Math 383: Complex Analysis: Fall ‘21 (Williams)

Professor Steven J Miller: siml1@williams.edu

Homepage:
https://web.williams.edu/Mathematics/similler/
public html/383Fa21/

Lecture 07: 9-24-21: https://youtu.be/girhkeCQpGw

Lecture 07: 9/22/17: Holomorphic is analytic, Cauchy's Inequalities, Liouville's Theorem, Fundamental Theorem of
Algebra: https://youtu.be/hle5zvG4Zr|



mailto:sjm1@williams.edu
https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa21/
https://youtu.be/girhkgCQpGw
https://youtu.be/hle5zvG4ZrI

Plan for the day: Lecture : September, 2021:

https://web.williams.edu/Mathematics/sjmiller/public html/383Fa21/coursenotes/
Math302 LecNotes Intro.pdf

* Holomorphic is analytic

* Cauchy's Inequalities

* Liouville's Theorem
 Fundamental Theorem of Algebra
* Integration Examples

General items.
* Don’t get the name Fundamental lightly....
* Flexibility in choosing contour / integrand....


https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa21/coursenotes/Math302_LecNotes_Intro.pdf

Theorem 4.1 Suppose f is holomorphic in an open set that contains

the closure of a disc D. If C denotes the boundary circle of this disc with
the positive orientation, then

) = L[ f¢)
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d(: for any point z € D.

Corollary 4.2 If f is holomorphic in an open set €2, then f has infinitely
many complexr derivatives in €. Moreover, if C' C §) 1s a circle whose
interior is also contained in ), then
Corollary 4.3 (Cauchy inequalities) If f is holomorphic in an open

f(n)( ) — n! / (<€) i set that contains the closure of a disc D centered at zq and of radius R,
- then
2“ 1 (C — 4)‘?’14—1
n!
o 10 (z0)] < M
for all z in the interior of C'.

where || f|lc = sup, ¢ | f(2)| denotes the supremum of | f| on the boundary
circle C.



Theorem 4.4 Suppose f is holomorphic in an open set Q). If D is a
disc centered at zg and whose closure is contained in (2, then f has a

power series expansion at zg

for all z € D, and the coefficients are given by Qn — for all n = 0.

Proof: Key idea is to add zero and then factor and use the geometric series formula:
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Corollary 4.5 (Liouville’s theorem) If f is entire and bounded, then
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Corollary 4.6 FEvery non-constant polynomial P(z) = a,z"™ + -+ + ag
with complex coefficients has a root in C.
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Corollary 4.7 FEvery polynomial P(z) = an,z™ + -+ + ag of degree n >

1 has precisely n roots in C. If these roots are denoted by wy, ..., w,,
then P can be factored as /
. M
P(z) =a,(z —wy)(z —wg) - (2 — wy,). ‘\/U/%(
A%
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