Math 383: Complex Analysis: Fall '21 (Williams)

Professor Steven J Miller: sjm1@williams.edu

Homepage:

https://web.williams.edu/Mathematics/sjmiller/public html/383Fa21/

Lecture 06: 9-22-21: https://youtu.be/m203nen0u4l

First 13 minutes here review path integration: https://www.youtube.com/watch?v=NgHIiZUYI6g

Plan for the day: Lecture 06: September 22, 2021:

https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa21/coursenotes/Math302_LecNotes_Intro.pdf

- Prove Cauchy's formulas
- See holomorphic and analytic are the same
- Apply Cauchy's formula to integrate

General items.

- Have choices in contours and integrands
- See why we have the conditions we do

1 Goursat's theorem

Corollary 3.3 in the previous chapter says that if f has a primitive in an open set Ω , then

$$\int_{\gamma} f(z) \, dz = 0$$

for any closed curve γ in Ω . Conversely, if we can show that the above relation holds for some types of curves γ , then a primitive will exist. Our starting point is Goursat's theorem, from which in effect we shall deduce most of the other results in this chapter.

Theorem 1.1 If Ω is an open set in \mathbb{C} , and $T \subset \Omega$ a triangle whose interior is also contained in Ω , then

$$\int_T f(z) \, dz = 0$$

whenever f is holomorphic in Ω .

2 Local existence of primitives and Cauchy's theorem in a disc

Theorem 2.1 A holomorphic function in an open disc has a primitive in that disc.

Theorem 2.2 (Cauchy's theorem for a disc) If f is holomorphic in a disc, then

$$\int_{\gamma} f(z) \, dz = 0$$

for any closed curve γ in that disc.

Corollary 2.3 Suppose f is holomorphic in an open set containing the circle C and its interior. Then

$$\int_C f(z) \, dz = 0.$$

Figure 6. A curve γ_z

Dont/ Amula Ring

Can we go from -6, to 62 entirely in 52

Theorem 4.1 Suppose f is holomorphic in an open set that contains the closure of a disc D. If C denotes the boundary circle of this disc with the positive orientation, then y lives on C

$$f(z) = \frac{1}{2\pi i} \int_C \frac{f(\zeta)}{\zeta - z} d\zeta$$
 for any point $z \in D$.

$$\int_{S} \frac{f(y)}{y-2} dy = 0 \quad \text{why is } \frac{f(y)}{y-2} \text{ holo in } \int_{S,\mathcal{E}} \text{ interar } 7 \text{ Figure 10. The keyhole } \Gamma_{\delta,\varepsilon}$$

$$\int_{S} \frac{f(y)}{y-2} dy + \int_{S} \frac{f(y)}{y-2} dy = 0 \quad \text{(took Inn } g \text{ S} \Rightarrow 0)$$

$$\begin{cases}
\frac{\xi(9)}{9.7}d9 = \frac{\xi(9)}{9.7}d9
\end{cases}$$
The Continued of The Continued of

Straty $\oint_{\mathcal{E}} \frac{f(J)}{g-7} dJ$ $\int_{\mathcal{E}} = 7 + \varepsilon e^{i\phi}$ of $0 \le \phi \le 2\pi$ $dg = i\varepsilon e^{i\phi} d\phi$ $f(g) = f(g) + \mathcal{E}(g,z)$ where $\mathcal{E}(g,z) \rightarrow 0$ as $\varepsilon \rightarrow 0$ $= \oint \frac{f(3) - f(2) + f(2)}{S - 2} dS = \oint \frac{f(3) - f(2)}{S - 2} dS + f(2) \oint \frac{dS}{S - 2}$ $= \oint \frac{f(3) - f(2) + f(2)}{S - 2} dS = \oint \frac{f(3) - f(2)}{S - 2} dS + f(2) \oint \frac{dS}{S - 2}$ $= \oint \frac{f(3) - f(2) + f(2)}{S - 2} dS = \oint \frac{f(3) - f(2)}{S - 2} dS + f(2) \oint \frac{dS}{S - 2}$ $= \oint \frac{f(3) - f(2) + f(2)}{S - 2} dS = \oint \frac{f(3) - f(2)}{S - 2} dS + f(2) \oint \frac{dS}{S - 2}$ $= \oint \frac{f(3) - f(2) + f(2)}{S - 2} dS = \oint \frac{f(3) - f(2)}{S - 2} dS + f(2) \oint \frac{dS}{S - 2}$ $= \oint \frac{f(3) - f(2) + f(2)}{S - 2} dS = \oint \frac{f(3) - f(2)}{S - 2} dS + f(2) \oint \frac{dS}{S - 2}$ $= \oint \frac{f(3) - f(2) + f(2)}{S - 2} dS = \oint \frac{f(3) - f(2)}{S - 2} dS + f(2) \oint \frac{dS}{S - 2}$ $= \oint \frac{f(3) - f(2) + f(2)}{S - 2} dS = \oint \frac{f(3) - f(2)}{S - 2} dS + f(2) \oint \frac{dS}{S - 2} dS$ $= \oint \frac{f(3) - f(2) + f(2)}{S - 2} dS = \oint \frac{f(3) - f(2)}{S - 2} dS + f(2) \oint \frac{dS}{S - 2} dS$ $= \oint \frac{f(3) - f(2) + f(2)}{S - 2} dS = \oint \frac{f(3) - f(2)}{S - 2} dS = f(2) + f(2) \oint \frac{dS}{S - 2} dS$ $= \oint \frac{f(3) - f(2) + f(2)}{S - 2} dS = f(2) + f(2) \oint \frac{dS}{S - 2} dS$ $= \oint \frac{f(3) - f(2) + f(2)}{S - 2} dS = f(2) + f$ = 27(15(2) $f(2) = \frac{1}{2\pi i} \delta \frac{f(3)}{5-2} d5$

Corollary 4.2 If f is holomorphic in an open set Ω , then f has infinitely many complex derivatives in Ω . Moreover, if $C \subset \Omega$ is a circle whose interior is also contained in Ω , then

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_C \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta$$

onsequence of $f(z) = \frac{1}{2\pi i} \oint \frac{f(y)}{y-z} dy$

for all z in the interior of C.

Man Proof: Induction

$$f^{(n+1)}(z) = \lim_{h \to 0} f^{(n)}(z+h) - f^{(n)}(z)$$

$$\frac{1}{2\pi i} \left(\frac{s(s)}{s(s-kh)} \right)^{n+1} \left(\frac{s(s)}{s(s)} \right)^{n+1} \left(\frac$$

Corollary 4.3 (Cauchy inequalities) If f is holomorphic in an open set that contains the closure of a disc D centered at z_0 and of radius R, then

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_C \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta$$

$$|f^{(n)}(z_0)| \le \frac{n! ||f||_C}{R^n},$$

where $||f||_C = \sup_{z \in C} |f(z)|$ denotes the supremum of |f| on the boundary $circle\ C$.

rele
$$C$$
.

$$||f||_C = \sup_{z \in C} |f(z)| \text{ denotes the supremum of } |f| \text{ on the boundary}$$

$$||f||_{C} = \sup_{z \in C} |f(z)| \text{ denotes the supremum of } |f| \text{ on the boundary}$$

$$||f||_{C} = \sup_{z \in C} |f(z)| \text{ denotes the supremum of } |f| \text{ on the boundary}$$

$$||f||_{C} = \sup_{z \in C} |f(z)| \text{ denotes the supremum of } |f| \text{ on the boundary}$$

$$||f||_{C} = \sup_{z \in C} |f(z)| \text{ denotes the supremum of } |f| \text{ on the boundary}$$

Integrate $\sin^2(x)/x^2$ and $1/(1+x^n)$ UZ SINZX du = 2510xcosxdx Conveyes: alternating and decreasing in abs value

Carche Need for mean todo Son Hardx Should be Zero as odd 1(M) S I X dx
A,B-SO -A (ase1: H = 18 Get 0 ZA(ase7: B = 2A Get $lin S = \frac{1}{4} \frac{x}{1+x^2} dx \approx lin = \frac{1}{1} \frac{1}{1+x^2} \frac{1}{$

f(g(x)) = XInverse Ens Chain Role S'(9(X)) 9'(X) =1 $g'(x) = \underbrace{\zeta'(g(x))}$ tan(a-ctanx) = X (0500 = cos(arctan X) ar(tan'1X) = tan'(arctan X) = JHX2 = Sec 2 (are tanx) = 605 (arctarx) =

$$\int_{1+x^2}^{\infty} \frac{dx}{1+x^2} = \int_{0}^{\infty} \operatorname{arctan}'(x)dx$$

$$= \operatorname{arctan}(x) - \operatorname{arctan}(0)$$

$$= \frac{\pi}{2}$$

$$= \frac{\pi}{2}$$

$$= \frac{\pi}{2}$$

$$= \frac{\pi}{2}$$

$$= \frac{\pi}{2}$$

Appendix added after the lecture:

https://en.wikipedia.org/wiki/Simply connected space

Key idea is simply connected.

Simply connected space

From Wikipedia, the free encyclopedia

In topology, a topological space is called simply connected (or 1-connected, or 1-simply connected [1]) if it is path-connected and every path between two points can be continuously

Definition and equivalent formulations [edit]

A topological space X is called *simply connected* if it is path-connected and any loop in X defined by $f:S^1\to X$ can be contracted to a point: there exists a continuous map $F:D^2\to X$ such that F restricted to S^1 is f. Here, S^1 and D^2 denotes the unit circle and closed unit disk in the Euclidean plane respectively.

An equivalent formulation is this: X is simply connected if and only if it is path-connected, and whenever $p:[0,1]\to X$ and $q:[0,1]\to X$ are two paths (that is, continuous maps) with the same start and endpoint (p(0)=q(0) and p(1)=q(1)), then p can be continuously deformed into q while keeping both endpoints fixed. Explicitly, there exists a homotopy $F:[0,1]\times[0,1]\to X$ such that F(x,0)=p(x) and F(x,1)=q(x).

A topological space X is simply connected if and only if X is path-connected and the fundamental group of X at each point is trivial, i.e. consists only of the identity element. Similarly, X is simply connected if and only if for all points $x,y\in X$, the set of morphisms $\operatorname{Hom}_{\Pi(X)}(x,y)$ in the fundamental groupoid of X has only one element. [2]

In complex analysis: an open subset $X\subseteq\mathbb{C}$ is simply connected if and only if both X and its complement in the Riemann sphere are connected.

The set of complex numbers with imaginary part strictly greater than zero and less than one, furnishes a nice example of an unbounded,

connected, open subset of the plane whose complement is not connected. It is nevertheless simply connected. It might also be worth pointing out that a relaxation of the requirement that X be connected leads to an interesting exploration of open subsets of the plane with connected extended complement. For example, a (not necessarily connected) open set has connected extended complement exactly when each of its connected components are simply connected.

This shape represents a set that is not simply connected, because any loop that encloses one or more of the holes cannot be contracted to a point without exiting the region.