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Plan for the day: Lecture 17: October 25, 2021.:

https://web.williams.edu/Mathematics/sjmiller/public html/383Fa21/coursenotes/
Math302 LecNotes Intro.pdf

* Fractional Linear Transformations / Mobius Transformations
* Geometric Intuition

* Automorphisms of the Unit Disk

e Schwarz Lemma

General items.
* Differences between real and complex


https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa21/coursenotes/Math302_LecNotes_Intro.pdf

Linear fractional transformation

From Wikipedia, the free encyclopedia

This article may be too technical for most readers to understand. Please help improve it to
G .. make it understandable to non-experts, without removing the technical details. (March 2019)
‘ (Learn how and when to remove this template message)

In mathematics, a linear fractional transformation is, roughly speaking, a transformation of the form

az+b
cz+d’

which has an inverse. The precise definition depends on the nature of a, b, ¢, d, and =. In other words, a linear fractional transformation is a

2

fransformation that is represented by a fraction whose numerator and denominator are linear.

In the most basic setting, a., b, ¢, d, and = are complex numbers (in which case the transformation is also called a Mébius transformation), or
more generally elements of a field. The invertibility condition is then ad — bec # 0. Over a field, a linear fractional transformation is the
restriction to the field of a projective transformation or homography of the projective line.

When a, b, ¢, d are integer (or, more generally, belong to an integral domain), = is supposed to be a rational number (or to belong to the field
of fractions of the integral domain. In this case, the invertibility condition is that ad — bc must be a unit of the domain (that is 1 or =1 in the

case of integers).[]

In the most general setting, the a, b, ¢, d and = are square matrices, or, more generally, elements of a ring. An example of such linear
fractional transformation is the Cayley transform, which was originally defined on the 3 x 3 real matrix ring.



Baker—Campbell-Hausdortt formula
From Wikipedia, the free encyclopedia [ >(/ ‘7/J = X V* VK

(Redirected from Baker-Campbell formula)

In mathematics, the Baker-Campbell-Hausdorff formula is the solution for Z to the equation

XY — o7

for possibly noncommutative X and Y'in the Lie algebra of a Lie group. There are various ways of writing the formula, but all ultimately yield
an expression for Z in Lie algebraic terms, that is, as a formal series (not necessarily convergent) in X and Y and iterated commutators
thereof. The first few terms of this series are:

1 1 1
Z=X+Y+ _[XHY] + _[X= [X&YH - —[Y, [X,Y” T
2 12 12
where "- - -" indicates terms involving higher commutators of X and Y. If X and Y are sufficiently small elements of the Lie algebra g of a

Lie group (7, the series is convergent. Meanwhile, every element g sufficiently close to the identity in ( can be expressed as g = e for a
small X in g. Thus, we can say that near the identity the group multiplication in G—written as eXe! = eZ—canbe expressed in purely Lie
algebraic terms. The Baker—Campbell-Hausdorff formula can be used to give comparatively simple proofs of deep results in the Lie group-

Lie algebra correspondence.



Matrix Form of FLT....
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flz a ,b ,c ,d ] = (az + b) / (cz + d)
’F ( —P (Z/) > — Simplify[f[f[z, al, b1, c1, d1], a2, b2, c2, d2]]
dé(a( /HZC@ Simplify[f[f[z, a2, b2, c2, d2], al, bl, cl1, d1]]
Simplify[Simplify[f[f[1/2, al, b1, c1, d1], a2, b2, c2, d2]] -
Simplify[f[f[1/2, a2, b2, c2,d2], al, bl, cl1, dl]]]
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Simplify[f[f[z, al, b1, c1, d1], a2, b2, c2, d2]]
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1 — Z 1 — w
F(z)= Fa and G(w) = ET;

Theorem 1.2 The map F :H — D is a conformal map with inverse

G:D — H. : _ |
Flz ] := (I -2)/(I + 2) i%*" Xﬁi'ﬁﬂ {%*(:&’/'{(j?

f[z_] := {Re[F[z]], Im[F[2]]};

Manipulate [ParametricPlot[f[t], {t, -¢, c}], {c, .01, 10}]
Manipulate[ParametricPlot[f[t + .51I], {t, -¢, c}], {c, .01, 10}] |




Matrix Form of FLT...
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‘[z ,alpha 1 := (alpha - z) / (1 - Conjugate[alpha] z); o — =

ef([r_, theta_, alpha_] := Re[f[rExp[I theta], alpha]] Uo(z) = ——, where a € C with |a| < 1.

mf[r , theta , alpha ] := Im[f[rExp[I theta], alpha]] 1 —az

Ianipalate[Pa_rametric_Plut[[{Cos[t], Sin[t]}, {ref[r, t, a+Ib], imf[r, t, a+Ib]}}, Va(0) =a and  a(a) = 0.
(t, @, 2Pi}], {r, @, 1}, {b, @, Sqrt[l-a~2]}, {a, 0, 1}]

0.3 — 4+ | =R |—
; 0

0.24 — kit =R |
a 0

0.446 — ||+ R —
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Val(z) = 1 _ ., where a € C with || < 1. Va(0) =a and Yu(a)=0.
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The Schwarz lemma
Lemma 2.1 Let f: D — D be holomorphic with f(0) = 0. Then

(1) |f(2)| < |z| for all z € D.
(ii) If for some zq # 0 we have |f(zq)| = |z0|, then f is a rotation.

(iii) |f'(0)] <1, and if equality holds, then f is a rotation.
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(1) |f(2)| < |z| for all z € D.
Expand in a power series, study f(z)/z, look at in D(r) ’ \ @S5
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(ii) If for some zg # 0 we have |f(z9)| = |z0|, then f is a rotation.

For (ii), we see that f(z)/z attains its maximum in the interior of D and
must_therefore be constant, say f(z) = cz. Ewvaluating this expression

at zp and taking absolute values, we find that |¢| = 1. Therefore, there
exists # € R such that ¢ = ¢’ and that explains why f is a rotation.
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(iii) |f'(0)] < 1, and if equality holds, then f is a rotation.

View g(z) = f(z)/z as a derivative at z=0....

Finally, observe that if g(z) = f(z)/z, then |g(z)| < 1 throughout D,

and moreover

-

=z—0 s

sznc:e, if | f/(0)| =1, then |g(0)| = 1, and by the maximum principle g is
constant, which implies f(z) = ¢z with |¢| = 1. :
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The "Real' Schwarz lemma (with David Thompson): American Mathematical Monthly. (118 (October 2011), no. 8, page 725) pdf

https://web.williams.edu/Mathematics/sjimiller/public html/math/papers/realschwarz10.pdf

Lemma 2.1 Let f: 1D — D be holomorphic with f(0) =0. Then
(1) [f(2)| < |z| for all z € D,

(1) If for some zo # 0 we have |f(20)| = |z0|, then f is a rotation.

(i) 0)| <1, and if equality holds, then f is a rotation.
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It’s interesting to consider the real analogue. In that situation, we’re seeking a real analytic map
g from (—1,1) to itself with g(0) = 0 and derivative ¢'(0) as large as possible. After a little ex-
ploration, we quickly find two functions with derivative greater than 1 at the origin. The first is
g(x) = sin(mwx/2), which has ¢’(0) = 7w/2 € (1,2). The second is actually an infinite family: let-
ting go(z) = (a + 1)z/(1 + ax?) we see that g, is real analytic on (—1, 1) so long as |a| < 1, and
g.(0) = 1 + a. Using this example, we see we can get the derivative as large as 2 at the origin.
Unfortunately, if we take |a| > 1 then g, is no longer a map from (—1, 1) to itself; for example,
g1.01(.995) > 1.00001.

elx_, a_] t= (a+1) x / (L + ax"2)
Simplify [D[g[x, al., x]]
Manipulate[Plot[ {1, —1, x, g[>x, a]l X, {xs —1, 13}] . {a, 88, 3}1]

(1L + a) {—1+ax2j

{1+ax2:]2
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THE *REAL' SCHWARZ LEMMA
STEVEN J. MILLER AND DAVID A. THOMPSON

ABSTRACT. The purpose of this note & to discuss the real analogue of the Schwarz lemma from
complex analysis. We give two versions of a potential article; one is written to be a shont note, while
the other is written to be a box. We have tnied to make the note and box versions as short as possible,
but of course would be happy to add (or delete) details / images if that is desirable. We prefer the note
VErsion, as it gives us a chance to tell more of the story / set the stage.

1. NOTE VERSION

One of the most common themes in any complex analysis course is how different functions of
a complex variable are from functions of a real variable. The differences can be striking, ranging
from the fact that any function which is complex differentiable once must be complex differentiable
infinitely often gnd further must equal its Taylor series, to the fact that any complex differentiable
function which is bounded must be constant. Both statements fail in the real case; for the first con-
sider 1 sin(1/x) while for the second just consider sin . In this note we explore the differences
between the real and complex cases of the Schwarz lemma:

The Schwarz Lemma: If [ is a holomorphic map of the unir disk to itself that fixes the origin, then
[ F(0)| = 1, further, if | f'(0)] = 1 then [ is an automorphism (in fact, a rotation),

What this means is that we cannot have [ locally expanding near the origin in the unit disk faster
than the identity function, even if we were willing to pay for this by having f contracting a bit near
the boundary. The largest possible value for the derivative at the origin of such an awtomorphism
is 1. This result can be found in every good complex analysis book (see for example [Al, La, 55]),
and serves as one of the key ingredients in the proof of the Riemann Mapping Theorem. For more
information about the lemma and its applications, see the recent article in the Monthly by Harold

Boas [Bo].
It’s interesting to consider the real analogue. In that situation, we're seeking a real analytic map
g from (=1, 1) to itself with g(0) = 0 and derivative '(0)) as large as possible. After a little ex-

ploration, we quickly find two functions with derivative greater than 1 at the origin. The first is
glx) = sin(wx/2), which has ¢'(0) = /2 & (1,2). The second is actually an infinite family: let-
ting ga(x) = {a + 1)x/(1 + ax?) we see that g, is real analytic on (—1,1) so long as |a| < 1, and
g,(0) = 1 + a. Using this example, we see we can get the derivative as large as 2 at the origin,
Unfortunately, if we take |a| > 1 then g, is no longer a map from (—1,1) to itself; for example,
gu.01(.995) = 100001,

Notice both examples fail if we try to extend these automorphisms to maps on the unit disk. For
example, when = = 3i/5 then already sin(rz/2) has absolute value exceeding 1, and thus we would
not have an automorphism of the disk. For the family g,, without loss of generality take @ > 0. As
= —+ i then g,(z) —+ =21, which is outside the unit disk if a > 0.

While it is easy to generalize our family {g,} to get a larger derivative at 0, unfortunately all the
examples we tried were no longer real analytic on the entire interval (=1, 1). As every holomorphic
function is also analytic (which means it equals its Taylor series expansion), it seems only fair 10

Diare: December 10, 2000,

We thank our classmates from Math 302: Complex Analysis (Willlams College, Fall 2010} for many enlightening
conversations, especially David Gold and Liyang Zhang, as well as Jonathan Sondow for comments on an carlier draft.
The first numed author was partially supported by NSF grant DMS0970067,

2 STEVEN 1. MILLER AND DAVID A. THOMPSON

FiGure 1. Plot of the scaled error functions. (1) Left: Erfikz)/Erf(x) for k €
{1,5 10,50} and x € (—1,1); (2) Right: Plot of |Exf(z)| for |z] < 1.

require this property to hold in the real case as well. Interestingly, there is a family of real analytic
automorphisms of the unit interval fixing the origin whose derivatives become arbitrarily large at 0.
Consider fiy(x) = erf(kx) ferf(k), where exf is the error function:

x

9 "
erf{x) = — e dt.
@ =
We conclude with our main result, which is another example of the striking differences between
functions of a real and functions of a complex variable,

The Real Analogue of the Schwarz Lemma: Let F be the set of all real analytic awtomorphisms
of (—1,1) that fix the origin. Then sup . ¢ |['(0)| = oo in other words, the first derivative at the
origin can be made arbitrarily large by considering [u(r) = vef{kx) ferf(k),

Proof: The error function has a series expansion converging for all complex =,

erf(z) = 2 ¥ _[_”“:J"II . (- B i + i - i-}- . )
T VEE ey AU 30 2
(this follows by using the series expansion for the exponential function and interchanging the sum
and the integral), and is simply twice the area under a normal distribution with mean 0 and variance
1/2 from [ to x. From its definition, we see erf( =) = —erf|{r), the error function is one-to-one, and
for r € (—1,1) our function erf (kx)/erf(k) is onto (-1, 1).

Using the Fundamental Theorem of Caleulus, we see that b (x) = 2exp(—k*x*)k)/ Terl( k),
and thus &g (0) = 2k//Terf(k). As erf(k) — 1 as k — oo, we find h{(0) ~ 2k/\/T — oo, which
shows that, vet again, the real case behaves in o markedly different manner than the complex one, As
My, is an entire function with large derivative at 0, if we regard it as a map from the unit disk it must
violate one of the conditions of the Schwarz lemma. From the series expansion of the error function,
it"s clear that if we take = = iy then fig(iy) tends to infinity as y =+ 1 and k =+ oo; thus fy, does not
map the unit disk into itself, and cannot be a conformal automorphism (see Figure | for plots in the
real and complex cases). O



2. BoxX VERSION

The Schwarz lemma states that if f is a holomorphic map of the unit disk to itself that fixes
the origin, then |f'(0)| < 1: further, if |f’(0)] = 1 then f is an automorphism. It’s interesting to
consider the real analogue. In that situation, we’re seeking a real analytic map g from (—1,1) to
itself that fixes the origin and has derivative ¢’(0) as large as possible. After a little exploration, we
find hy(z) = erf(kx)/erf(k), where erf is the error function:

2 'E :
erf(x) := VTF/[} et dt.

The error function has a series expansion converging for all complex z,

9 oo [:_1}1-1:21-1+1 9 -3 -5 »7
erf(2) = VTF; n!(2n + 1) h x_ﬁ (: - ?_F 10 42 +) '
and 1s simply twice the area under a normal distribution with mean 0 and variance 1/2 from 0 to x.
We have h(x) = 2exp(—k*2?)k)//merf(k), and thus hl(0) = 2k//merf(k). As erf(k) — 1
as k — oo, we see h)(0) ~ 2k/\/m — oo, which shows that, yet again, the real case behaves in a
markedly different manner than the complex one.
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