Math 383: Complex Analysis: Fall ‘21 (Williams)
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Lecture 13: 10/06/17: 2015 Lecture: Complex Logarithm: https://voutu.be/bnZOX0KXSmg (2017 Review Problem Lecture: https://youtu.be/zxziY CD5Jzc)
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Plan for the day: Lecture : October 13, 2021:

https://web.williams.edu/Mathematics/sjmiller/public html/383Fa21/coursenotes/
Math302 LecNotes Intro.pdf

* Definition of complex logarithm
e Spaces where it is defined

General items.

 Power of defining functions via integrals
 Generalizing concepts from real analysis
 Power of accumulation


https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa21/coursenotes/Math302_LecNotes_Intro.pdf

Theorem 4.4 (Open mapping theorem) If f is holomorphic and non-
constant in a region $), then f 1s open.

Theorem 4.5 (Maximum modulus principle) If f is a non-constant

holomorphic function in a region $), then f cannot attain a maximum in
().

Corollary 4.6 Suppose that ) is a region with compact closure Q. If f
15 holomorphic on ) and continuous on $) then

sup [f(z)| = sup [f(z)].
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Simp]y connected space https://en.wikipedia.org/wiki/Simply connected space

From Wikipedia, the free encyclopedia

In topology, a topological space is called simply connected (or 1-connected, or 1-simply connected!')) if it is path-connected and every path between two points can be continuously
transformed (intuitively for embedded spaces, staying within the space) into any other such path while preserving the two endpoints in question. The fundamental group of a topological
space is an indicator of the failure for the space to be simply connected: a path-connected topological space is simply connected if and only if its fundamental group is trivial.
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https://en.wikipedia.org/wiki/Simply_connected_space

Branch cuts [edit] https://en.wikipedia.org/wiki/Branch point#Branch cuts

Roughly speaking, branch points are the points where the various sheets of a multiple valued function come together. The branches of the function are the various sheets of the function.
For example, the function w = z2 has two branches: one where the square root comes in with a plus sign, and the other with a minus sign. A branch cut is a curve in the complex plane
such that it is possible to define a single analytic branch of a multi-valued function on the plane minus that curve. Branch cuts are usually, but not always, taken between pairs of branch
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https://en.wikipedia.org/wiki/Branch_point#Branch_cuts

Theorem 6.1 Suppose that ) is simply connected with 1 € €2, and 0 ¢
(2. Then in ) there is a branch of the logarithm F'(z) = logn(2) so that

(1) F' s holomorphic in ).
(ii) ef'®) =2 for all z € Q,

(iii) F'(r) = logr whenever r is a real number and near 1.
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Theorem 6.1 Suppose that ) is simply connected with 1 € €}, and 0 ¢
(2. Then in € there is a branch of the logarithm F(z) = logn(z) so that

(i) F' is holomorphic in €2,

(ii) ef'®) =2z for all = € Q,

1) F(r) =loer whenever r 1s a real number and near 1. %
g

Proof. We shall construct F' as a primitive of the function 1/z. Since

0 ¢ €, the function f(z) = 1/z is holomorphic in €. We define

logn(z) = F(2) /f w) dw ) \é
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//eg/ F(r) = logr whenever r is a real number and near 1
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Theorem 6.2 If f s a nowhere vanishing holomorphic function in a
simply connected region ), then there exists a holomorphic function g on
() such that

fz) = 5.
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Theorem 6.2 If f s a nowhere vanishing holomorphic function in a
simply connected region (), then there exists a holomorphic function g on
() such that

f(z) = e9).
Proof. Fix a point zp in (), and define a function
() el dehoed a5 G (= o "’52
g(z) = [ ) dw + co. j(’%d> = Co C/’ﬂ%t 4 Q%):@
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Theorem 6.2 If f is a nowhere vanishing holomorphic function in a
stmply connected region (), then there exists a holomorphic function g on

Q) such that

f(z) = ),

The function g(z) in the theorem can be denoted by log f(z), and deter-
mines a “branch” of that logarithm.

Proof. Fix a point zg in (), and define a function

q(

Z

-

f'{u

Flw

)) dw + cq,

where ~ is any path in ) connecting zg to z, and ¢q is a complex number
so that e® = f(zp). This definition is independent of the path ~ since €2
is simply connected. Arguing as in the proof of Theorem 2.1, Chapter 2,
we find that g is holomorphic with

: f'(2)
g(z) =
f(z)
and a simple calculation gives
d —9(z)
- (f(z)e™9*)) =0,

so that f(z)e™9%) is constant. Evaluating this expression at zg we find
f(zo)e ° =1, so that f(z) = e9%) for all z € Q, and the proof is com-
plete.



Writing a function with prescribed zeros....

Much of math is about solving equations.

Example: polynomials:
@ ax +b=0,root x =—-b/a.
@ ax?+ bx + ¢ =0, roots (—b + Vb2 — 4ac)/2a.

@ Cubic, quartic: formulas exist in terms of coefficients; not
for quintic and higher.

In general cannot find exact solution, how to estimate?
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Cubic: For fun, here’s the solutionto ax® + bx2 +cx+d =0

Solve[ax™3 + bx*2 + ¢x + d = 0, x]

b 2173 (b2 +3ac
i =3 = - - - 13,..
38 35 (-2b*:9abc-272d+-+/4 (-b?*+3ac)®+ (-2b*+9abc-27a%d)?
J 3 2 |'. f 2 - 3 i 3 -.2 -”1- ks
-2b” +9abc-27a"d++/4 (-b*+3ac|”  + (-2b" +9abc-27a"d|
3 213, i
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One of four solutions to quartic ax* + bx3 +cx? +dx +e =0

Solve[ax"8 + bu"3 + cx"2 + dx + &= @, x]
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