Math 383: Complex Analysis: Fall ‘21 (Williams)

Professor Steven J Miller: siml1@williams.edu

Homepage:
https://web.williams.edu/Mathematics/sjmiller/
public htm|/383Fa21/

Lecture 16: 10-22-21: https://youtu.be/kzPm-0X HWS

10/18/17: Introduction to Conformal Maps: https://youtu.be/5klb8gxnQTc



mailto:sjm1@williams.edu
https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa21/
https://youtu.be/kzPm-0X_HW8
https://youtu.be/5klb8gxnQTc

Plan for the day: Lecture 16: October 22, 2021.:

https://web.williams.edu/Mathematics/sjmiller/public html/383Fa21/coursenotes/
Math302 LecNotes Intro.pdf

e Review inverse functions: f(g(z)) = g(f(z)) = z, application to derivatives (arctan)
* Conformal maps
* Specific conformal maps

General items.

» Differences b/w real and complex
 Seeing what theorems to use


https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa21/coursenotes/Math302_LecNotes_Intro.pdf

Inverse functions: f(g(z)) = z, get formula for g’(z) (do for exp-log)
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Given two open sets U and V in C, does there exist a holomorphic bijection between them?

Given an open subset Q of C, what conditions on Q guarantee that there exists a holomorphic bijection from Q to D?
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Propositiong'l.l If f:U —=V is holomorphic and injective, then
f'(z) #0 for all z € U. In particular, the inverse of f defined on its

range is holomorphic, and thus the inverse of a conformal map is also
holomorphic. 4
First prove f’(z) is never zero, then prove its inverse is holomorphic.
Comment: Is this true if f is real analytic? ><3
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Proposition 1.1 If f:U —V is holomorphic and injective, then Theorem 4.3 (Rouché’s theorem) Suppose that f and g are holo-
f'(2) #0 for all z € U. In particular, the inverse of f defined on its morphic in an open set containing a circle C' and its interior. If

range is holomorphic, and thus the inverse of a conformal map is also ()] > 9(2)]

for all z € C,
holomorphic.

then f and f + g have the same number of zeros inside the circle C.

Proof. We argue by contradiction, and suppose that f/(@)) = 0 for
some e U. Then

f(2) W) = a(z — &)* + G(=) for all = near &.

with a # 0, k > 2 and G vanishing to order k + 1 at &,. For sufficiently
small w, we write

f(z) Wﬂ@{ﬂé— w= F(z)+ G(z), where F(2)=a(z — &)F — w.

Since |G(z)| < |F(z)| on a small circle centered at zg, and F' has at
least two zeros inside that circle, Rouché’s theorem implies that f(z) —
,ﬁ/ﬂl@%) — w has at least two zeros there. Since f'(z) £ 0 for all z £ f but
sufficiently close to € it follows that the roots of f (z) #4e% — w are

distinct, hence f is not injective, a contradiction.
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Below is the rest of the proof of the theorem, the differentiability of the inverse.
The proof is standard, following from the definition and the fact that the derivative of f is never zero.

Note this is different than the real case, where we can have a real analytic bijection whose derivative vanishes at a
point, namely f(x) = x3.

Now let ¢ = f~! denote the inverse of f on its range, which we can
assume is V. Suppose wo € V and w is close to wg. Write w = f(z) and
wo = f(z0). If w# wo, we have

g(w) — g(wo) 1 1

. w—wWp f(z)—f(z0)
18 wo g(w}—g(u‘ﬂ) Z—ZD -

Since f'(zp) # 0, we may let z — zp and conclude that ¢ is holomorphic
at wo with ¢'(we) = 1/ f"(g(wo)).
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2 1 —w

1t — 2
F(z)= and G(w) =1 .
(2) i+ z () 1 +w
Theorem 1.2 The map F :H — D s a conformal map with inverse
G:D— H. . -
_ b 6 - <
Flz ] := (I -2)/ (I + 2) é%“ XHg° g7 {2 (=] /f
f[z_] := {Re[F[z]], Im[F[z]]};

Manipulate[ParametricPlot[f[t], {t, -c, c}], {c, .01, 10}]
Manipulate[ParametricPlot[f[t + .5I], {t, -c, c}], {c, .01, 10}]
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Show[Manipulate[ParametricPlot[{{rCos[t], rSin[t]}, f[t + clI ]}, {t, —15,15}], {c,0,100}, {r, 1,2}”
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1. Conformal equivalence and examples 213
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