Math 383: Complex Analysis: Fall ‘21 (Williams)

Professor Steven J Miller: siml1@williams.edu

Homepage:
https://web.williams.edu/Mathematics/similler/
public html/383Fa21/

Lecture 21: 11-3-21: https://youtu.be/-TpU7PdIEfO

Lecture 21: 11/01/17: Introduction to the Riemann Zeta Function, Partial Summation: https://youtu.be/7wuZQyd1nYc
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Plan for the day: Lecture 2: November , 2021:

https://web.williams.edu/Mathematics/sjmiller/public html/383Fa21/coursenotes/
Math302 LecNotes Intro.pdf

* Finish proof of the Riemann Mapping Theorem
* Introduce the Riemann Zeta Function
* Introduce the Gamma Function

General items.

 Techniques: Partial Summation

 Techniques: Functional Equation

 Techniques: Analytic Continuation

* Number Theory the inspiration for much of Complex Analysis


https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa21/coursenotes/Math302_LecNotes_Intro.pdf

Montel’s Theorem:

Theorem 3.3 Suppose F is a family of holomorphic functions on §) that
1s uniformly bounded on compact subsets of 2. Then:

(i) F s equicontinuous on every compact subset of €2.

(i) F is a normal family.



Theorem 3.1 (Riemann mapping theorem) Suppose (2 is proper and
simply connected. If zog € €1, then there exists a unique conformal map

F :Q — I such that
F(z) =0 and F'(z) > 0.

Corollary 3.2 Any two proper simply connected open subsets in C are
conformally equivalent.
Step 1. Use logarithm to say wlog map from disk to disk.

Step 2. Use Montel to get a map with maximal derivative at origin. SL c

Step 3. Show it is conformal (if not contradicts maximality). _g ;
A



Step 2. By the first step, we may assume that (2 is an open subset of D
with 0 € €. Consider the family F of all injective holomorphic functions
on {2 that map into the unit disc and fix the origin:

F ={f:Q — D holomorphic, injective and f(0) = 0}.

First, note that F is non-empty since it contains the identity. Also,
this family is uniformly bounded by construction, since all functions are
required to map into the unit disc.

Now, we turn to the question of finding a function f € F that max-
imizes |f’(0)|. First, observe that the quantities |f/(0)| are uniformly
bounded as f ranges in /. This follows from the Cauchy inequality
(Corollary 4.3 in Chapter 2) for f’ applied to a small disc centered at
the origin.

Next, we let

s = sup [f'(0)].
feF

and we choose a sequence { f,,} C F such that |f] (0)| — s asn — oc. By
Montel’s theorem (Theorem 3.3), this sequence has a subsequence that
converges uniformly on compact sets to a holomorphic function f on Q.
Since s > 1 (because 2 — 2 belongs to F), f is non-constant, hence injec-
tive, by Proposition 3.5. Also, by continuity we have
1f(2)] €1 for all z € 2 and from the maximum modulus principle we
see that |f(z)| < 1. Since we clearly have f(0) =0, we conclude that
f € F with [f/(0)| = s.



Step 3. In this last step, we demonstrate that f is a conformal map
from {1 to Ib. Since f is already injective, it suffices to prove that [ is
also surjective. If this were not true, we could construct a function in JF
with derivative at 0 greater than s. Indeed, suppose there exists a € I
such that f(z) # o, and consider the automorphism v, of the disc that
interchanges 0 and o, namely

!-'-I"c:{E] - 1 —_ﬁzl

Since (1 is simply connected, so is U = (¥, o f)(€2), and moreover, U
does not contain the origin. It is therefore possible to define a square
root function on U by

glw) = eTloEw
Next, consider the function
F = Yg(a)ogotpao [
We claim that F' € F. Clearly F' is holomorphic and it maps 0 to 0.

Also F' maps into the unit disc since this is true of each of the functions
in the composition. Finally, F' is injective. This is clearly true for the

automorphisms %, and ¥,.,,; it is also true for the square root g and
the function f, since the latter is injective by assumbtinu. If h denotes
the square funetion h{w) = w?, then we must have

f=vy'ohoy 0o F=®cF.

But @ maps [ into I} with @(0) = 0, and is not injective because F is
and h is not. By the last part of the Schwarz lemma, we conclude that
|#'(0)| < 1. The proof is complete once we observe that

f'(0) = ®"(0)F'(0),
and thus
f(0)] < [F(0)],

contradicting the maximality of |f'(0) in F.
Finally, we multiply f by a complex number of absolute value 1 so
that f'(0) = 0, which ends the proof.

Remark. It is worthwhile to point out that the only places where
the hypothesis of simple-connectivity entered in the proof were in the
uses of the logarithm and the square root. Thus it would have suf-
ficed to have assumed (in addition to the hypothesis that  is proper)
that 1 is holomorphically simply connected in the sense that for
any holomorphic function [ in € and any closed curve -y in 2, we have
J:r flz)dz = 0. Further discussion of this point, and various equivalent
properties of simple-connectivity, are given in Appendix B.



Lemma (Partial Summation: Discrete Version)

n
N N-1 Aﬂ: g A

Z ”n'bn = Anby — Ap—100 + Z -'lrJ”J'.IL - '!I-‘IH 1) ” = M

A= M M
Lemma (Abel’s Summation Formula - Integral Version) Let h(x) be a continuously
differentiable function. Let A(x) =5

e Bn. Then

Z ahin) = Alx)hix) / A(u)h' (w)du
J1

n<Fr

Proof: See the beginning of Lecture 21: 11/01/17: Introduction to the Riemann
Zeta Function, Partial Summation: https://youtu.be/7wuZQydInYc
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https://youtu.be/7wuZQyd1nYc

For s > 0 (or actually R(s) > 0), the Gamma function ['(s) 1s

> - dx
['(s) := / e T ldr = [ =
Jo Jo

M

Existence of ['(s)
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Functional equation of I'(s): The Gamma function satisfies
['(s+1) = sl(s).

This allows us to extend the Gamma function to all s. We call the extension the
Gamma function as well, and i1t’s well-defined and finite for all s save the negative
integers and zero.

L _x
lﬁ%/g’g/) - So c ~ _x
ws X© s = e A

S
/( = —_
Au = 5X§ /{X v =

(g«) = S @ X = 1) =



['(s) and the Factorial Function. If n is a non-negative integer, then I'(n+1) = n!.
Thus the Gamma function 1s an extension of the factorial function.
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The cosecant identity. If s 1s not an integer, then

['(s)I'(1 — s) = mese(ms)

i

sin(ms)

I(1/2) = 7

<
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Riemann Zeta Function
() =S~ = T (1—%)  Re(s) > 1.

.n:1F p prime P
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@ = Yo -T(1-%)

m(X) #{p : pis prime,p < x}
Properties of ((s) and Primes:

@ lims_,1+ ((8) = o0, w(X) — .

° ((2) =%, n(x) = oc.

Re(s) > 1
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((8) = Z% = |] (1—%)_ . Re(s) > 1.

n=1 p prime

Functional Equation:

§(s) = T(3)m#(s) = €(1-9)

Riemann Hypothesis (RH):

1 1

All non-trivial zeros have Re(s) = 5 can write zeros as §+ify.

Observation: Spacings b/w zeros appear same as b/w
. " . —T
eigenvalues of Complex Hermitian matrices A = A.



1.0 1.5 2.0 25 A0

70 million spacings b/w adjacent zeros of ((s), starting at
the 102°™" zero (from Odlyzko).



Explicit Formula Linear Algebra .
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¢'(s) d
(s) ~ ds log ((s)







¢'(s)
¢(s)

d d
—d—S|OQC(S) —
23 log (1-p~°)
ds p

logp - p~
Z 1 _p—S — Z
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_¢'(s)
¢(s)
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Estimating number of primes up to x....
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Euclid’s Proof



Euclid-Mullin sequence
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OFEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

013527 THE ON-LINE ENCYCLOPEDIA
» 1S9 OF INTEGER SEQUENCES ®©

10221121

founded in 1964 by N. J. A. Sloane

H Search ‘ Hints

(Greetings from The On-Line Encyclopedia of Integer Sequences!)

) Euclid-Mullin sequence: a(1) = 2. a(n+1) 1s smallest prime factor of 1 + Product_{k=1..n} a(k).
(Formerly M0863 N0329)
, 7, 43, 13, 53, 5, 6221671, 38789183818571, 13%, 2881, 11, 17, 5471, 52662739, 23883,
3651606289, 37, 1741, 1313797957, 887, 71, 7127, 18%, 23, 97, 159227,
7979496346622308150%857, 1083, 1879958819, 9539, 3143865813, 29, 3847, 89, 1%, 577, 223, 135783,
9649, 61, 4357 (list; graph; refs; listen: history; text; internal format)
T 1,1
ENTS "Does the sequence ... contain every prime? ... [It] was considered by Guy and
Nowakowski and later by Shanks, [Wagstaff 1993] computed the sequence through the
43rd term. The computational problem inherent in continuing the sequence further
is the enormous size of the numbers that must be factored. Already the number
a(1)* ... *a(43) + 1 has 180 digits." - Crandall and Pomerance
If this wvariant of Euclid-Mullin sequence is initiated either with 3, 7 or 43
instead of 2, then from a(5) onwards it is unchanged. See also AB51614. - Labos
Elemer, May 63 28084
Wilfrid Keller informed me that a(1)* ... #*a(43) + 1 was factored as the product of
two primes on Mar 89 2818 by the GNFS method. See the post in the Mersenne Forum
for more details. The smaller 68-digit prime is a(44). Terms a(45)}-a(47) were
easy to find. Finding a(48) will require the factorization of a 256-digit number.
See the b-file for the four new terms. - T. D. MNoe, Oct 15 20816
On Sep 11 2812, Ryan Propper factored the 256-digit number by finding a 75-digit
factor by using ECM. Finding a(52) will require the factorization of a 335-digit
number. See the b-file for the terms a(48) to a(51). - V. Raman, Sep 17 20812
Needs longer b-file. - M. 3. A. Sloane, Dec 18 2815
AB56756 gives the position of the k-th prime in this sequence for each k. - Jianing
Song, May @7 20821
Named after the Greek mathematician Euclid (flourished c. 388 B.C.) and the
American engineer and mathematician Albert Alkins Mullin (1933-2817). - Amiram

T. D. Noe and Ryan Propper, Table of n, a(n) for n = 1..51 (first 47 terms
from T. D. Noe)

Andrew R. Booker, On Mullin's second sequence of primes, Integers, Vol. 12,
No. 6 (2012), pp. 1167-1177; arXiv preprint, arXiv:1107.3318 [math.NT], 2011-
2013.

Andrew R. Booker, A variant of the Euclid-Mullin sequence containing every
prime, arXiv preprint arXiv:1605.08929 [math.NT], 2016.

Andrew R. Booker and Sean A. Irvine, The Euclid-Mullin graph, Journal of
Number Theory, Vol. 165 (2016), pp. 30-57; arXiv preprint, arXiv:1508.03039
[math.NT], 2015-2016.

Cristian Cobeli and Alexandru Zaharescu, Promenade around Pascal Triangle-
Number Motives, Bull. Math. Soc. Sci. Math. Roumanie, Vol. 56(104), No. 1
(2013), pp. 73-98.

Keith Conrad, The infinitude of the primes, University of Connecticut, 2020.
C. D. Cox and A. J. van der Poorten, On a sequence of prime numbers, Journal
of the Australian Mathematical Society, Vol. 8 (1968), pp. 571-574.
FactorDB, Status of EM51.

Richard Guy and Richard Nowakowski, Discovering primes with Euclid, Research
Paper No. 260 (Nov 1974), The University of Calgary Department of
Mathematics, Statistics and Computing Science.

Lucas Hoogendijk, Prime Generators, Bachelor Thesis, Utrecht University
(Netherlands, 2020).

Robert R. Korfhage, On a sequence of prime numbers, Bull Amer. Math. Soc.,
Vol. 70 (1964), pp. 341, 342, 747. [Annotated scanned copy]

Evelyn Lamb, A Curious Sequence of Prime Numbers, Scientific American blog
(2019) .

Des MacHale, Infinitely many proofs that there are infinitely many primes,
Math. Gazette, Vol. 97, No. 540 (2013), pp. 495-498.

Mersenne Forum, Factoring 43rd Term of Euclid-Mullin sequence.

Mersenne Forum, Factoring EM47.

Romeo MesStrovié¢, Euclid's theorem on the infinitude of primes: a historical
survey of its proofs (300 BC--2012) and another new proof, arXiv preprint
arXiv:1202.3670 [math.HO], 2012.

Albert A. Mullin, Research Problem 8: Recursive function theory, Bull. Amer.
Math. Soc., Vol. 69, No. 6 (1963), p. 737.

Thorkil Naur, Letter to N. J. A. Sloane, Aug 27 1991, together with copies of
"Mullin's sequence of primes is not monotonic" (1984) and "New integer
factorizations" (1983) [Annotated scanned copies]

OEIS wiki, OEIS sequences needing factors

Paul Pollack amd Enrique Trevifio, The Primes that Euclid Forgot, Amer. Math.
Monthly, Vol. 121, No. 5 (2014), pp. 433-437. MR3193727; alternative link.
Samuel S. Wagstaff, Jr., Emails to N. J. A. Sloane, May 30 1991.

Samuel S. Wagstaff, Jr., Computing Euclid's primes, Bull. Institute Combin.
Applications, Vol. 8 (1993), pp. 23-32. (Annotated scanned copy)
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https://oeis.org/A000945/b000945.txt
https://doi.org/10.1515/integers-2012-0034
https://arxiv.org/abs/1107.3318
https://arxiv.org/abs/1605.08929
https://doi.org/10.1016/j.jnt.2016.01.013
https://arxiv.org/abs/1508.03039
http://rms.unibuc.ro/bulletin/pdf/56-1/PromenadePascalPart1.pdf
https://kconrad.math.uconn.edu/blurbs/ugradnumthy/infinitudeofprimes.pdf
http://dx.doi.org/10.1017/S1446788700006236
http://factordb.com/index.php?showid=1100000000535556602
https://oeis.org/A000945/a000945_5.pdf
https://dspace.library.uu.nl/handle/1874/394848
https://oeis.org/A000945/a000945_3.pdf
https://blogs.scientificamerican.com/roots-of-unity/a-curious-sequence-of-prime-numbers/
http://dx.doi.org/10.2307/3621650
http://www.mersenneforum.org/showthread.php?p=207854#post207854
http://www.mersenneforum.org/showthread.php?p=311145
http://arxiv.org/abs/1202.3670
http://dx.doi.org/10.1090/S0002-9904-1963-11017-4
https://oeis.org/A000945/a000945.pdf
https://oeis.org/wiki/OEIS_sequences_needing_factors
http://www.jstor.org/stable/10.4169/amer.math.monthly.121.05.433
http://pollack.uga.edu/mullin.pdf
https://oeis.org/A000945/a000945_1.pdf
https://oeis.org/A000945/a000945_4.pdf

Dirichlet eta function

=t 1 1 11 Y n(s)
T.?(S) Z ) . 34_ S_4s_|_... ,:(1_21—3)(;(3) :I‘{s) . Em+1dm C(S):1—21_3

n=1
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