Math 383: Complex Analysis: Fall ‘21 (Williams)

Professor Steven J Miller: siml1@williams.edu

Homepage:
https://web.williams.edu/Mathematics/similler/
public html/383Fa21/

LeCtu e 25 11‘15‘21 https://youtu.be/YiFtCBbYe | (slides)

*Lecture 24: 11/08/17: Bessel's Inequality and Approximations to the Identity: https://voutu.be/G3JefXkxIEU
*Lecture 25: 11/10/17: Dirichlet's Theorem and Poisson Summation: https://voutu.be/jtHKBWO9ncYT 1
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Plan for the day: Lecture 2: November , 2021:

https://web.williams.edu/Mathematics/sjmiller/public htmI/383Fa21/coursenotes/
Math302 LecNotes Intro.pdf

* Introduction to Fourier Series:
e Basis functions and relations
* Inner product
* Fourier series / Transform

* Convergence results

General items.
e The smoother the function, the better the result

Strawberry Summit Smoothie
https://4-pas-inc.square.site/ 2
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Theorem 3.1.20 (Analytic Continuation of the Completed Zeta Function). Define
the completed zeta function by

| g
§(s) = 5s(s— T () 7 ¢(s);
£(s), originally defined for Rs > 1, has an analytic continuation to an entire

function and satisfies the functional equation £(s) = £(1 — s).

Do you believe in miracles? (Or: Do you believe in unlikelihoods?)
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Introduction to Fourier Series

https://www3.nd.edu/~powers/ame.20231/fourier1878.pdf
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Exercise 11.1.3. Let f, g and h be continuous functions on |0, 1], and a,b € C.
Prove

1. (f,f) >0, and equals O if and only if [ is identically zero,
2. (J.9) = 9. f)
3. (af +bg,h)=alf h)+b(g,h)

Definition 11.1.5 (Orthogonal). Two continuous functions on |0, 1| are orthogonal
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Definition 11.1.8 (Periodic). A function f(x) is periodic with period a if for all
reR, flr+a)=f(x).

Let [ be continuous and periodic on R with period one. Define the n™ Fourier
coefficient f(n) of f to be

Ea

1
f(n) = (f(x),e,(x)) = fﬂ f(x)e2mine g, (11.13)

Returning to the intuition of R™, we can think of the e, (x)’s as an infinite set
of perpendicular unit directions. The above 1s simply the projection of f in the

direction of e, (). Often one writes a,, for f(n).
Exercise 11.2.1. Show
(f(x) = f(n)en(x), en(x)) = 0. (11.14)

This agrees with our intuition: after removing the projection in a certain direction,
what is left is perpendicular to that direction. 7



The N™® partial Fourier series of f is
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. Assume [ is differentiable k times, integrating by parts, show |f(n)| < l#
and the constant depends only on [ and its first k derivatives.
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We assume the reader 1s familiar with the basics of probability functions (see Chap-
ter 8, especially §8.2.3). A sequence Ai(x), Aa(x), As(x),... of functions 1s an
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approximation to the identity on [0, 1] if & g
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Similar definitions hold with [0, 1] replaced by other mtervals: it 1s often more

convenient to work on [—% %] replacing the third condition with
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Exercise 11.2.8 (Important). Let An(x) be an approximation to the identity on
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11.2.3 Dirichlet and Fejer Kernels

We define two functions which will be useful in investigating convergence of Fourier
series. Set
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Here F' stands for Fejér, D for Dirichlet. Fy(x) and Dy (2) are two important
examples of (integral) kernels. By integrating a function against a kernel. we obtain
a new function related to the original. We will study integrals of the form

1
g(z) = f ) K (z — y)dy. (11.25)
(0

Such an integral 1s called the convolution of f and A. The Fejer and Dirichlet
kernels yield new functions related to the Fourier expansion of f(x).

13



Theorem 11.2.11. The Fejér kernels F'\(x), Fy(x), F53(x),... are an approxima-
tion to the identity on |0, 1].

1 = 1 sin?(N7z) N —1
Fy(z) = N Z Dy (x) = N sinZ rr Fn(xr) = eg(x) + N (e—1(x) +er(x)) + -
n=>0 - - 4

The Dirichlet kernels are not an approximation to the identity.

h’l"

Dn(x) = Z en(x) =

n—=——N

sin((2N + 1)mx)
sin
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Theorem 11.3.1 (Fejér). Let f(x) be a continuous, periodic function on [0, 1].
Given € > 0 there exists an Nq such that for all N > Ny,

f(z) —=Tn(z)| < e (11.28)

forevery x € |0,1]. Henceas N — oo, T'x f(x) — f(x).

15
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Definition 11.3.3 (Trigonometric Polynomuials). Any finite linear combination of
the functions e, (x) is called a trigonometric polynomial.

From Fejer’s Theorem (Theorem 11.3.1) we immediately obtain the

Theorem 11.3.4 (Weierstrass Approximation Theorem). Any continuous periodic
function can be uniformly approximated by trigonometric polynomials.

Remark 11.3.5. Weierstrass proved (many years before Fejer) that if [ 1s continu-
ous on |a, b|. then for any € > 0 there 1s a polynomial p(2) such that | f(x)—p(2)| <
e forall € |a, b]. This important theorem has been extended numerous times (see,
for example, the Stone-Weierstrass Theorem in [Rud]).

Exercise 11.3.6. Prove the Weierstrass Approximation Theorem implies the origi-
nal version of Weierstrass’ Theorem (see Remark 11.3.5).

https://en.wikipedia.org/wiki/Stone%E2%80%93Weierstrass theorem  https://mast.queensu.ca/~speicher/Section14.pdf
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h?'

1 y TINT %
Sn(z) = E f(n)e? Sn(xo) :/ f(2)Dn(x — 2¢)dx :/ f(xo —2)Dn(z)dx.
1
1 _

]

n=—N

b=

Theorem 11.3.8 (Dirichlet). Suppose
1. f(x) is real valued and periodic with period 1,
2. |f(x)| is bounded;
3. f(x) is differentiable at xy.

Then limy _oc Sn(20) = f(20).

18



Theorem 11.3.11 (Parseval’s Identity). Assume fﬂl | () |2 dar < oo. Then
o . 1
ST TR = [ 1r@)Pde.
TrE— — D 0
One common application of pointwise convergence and Parseval’s identity is to
evaluate infinite sums. For example. if we know at some point xg that Sy (xo) —
f(xp). we obtain

o

Z f‘(ﬂ)ezwmmo = f(xo).

TL— — O

Additionally, if fol | f(x)|?dr < oo we obtain

o &

. 1
S 1FwE = [ 1@

= —>0 0

2 da.

Thus. if the terms 1n a series correspond to Fourier coefficients of a “‘nice”™ function.
we can evaluate the series.

Exercise 11.3.15. Ler f(x) = 3 — |z| on [—3. 3], Calculate 377 ﬁ Use

this to deduce the value of > | niﬂ This is ofien denoted ((2) (see Exercise

3.1.7). See [BP] for connections with continued fractions, and [Kar] for connec-
tions with quadratic reciprocity.

Exercise 11.3.16. Ler f(x) = a on [0, 1]. Evaluate > .7 | —5.

7.2

Exercise 11.3.17. Ler f(2) = x on [—3.,3]. Prove T = >"7° | %; See also
Exercise 3.3.29; see Chapter 11 of [BB] or [Sc] for a history of calculations of .

Exercise 11.3.18. Find a function to determine > il ?1{ compare vour answer

with Exercise 3.1.26.



FOURIER TRANSFORM
f(y) = / f(:l’?)ﬁ?_?mxyd;r

The Schwartz Space S(R) is the space of all infinitely differentiable functions
whose derivatives are rapidly decreasing. Explicitly.

Vi k>0, sup(|z| +1)7|f® ()] < oo.
rclR

20



We say a function f(x) decays like 2~ if there are constants xg and ' such that
for all || > zo, [f(2)| < C/|x|*.

Theorem 11.4.6 (Poisson Summation). Assume [ is twice continuously differen-
tiable and that f, ' and f" decay like x— 1" for some n > 0. Then

Y f)y = ) fn),

where f is the Fourier transform of f.

Exercise 11.4.7. Consider
n® (Jdr —|n—=2|) if|z —n| < 2 forsomen € Z
flz) = |
0 otherwise.

Show f(x) is continuous but F'(0) is undefined. Show F'(x) converges and is well
defined for any x & 7.
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