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Plan for the day: Lecture 22: November 8, 2021:

https://web.williams.edu/Mathematics/sjmiller/public html/383Fa21/coursenotes/
Math302 LecNotes Intro.pdf

* Recurrence relations (especially for sums)
 Stirling’s Formula (integral test, dyadic analysis)

General items.

 Methods to attack: special cases @/@4/ ‘O/T
 Methods to attack: perturb easier problem

 Methods to attack: dyadic decompositions
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The Gamma function. The Gamma function I'(s) 1s
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Stirling’s formula: As n — oo, we have
n! =~ n"e "V2mn:

by this we mean
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More precisely, we have the following series expansion:
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Crude upper/lower bounds.

cn < n < /)

Note (n+1)!/n! = n+1; let’s see what Stirling gives:
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Stirling’s Formula and Convergence of Series
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Integral Test and the Poor Mathematician’s Stirling | S /)

()= m—tﬂ

Poor man’s Stirling. Let n > 3 be a positive integer. Then é//l ( /

n"e".e < nl < n"e " en.
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log P = logn! = logl +log2+---+logn = Zlogk. / logtdt < Zlogk < / log tdt.
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Lower and upper bound for log n! when n = 10.



Stirling’s Formula: Lower bound from Integral Test:
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nlogn—n+1 < logn! < (n+1)log(n+1)—(n+1)—(2log2 — 2).
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We’ll study the lower bound first. From
nlogn —n+1 < lognl!,
we find after exponentiating that
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Euler-Maclaurin formula
From Wikipedia, the free encyclopedia: https://en.wikipedia.org/wiki/Euler%E2%80%93Maclaurin_formula

If i and # are natural numbers and f{x) is a real or complex valued continuous function for real numbers x in the interval [m,n], then the integral

I:f: f(z)dz

can be approximated by the sum (or vice versa)
S=fm+1)+---+ f(n—1) + f(n)

(see rectangle method). The Euler—Maclaurin formula provides expressions for the difference between the sum and the integral in terms of the higher derivativesf(k)(x} evaluated at the
endpoints of the interval, that is to say x =m and x = n.

Explicitly, for p a positive integer and a function f{x) that is p times continuously differentiable on the interval [m,1], we have

S—1= Z < (FED () = 4D (m)) + Ry,

where By is the kth Bernoulli number (with By = %} and Rp is an error term which depends on #, m, p, and f and is usually small for suitable values of p.

The formula is often written with the subscript taking only even values, since the odd Bernoulli numbers are zero except for B;. In this case we havel 2]
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or alternatively

n)— flm [%J
Z £(3) = f F(z) dz + f(n) — f( )+ By, (f(zk_l)(n)_f(zk—l)(m))+Rp_

i=m+1 2 = (2k)!


https://en.wikipedia.org/wiki/Euler%E2%80%93Maclaurin_formula

Recurrence Relations: Fibonacci numbers
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Guessa,=r":rt' =4+ r"-lorré =r+1.
Roots r = (1 +/5)/2.

General solution: a, = ¢qr{ + c»r’.

n n Y
Binet: a, = 7 (52) - % (55) - i
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Stirling’s Formula: Estimates from Dyadic Decompositions T?T ~ ﬂ_ﬂ Ie — T,/ 2 T
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18 Stirling’s Formula 493
18.1 Stirling's Formula and Probabilitied 405

|13.2 Stirling’s Formula and Convergence of Seriesj 497
18.3 From Stirling to the Central Limit Theor 408
g Stirli 502

185 Flementary Approaches towards Stirling’s Formula 505
[18.5.1 Dvadic Decompositiond 505
18.5.2 Tower bounds towards Stirling, ] 507

5 ; irli 500

18.5.4 Lower bounds towards Stirling_ 510

l18.6 Stationary Phase and Stirling 511
imi tirli 513

18.8 Additional Problems 514

Extra credit: Can you expand on the dyadic interval arguments / the
Farmer Brown idea to get in the limit, at least for a sequence of n? In
other words, can you show that it converges to n"/e™ times something
small relative to the main term?

Additionally, can you prove the claims from class about the sums of
powers? In particular, perturb and prove that the sum of the k-th
powers is a polynomial of degree k+1 with constant term 0 and leading
term nk*1 / (k+1)? Can you use the telescoping method and induction to
show that the sum is a polynomial?

Looks like some of these results, with telescoping, are known: see
https://www.jstor.org/stable/pdf/3026439.pdf

STEVEN J. MILLER
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As this 1s such an important concept, let's work slowly and carefully through its
application here. Our goal is to bound n! = n(n — 1)---2 - 1. As each factor is at
least 1 and at most n, we start with the trivial bound

Notice the enormous spread between our upper and lower bounds. The problem i1s
our set Iy = {1,2.....n}is very large as n — oc, and thus it is horrible trying
to find one upper bound for each factor, and one lower bound for each. The idea
behind dyadic decompositions is to break this large interval into smaller ones, where
the bounds are better, then put them together.

Explicitly, let’s split our set in half:

So = {1,2,..., n} = {1,2,....n/2} U {n/24+1,n/2+2,....,n} = S1US.
In the first inferval, each term 1s at least 1 and at most n/2, and thus we obtam
12 < 1.2.-.(nf2-1)(n/2) < (n/2)"2

Similarly in the second interval each term is at least n/2 + 1, though we’ll use n /2
as a lower bound as that makes the algebra cleaner, and at most n. Thus we find

(n/2)*? < (n/24+1)(n/242)---(n—1n < n™2

Notice that we're still just using the trivial 1dea of bounding each term by the
smallest or largest; the gain comes from the fact that the sets 5; and &5 are each half
the size of the oniginal set 5;. Thus the upper and lower bounds are much better, as
these sets have less variation. Multiplying the two lower (respectively, upper) bounds
together gives a lower (respectively, upper) bound for n!:

1% (n/2)™? < [1-2---(n/2)] [(n/2 4+ 1)(n/2+2)---n] € (n/2)"3n"/2,

which simplifies to
a2 < nl < atVa T
Notice how much better this 1s than our original trivial bound of 1 < n! < n™;

the upper bound 15 very close (we have a ﬁ_n mstead of an e~ ™/2mn), while the
lower bound i3 significantly closer.

We now use the advice from shampoo: lather, rinse, repeat. We can break &
and &; into two smaller intervals. argue as above, and then break those new intervals
further (though in practice we’'ll do something slightly different). We do all this in the
next subsection; our purpose here was to introduce the method slowly and describe
why it works so well. Brieflv, the success 15 from a delicate balancing act. If we
make things too small, there 1s no variation and no approximation — the numbers are
what they are; if we have things too large, there is too much vanation and the bounds
are trivial. We need to find a happv medinm between the two.
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18.5.2 Lower bounds towards Stirling, I

We continue our elementary attack on n!. and build on the dvadic decomposition
idea from the previous subsection. Instead of breaking each smaller set in half what
we will do is just break the earlier set (the one with smaller numbers). We thus end
up with sets of different size, getting a chain of sets where each is half the size of the
previous.

Explicitly, we study the factors of n! in the intervals [y = (n/2.n|, I =
(n/4,n/2. 13 = (n/8 n/d]..... Iy = (1,2). Note on I that each of the n/2*

factors is at least n/2". Thus

n!

I Il
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Let’s look at each factor above slowly and carefully. Note the powers of n almost
sum to n; they would if we just add n /2" — 1 (since we’re assuming n — 2). Re-
member, though, that n — 2% there is thus no harm in multiplying by (n/2V)/2"
as this is just 1' (multiplying by one is a powerful technique: see §A 17]for more
applications of this method). We now have n! is greater than

”n_.-'i+n_.-' 1+'I't_.-"3+---+n_l."-'_:l""r+nll.-2-'\'2_1-3_,"24 —n,-"-ig—n.-"ﬂ e s (QJ“"J—TI_-":?N (Q]‘_ﬂ;iﬁr )
Thus the n-terms gives n™. What of the sum of the powers of 27 That’s just

q—?‘!.-":zd—ﬂ..'"lﬁ—]'l_."ﬂ . {21”}—1’2,-“1‘” . 2—!1_,-"2”

9-
o—n(T{ g k/2%)g—2" 2%
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= 2 = 94 .

To see this, we use the following wonderful identify:

ok _ T
Zkr R EESEE

k=0

n[1;2+f_=;»t+3,x3+---N,ﬂ_=”}2-f_=";2”

for a proof, see §11.1] (on differentiating identities involving the geometric series
formula).

Putting everything together, we find
= %ﬂnni_ﬂ.
which compares favorably to the truth, which is n"e~". It's definitely much better
than our first lower bound of n™/22-7/2

!
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As with many things in life, we can get a better result if we re willing
more work. For example. consider the interval [y = (n,/2,n|. We can g
at the beginning and theend: nandn/2+1,n—landn/2+2 n—2 anc
so on until 3n /4 and 3n/4 + 1; for example, if we have the interval (8
pairs are: (16.9), (15,10}, (14.11), and (13,12). We now use one of the ¢
problems from calculus: if we want fo maximize ry given that r + y -
maximum occurs when r = y = L /2. This is frequently referred to a
Bob {or Brown) problem, and 15 given the riveting interprefation that if
to find the rectangular pen that encloses the maximum area for his o
given that the perimeter is L, then the answer is a square pen. Thus of
the one that has the largest product is 3n/4 with 3n /4 + 1, and the sma
n/2 + 1, which has a product exceeding n”/2. We therefore decreast
of all elements in I; by replacing each product with v/n2/2 = n//2.
thought gives us that

In n n n\"? ny2)
non-n- e (341)-5 2 () - (%r
= =)
a nice improvement over (7 ;'?}“-"'3, and this didn’t require too much add
We now do a similar analysis on Is; again the worst case 15 from we pan ;s
and n/4 + 1 which has a product exceeding n? /8. Arguing as before, we find
4

= (%) - Ga) - () -

e dz
At this point hopefully the pattern 1s becoming clear. We have almost exactly
what we had before; the only difference 15 that we have a n+/2 in the numerator each
time instead of just an n. This leads to very minor changes in the algebra, and we
find

1 1
n! = E{?w@]”cl'” = 3?1”{2\!’%_”.

Notice how close we are to n™e ", as 2,/2 == 2.82843, which is just a shade larger
than e == 271228 It's amazing how close our analysis has brought us to Strling;
we're within striking distance of it!

We end this section on elementary questions with a few things for vou to try.

» Can vou modify the above argument to get a reasonably good upper bound for
n!?

7

i i

o After reading the above argument, yvou should be wondering exactly how far
can we push things. What if we didn’t do a dvadic decomposition; what if
instead we did say a triadic: (2n/3,n|. (4n/9,2n/3], .... Maybe powers of
2 are nice, so perhaps instead of thirds we should do fourths? Or perhaps fix
an r and look at (rn, n]._ (r'zn__ rn]__ ... for some universal constant r. Using
this and the pairing method described above, what is the largest lower bound
attainable. In other words, what value of r maximizes the lower bound for the
product.

Our proof in this section was almost entirely elementary. We used calculus in
one step: we needed to know that 3~ kz* equals =/(1 — x)?. Fortunately it’s
possible to prove this result without resorfing to calculus. All we need is our work
on memoryless processes from the basketball game of §1.7 I'll outline the argument
in Exercize[I18.8.17
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18.5.3 Lower bounds towards Stirling, II

We continue seeing just how far we can push elementary arguments. Of course, in
some sense there 15 no need to do this; there are more powerful approaches that yvield
better results with less work. As this 1s true, we're left with the natural. nagging
question: wiy spend time reading this?

There are several reasons for giving these arguments. Even though they re weaker
than what we can prove, they need less machinery. To prove Stirling’s formula, or
good bounds towards it. requires results from calculus, real and complex analysis;
it’s nice to see what we can do just from basic properties of the integers. Second,
there are numerous problems where we just need some simple bound. By carefully
going through these pages, vou'll get a sense of how to generate such elementary
bounds, which we hope will help vou in something later in life.

Again, the rest of the material in this subsection is advanced and not needed in
the rest of the book. You may safely skip it, but I urge you to ar least skim these
arguments.

We now generalize our argument showing that n! > (n,/4)" forn = 2V to any
integer ni: in other words. it was harmless assuming n had the special form n = 2°V.
Suppose 2% < n < 2! Then we can write n = 2% + m for some positive m < 2%,
and use our previous result to conclude

n!l = n-(n—1)---(2¥4+1)- (2% = (25y™. (2F) = (2Fy™. ﬂgkf"lfr-

QOur goal, then, is to prove that this quantity is greater than (n/4)". Here’s one
possible method: write
gkm ok i0)2* _ (m/4),

If o > n, then we're done. Taking logarithms, we find

k-m-log2+ 2% -log(2)(k — 2) = a(log(n) — 21log 2).
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Solving fof o gives

k-m-log2+ 2% .log(2)(k — 2)

¢ log(n) — 2log2

Remember, we want fo show that o > n. Substituting in our prior expression n =
2% + m. this is equivalent to showing

E-m-log2+ 2% . log(2)(k — 2)

k
log(2*¥ +m) — 2log2 > 3 4m.

So long as 2¥ + m > 4. the denominator is positive, so we may multiply through
without altering the mequality:

log(2)(k(2% + m) — 251) = (2% 4+ m)log(2* + m) — log(2)2%*! — 2mlog 2.
With a bit of algebra, we can turn this into a nicer expression:

log(2¥)(2¥ + m) > (2 + m)(log(2* + m) — 2mlog2
2mlog2 > (2% +m)log(1l + m/2%)
-

21og 2 (1+ 2% /m)log(1 + m,/2%).

Let’s write t — m /2% Then showing that & > n is equivalent to showing
2log2 = (14 1/t)log(l + )

fort € (0,1). Why (0,1)? Since we know 0 < m < 2% then 0 < m /2% < 1,
so {15 always between 0 and 1. While we're only really interested in whether this
equation holds when ¢ is of the form m /2% if we can prove it for all ¢ in (0.1),
then it automatically holds for the special values we care about. Letting f(f) =
(1 +1/t)log(1 +t), we see f'{t) = (t — log(1 + t))/t*. which is positive for all
t = 0 (fun exercise: show that the limit as ¢ approaches 0 of f'(t) is 1/2). Since
f(1) = 2log 2, we see that f(t) < 2log2 forall ¢ < (0, 1). Therefore & > n, so
n! = (n/4)" for all integer n.
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18.5.4 Lower bounds towards Stirling, ITI

Again, this subsection may safely be skipped; it’s the last in our chain of seeing just
how far elementary arguments can be pushed. Reading this is a great way fo see how
to do such arguments, and if you continue in probability and mathematics there is a
good chance you 'll have fo argue along these lines someday.

We've given a few proofs now showing that n! > (n/4)" for any integer n.
However, we know that Stirling’s formula tells us that n! > (n/e)™. Why have we
been messing around with 4, then, and where does ¢ come into play? The following
sketch doesn’t prove that n! = (n/e)™. but hints suggestively that ¢ might come
enter info our equations.

In our previous arguments we ve taken n and then broken the number hine up into
the following intervals: {[n,n/2), [n/2,n/4),...}. The issue with this approach is
that [n,n/2) is a pretty big interval, so we lose a fair amount of information by
approximating n - (n — 1)--- & by (n/2)™ 2. It would be better if we could use a

smaller interval. Therefore, let’s think about using some ratio v < 1, and suppose
n = (1/r)*. We would like to divide the number line into {[n,rn), [rn,r*n),...}.
although the problem we run into is that ¥*n isn’t always going to be an integer for
every integer £ < k. Putting that issue aside for now (this is why this isn't a proaf?),
let’s proceed as we typically do: having broken up the number line. we want to say
that ni! is greater than the product of the smallest numbers in each interval raised to
the number of integers in that interval:

:r'i-l:l—f']ft__ ke rf-lil—rin

‘ﬂ_:l

nl = [rn]l:l—f']ft[r'lﬂ]r-{l—r}ﬂ_[ 3

) “r

Since r*+™n < 1 for all m > 1. we can extend this product to infinity-

nl = [r?ﬂ[I—r]ntrinilf'-[l—f']ﬂ . tr:iﬂ;lr!-[] —-rin “‘k . T'tilrk Lil—rin .

While this lowers our value, it shouldn’t change it too much. The reason is that
lim, ,p " = 1. Let’s simplify this a bit. Looking at the n terms. we have

_ L P T
ﬂ;[] r4r—ro4r In _ gn

because the sum telescopes. Looking at the r terms we see

n{l—rii14+2r4+3ri4+...) n{l—ry/rir+2r? $3ri 4. )

prl1-r) | B
il—ryr-r/il— 2
_ f,.ntl ryfr-rfil—r)
— f,.n..-'[l—r_l_.
where in the third step we use the identity
= o)
Z C - rJ

k=1

remember we used this identity earlier as well! Combining the two terms, we have
n! > (r/U-Tig)yn,

To make this inequality as strong as possible, we want to find the largest possible
value of r'/1'=7) for r £ (0, 1). Substituting = = 1/(1 — ). this becomes: what is
the limit as © — oo of (1 — 1/2)77 Hopefully you've encountered this limit before;
the first exposure to it is often from continuously compounded interest. It’s just e~
(see §B.3). There are two definitions of e, one as a series and one as this limit.
Thus we see that this argument gives a heuristic proof (remember we only looked at
special n that were a power of r) that n! = (n/e)™.
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