Math 383: Complex Analysis: Fall ‘21 (Williams)

Professor Steven J Miller: siml1@williams.edu

Homepage:
https://web.williams.edu/Mathematics/similler/
public html/383Fa21/

Le Ct U re 07 . 9-2 7_2 1 . https://youtu.be/wSgTEQ4usno

Lecture 08: 9/24/17: Cauchy Residue Theorem, Points of Accumulation, Integrating
1/(1+x"3): https://youtu.be/6CdYqD 1Zwg 1



mailto:sjm1@williams.edu
https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa21/
https://youtu.be/wSqTEQ4usno
https://youtu.be/6CdYqD_1Zwg

Plan for the day: Lecture 08: September 27, 2021:

https://web.williams.edu/Mathematics/sjmiller/public html/383Fa21/coursenotes/
Math302 LecNotes Intro.pdf

* Cauchy Residue Theorem
* Accumulation Theorem
* |Integration example: Integration 1/(1+x")

General items.
* How to recognize when two objects are the same
* Finding right paths: bring it over method


https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa21/coursenotes/Math302_LecNotes_Intro.pdf

Terminology: Zero, Pole, Principal Part, Residue A A
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Theorem 2.1 Suppose that f is holomorphic in an open set containing
a circle C' and its interior, except for a pole at zg inside C. Then

/ f(z)dz = 2mi res,, f.
C

Corollary 2.2 Suppose that f is holomorphic in an open set containing
a circle C' and its interior, except for poles at the points z1,...,zN inside
C. Then

N

Lf(z) dz = 2mi Z res,, f.

k=1



Corollary 2.2 Suppose that f is holomorphic in an open set containing

a circle C' and its interior, except for poles at the points zq1, ..., zN tnside
N
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Theorem 4.8 Suppose f is a holomorphic function in a region ) that
vanishes on a sequence of distinct points with a limit point in 2. Then
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Example 1.2.1 (‘Bring it over’ for Integrals) /e Bring it over method might De or -

Sfamiliar from Calculus, where it’s used to evaluate certain integrals. The basic idea I = / e“cosxdr = —
is to manipulate the equation to get the unknown integral on both sides and then 0
solve for it from there. For example, consider

ce™ + ¢

241
This is a truly powerful method — we ‘re able to evaluate the integral not by computing
it directly, but by showing it equals something known minus a multiple of itself.

m

I = / e“" cos zdr. Remark 1.2.2 Whenever we have a complicated expression such as (1.2), it’s worth

J0 checking the special cases of the parameter. This is a great way fo see if we 've made

. . . . S i . o
We integrate by parts twice. Let u = €¢* and dv = coszdz, so du = ce®“dzx and a mistake. Is it surprising, for example, that the final answer is negative for ¢ > 0.
m T Well, the cosine function is positive for x < m/2 and negative from /2 to 7, and

— [ vdu, we have e . . o
J0 the function e“* is growing. Thus, the larger values of the exponential are hit with
- . a negative term, and the resulting expression should be negative. (10 be honest, 1
- / ceC® sin rdr — _C/ 6T sin rdr. originally dropped a minus sign when writing this problem, and I noticed the error
0 0

. . m
v = sinxzdx. Since fo udv = -u.z,-'|
" 0

I = e“sinx

0 by doing this very test!) Another good check is to set ¢ = 0. In this case we have
™
. wdzx, which is just 0. This is what we get in (12) etting ¢ = 0.
We integrate by parts a second time. Then, we again take u = e“* and set dv = sin z, Jo cosxda, which is jus vis is what we get in (L.2) upon seting ¢
so du = ce““dx and v = — cosx. Thus, . )
_ Example above from The Probability Lifesaver.
I = —c / e sin zdx See also the Geometric Series Formula:
Jo
m ?.— — ( 2 P
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e GO =\ + X px)
= —ce™ —c—¢? / e“cosrdr = —ce™ —c— 21,
0

because the last integral is just what we re calling I. Re-arranging vields

(l/x)7’67<? = ) \

—

FR =

T+ = —ce™ —e, (1.2)



https://www.wolframalpha.com/
Integrate[1/(1 + x”n), {x, O, Infinity}, Assumptions -> {n > 1}]
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Integrate[1/(1 + x"n), {x, 0, Infinity}, Assumptions — {n € Integers,n > 1}]
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