Review: Definition of the Derivative: One Variable
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Review: Definition of the Derivative: One Complex Variable == K+ '7
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Question: What should the definition of differentiable (i.e., holomorphic) be for a function of
several complex variables?
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From Wikipedia, the free encyclopedia

See also: Duocylinder

In the theory of functions of several complex variables, a branch of mathematics, a polydisc is a Cartesian product of discs.
More specifically, if we denote by D(z, 'r) the open disc of center z and radius r in the complex plane, then an open polydisc is a set of the form

D(z1,71) x =+« X D(zp, 7).

It can be equivalently written as
{w=(wy,ws,...,w,) € C": |2 —wi| <rg, forallk=1,...,n}.
One should not confuse the polydisc with the open ball in C", which is defined as

{weC":|z—w| <r}

Here, the norm is the Euclidean distance in C".

When n > 1, open balls and open polydiscs are nof biholomorphically equivalent, that is, there is no biholomorphic mapping between the two. This was
proven by Poincaré in 1907 by showing that their automorphism groups have different dimensions as Lie groups.["!

When n = 2 the term bidisc is sometimes used.

https://en.wikipedia.org/wiki/Polydisc
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In several variables, a function f : C" — C is holomorphic if and only if it is holomorphic in each variable separately, and hence if and only if the real part
u and the imaginary part v of f satisfiy the Cauchy Riemann equations :

ou ov ou ov
and

] 1,... = _
ve G{ 1 ’n}’ Oz; Oy y; ox;
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Cauchy's integral formula | (Polydisc version) |edit]

Prove the sufficiency of two conditions (A) and (B). Let f meets the conditions of being continuous and separately homorphic on domain D. Each disk has a

rectifiable curve -, 4y, is piecewise smoothness, class C! Jordan closed curve. (v=1,2,...,n)Let D, be the domain surrounded by each +,,.

Cartesian product closure D1 X Dy X «++ X Dy is Dy X Dy x -+« x D,, € D. Also, take the closed polydisc E so that it becomes

ACD;xDyx---xD,,. (E(z,‘r‘) ={(=(6,C,.. 1) €CY G — 20| <rpforallv=1,...,n} and let {z}"_; be the center of each
disk.) Using the Cauchy's integral formula of one variable repeatedly, ("2t ]

o 1 f(Cluz2:"'1zn}
flz1,..0,2p) = Gy b, G- d¢y

B 1 .f(leCEleh 13‘-"&)
N (2'17) \/E;Dz = 4D, (Cl — 21 (Cz —32)

- (2;')”/ / om, © fm (¢ —zj((ifzzz)g(é )

Because @D is a rectifiable Jordanian closed curvel™!€ 3l and fis continuous, so the order of products and sums can be exchanged so the iterated integral

dg

can be calculated as a multiple integral. Therefore,

1 (e asGn)
Ly zy) = —— dcy - - - de,
f(ZI © ) (2’?1“3)”’ s/c;Dl »/‘ﬂﬂﬂ (cl —21)“' (Cn _zn} Cl C @




Power series expansion of holomorphic functions on polydisc [ edit]

If function fis holomorphic, on polydisc {z = (21, 22,...,2,) € C"; |2, —a,| <7y, forally =1,...,n}, from the Cauchy's integral formula, we

can see that it can be uniquely expanded to the next power series.

@)= D k(i —a)M (2 —an)
o=

0
o - o f / ACTRLIL) d¢y - --d¢ *pfw‘ ’Cr7
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)*7 29
Trick to finding multivariable Taylor Series.... é/
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Domain of holomorphy https://en.wikipedia.org/wiki/Domain of holomorphy 5 6 languages v
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From Wikipedia, the free encyclopedia

In mathematics, in the theory of functions of several complex variables, a domain of holomorphy is a domain
which is maximal in the sense that there exists a holomorphic function on this domain which cannot be extended to

a bigger domain.

Formally, an open set §2 in the n-dimensional complex space C" is called a domain of holomorphy if there do not
exist non-empty open sets U C Q2 and V C C™ where V is connected, V' ¢ Q and U C £2 M V such that for
every holomorphic function f on §2 there exists a holomorphic function g on V" with f = gon U

In the n = 1 case, every open set is a domain of holomorphy: we can define a holomorphic function with zeros

accumulating everywhere on the boundary of the domain, which must then be a natural boundary for a domain of

definition of its reciprocal. For m > 2 this is no longer true, as it follows from Hartogs' lemma. The sets in the definition. =

https://abel.math.harvard.edu/~knill/////////teaching/severalc
omplex 1996/severalcomplex.pdf

6 Domains of holomorphy

Definition An open set I in C™ is a domain of holomorphy, if one can not find two nonempty
open sets 'y € Us such that U5 is connected and not contained in U7, U; € Us N7 and so that
for every holomorphic function i on U, there is a holomorphic function hs on Us, which coincides
with h on [;.


https://abel.math.harvard.edu/~knill/teaching/severalcomplex_1996/severalcomplex.pdf
https://en.wikipedia.org/wiki/Domain_of_holomorphy

Is the punctured disc / polydisc a domain of holomorphy?
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