A JUSTIFICATION OF THE log 5 RULE FOR WINNING PERCENTAGES

STEVEN J. MILLER

Abstract. Let \(p \) and \(q \) denote the winning percentages of teams \(A \) and \(B \). The following formula has numerically been observed to provide a terrific estimate of the probability that \(A \) beats \(B \): \(\frac{p - pq}{p + q - 2pq} \). In this note we provide a justification for this observation.

1. Introduction

In 1981, Bill James introduced the log 5 method to estimate the probability that team \(A \) beats team \(B \), given that \(A \) wins \(p\% \) of its games and \(B \) wins \(q\% \) of theirs. He estimates this probability as

\[
\frac{p - pq}{p + q - 2pq}. \tag{1.1}
\]

See [?, Ti] for some additional remarks. This formula has many nice properties:

(1) The probability \(A \) beats \(B \) plus the probability \(B \) beats \(A \) adds to 1.
(2) If \(p = q \) then the probability \(A \) beats \(B \) is 50%.
(3) If \(p = 1 \) and \(q \neq 0,1 \) then \(A \) always beats \(B \).
(4) If \(p = 0 \) and \(q \neq 0,1 \) then \(A \) always loses to \(B \).
(5) If \(p > 1/2 \) and \(q < 1/2 \) then the probability \(A \) beats \(B \) is greater than \(p \).
(6) If \(q = 1/2 \) then the probability \(A \) wins is \(p \) (and similarly if \(p = 1/2 \) then \(B \) wins with probability \(q \)).

In the next section we provide a justification for this estimate.

2. Justification of the log 5 method

When we say \(A \) has a winning percentage of \(p \), we mean that if \(A \) were to play an average team many times, then \(A \) would win about \(p\% \) of the games (for us, an average team is one whose winning percentage is .500). Let us image a third team, say \(C \), with a .500 winning percentage. We image \(A \) and \(C \) playing as follows. We randomly choose either 0 or 1 for each team; if one team has a higher number then they win, and if both numbers are the same then we choose again (and continue indefinitely until one team has a higher number than the other). For \(A \) we choose 1 with probability \(p \) and 0 with probability \(1 - p \), while for \(C \) we choose 1 and 0 with probability 1/2. It is easy to see that this method yields \(A \) beating \(C \) exactly \(p\% \) of the time.

Date: April 20, 2008.
2000 Mathematics Subject Classification. 46N30 (primary), 62F03, 62P99 (secondary).
Key words and phrases. sabermetrics, log 5 rule.
The probability that A wins the first time we choose numbers is $p \cdot \frac{1}{2}$ (the only way A wins is if we choose 1 for A and 0 for C, and the probability this happens is just $p \cdot \frac{1}{2}$). If A were to win on the second iteration then we must have either chosen two 1’s initially (which happens with probability $p \cdot \frac{1}{2}$) or two 0’s initially (which happens with probability $(1 - p) \cdot \frac{1}{2}$), and then we must choose 1 for A and 0 for B (which happens with probability $p \cdot \frac{1}{2}$. Continuing this process, we see that the probability A wins on the nth iteration is

$$(p \cdot \frac{1}{2} + (1 - p) \cdot \frac{1}{2})^{n-1} \cdot \left(p \cdot \frac{1}{2}\right) = \frac{p}{2^n}. \quad (2.1)$$

Summing these probabilities gives a geometric series:

$$\sum_{n=1}^{\infty} \frac{p}{2^n} = p, \quad (2.2)$$

proving the claim.

Imagine now that A and B are playing. We choose 1 for A with probability p and 0 with probability $1 - p$, while for B we choose 1 with probability q and 0 with probability $1 - q$. If in any iteration one of the teams has a higher number then the other, we declare that team the winner; if not, we randomly choose numbers for the teams until one has a higher number.

The probability A wins on the first iteration is $p \cdot (1 - q)$ (the probability that A is 1 and B is 0). The probability that A neither wins or loses on the first iteration is $(1 - p)(1 - q) + pq = 1 - p - q + 2pq$ (the first factor is the probability we chose 0 twice, while the second is the probability we chose 1 twice). Thus the probability A wins on the second iteration is just $(1 - p - q + 2pq) \cdot p(1 - q)$; see Figure 1.

Continuing this argument, the probability A wins on the nth iteration is just

$$(1 - p - q + 2pq)^{n-1} \cdot p(1 - q). \quad (2.3)$$

Summing\(^1\) we find the probability A wins is just

$$\sum_{n=1}^{\infty} (1 - p - q + 2pq)^{n-1} \cdot p(1 - q) = p(1 - q) \sum_{n=0}^{\infty} (1 - p - q + 2pq)^n = \frac{p(1 - q)}{1 - (1 - p - q + 2pq)} = \frac{p(1 - q)}{p + q - 2pq}. \quad (2.4)$$

It is illuminating to write the denominator as $p(1 - q) + q(1 - p)$, and thus the formula becomes

$$\frac{p(1 - q)}{p(1 - q) + q(1 - p)}. \quad (2.5)$$

\(^1\)To use the geometric series formula, we need to know that the ratio is less than 1 in absolute value. Note $1 - p - q + 2pq = 1 - p(1 - q) - q(1 - p)$. This is clearly less than 1 in absolute value (as long as p and q are not 0 or 1). We thus just need to make sure it is greater than -1. But $1 - p(1 - q) - q(1 - p) > 1 - (1 - q) - (1 - p) = p + q - 1 > -1$. Thus we may safely use the geometric series formula.
This variant makes the extreme cases more apparent. Further, there are only two ways the process can terminate after one iteration: A wins (which happens with probability $p(1 - q)$ or B wins (which happens with probability $(1 - p)q$). Thus this formula is the probability that A won given that the game was decided in just one iteration.

REFERENCES

DEPARTMENT OF MATHEMATICS, BROWN UNIVERSITY, 151 THAYER STREET, PROVIDENCE, RI 02912
E-mail address: sjmiller@math.brown.edu