Math 408 L-functions and Sphere Packing

Steven Miller: sjm1@williams.edu

https://web.williams.edu/Mathematics/sjmiller/public html/408Fa20/

Lecture 13: October 16, 2020

DIRICHLET'S THEOREM IN FOURIER ANALYSIS

11.2.3 Dirichlet and Fejér Kernels

We define two functions which will be useful in investigating convergence of Fourier series. Set

$$D_N(x) := \sum_{n=-N}^{N} e_n(x) = \frac{\sin((2N+1)\pi x)}{\sin \pi x}$$

$$F_N(x) := \frac{1}{N} \sum_{n=0}^{N-1} D_n(x) = \frac{\sin^2(N\pi x)}{N \sin^2 \pi x}.$$
 (11.23)

Exercise 11.2.10. Prove the two formulas above. The geometric series formula will be helpful:

$$\sum_{n=N}^{M} r^n = \frac{r^N - r^{M+1}}{1 - r}.$$
 (11.24)

Theorem 11.3.1 (Fejér). Let f(x) be a continuous, periodic function on [0,1]. Given $\epsilon > 0$ there exists an N_0 such that for all $N > N_0$,

$$|f(x) - T_N(x)| \le \epsilon \tag{11.28}$$

for every $x \in [0,1]$. Hence as $N \to \infty$, $T_N f(x) \to f(x)$.

Proof. The starting point of the proof is multiplying by 1 in a clever way, a very powerful technique. We have

$$f(x) = f(x) \int_0^1 F_N(y) dy = \int_0^1 f(x) F_N(y) dy;$$
 (11.29)

this is true as $F_N(y)$ is an approximation to the identity and thus integrates to 1.

Definition 11.3.3 (Trigonometric Polynomials). Any finite linear combination of the functions $e_n(x)$ is called a trigonometric polynomial.

From Fejér's Theorem (Theorem 11.3.1) we immediately obtain the

Theorem 11.3.4 (Weierstrass Approximation Theorem). *Any continuous periodic function can be uniformly approximated by trigonometric polynomials.*

Remark 11.3.5. Weierstrass proved (many years before Fejér) that if f is continuous on [a,b], then for any $\epsilon>0$ there is a polynomial p(x) such that $|f(x)-p(x)|<\epsilon$ for all $x\in [a,b]$. This important theorem has been extended numerous times (see, for example, the Stone-Weierstrass Theorem in [Rud]).

Exercise 11.3.6. Prove the Weierstrass Approximation Theorem implies the original version of Weierstrass' Theorem (see Remark 11.3.5).

We have shown the following: if f is a continuous, periodic function, given any $\epsilon > 0$ we can find an N_0 such that for $N > N_0$, $T_N(x)$ is within ϵ of f(x). As ϵ was arbitrary, as $N \to \infty$, $T_N(x) \to f(x)$.

Recall $\widehat{f}(n)$ is the n^{th} Fourier coefficient of f(x). Consider the Fourier series

$$S_N(x) = \sum_{n=-N}^{N} \widehat{f}(n)e^{2\pi i n x}.$$
 (11.37)

Exercise 11.3.7. Let f(x) be periodic function with period 1. Show

$$S_N(x_0) = \int_{-\frac{1}{2}}^{\frac{1}{2}} f(x)D_N(x - x_0)dx = \int_{-\frac{1}{2}}^{\frac{1}{2}} f(x_0 - x)D_N(x)dx. \quad (11.38)$$

Theorem 11.3.8 (Dirichlet). Suppose

- 1. f(x) is real valued and periodic with period 1;
- 2. |f(x)| is bounded;
- 3. f(x) is differentiable at x_0 .

Then
$$\lim_{N\to\infty} S_N(x_0) = f(x_0)$$
.

Proof. Let $D_N(x)$ be the Dirichlet kernel. Previously we have shown that $D_N(x) = \frac{\sin((2N+1)\pi x)}{\sin(\pi x)}$ and $\int_{-\frac{1}{2}}^{\frac{1}{2}} D_N(x) dx = 1$. Thus

$$f(x_0) - S_N(x_0) = f(x_0) \int_{-\frac{1}{2}}^{\frac{1}{2}} D_N(x) dx - \int_{-\frac{1}{2}}^{\frac{1}{2}} f(x_0 - x) D_N(x) dx$$

$$= \int_{-\frac{1}{2}}^{\frac{1}{2}} \left[f(x_0) - f(x_0 - x) \right] D_N(x) dx$$

$$= \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{f(x_0) - f(x_0 - x)}{\sin(\pi x)} \cdot \sin((2N + 1)\pi x) dx$$

$$= \int_{-\frac{1}{2}}^{\frac{1}{2}} g_{x_0}(x) \sin((2N + 1)\pi x) dx. \tag{11.39}$$

We claim $g_{x_0}(x) = \frac{f(x_0) - f(x_0 - x)}{\sin(\pi x)}$ is bounded. As f is bounded, the numerator is bounded. The denominator is only troublesome near x = 0; however, as f is differentiable at x_0 ,

$$\lim_{x \to 0} \frac{f(x_0 + x) - f(x_0)}{x} = f'(x_0). \tag{11.40}$$

Multiplying by 1 in a clever way (one of the most useful proof techniques) gives

$$\lim_{x \to 0} \frac{f(x_0 + x) - f(x_0)}{\sin(\pi x)} = \lim_{x \to 0} \frac{f(x_0 + x) - f(x_0)}{\pi x} \cdot \frac{\pi x}{\sin(\pi x)} = \frac{f'(x_0)}{\pi},$$
(11.41)

where we used L'Hospital's rule to conclude that $\lim_{x\to 0} \frac{\pi x}{\sin(\pi x)} = 1$. Therefore $g_{x_0}(x)$ is bounded everywhere, say by B. As g_{x_0} is a bounded function, it is square-integrable, and thus the Riemann-Lebesgue Lemma (see Exercise 11.2.2) implies that its Fourier coefficients tend to zero. This completes the proof, as

$$i \int_{-\frac{1}{2}}^{\frac{1}{2}} g_{x_0}(x) \sin((2N+1)\pi x) dx = \Im\left(\int_{-\frac{1}{2}}^{\frac{1}{2}} g_{x_0}(x) e^{2\pi i(2N+1)x} dx\right); (11.42)$$

thus our integral is just the imaginary part of the $2N+1^{st}$ Fourier coefficient, which tends to zero as $N \to \infty$. Hence as $N \to \infty$, $S_N(x_0)$ converges (pointwise) to $f(x_0)$.

Ш

Exercise 11.2.2. Prove

- 1. $\langle f(x) S_N(x), e_n(x) \rangle = 0$ if $|n| \leq N$.
- 2. $|\widehat{f}(n)| \le \int_0^1 |f(x)| dx$.
- 3. Bessel's Inequality: if $\langle f, f \rangle < \infty$ then $\sum_{n=-\infty}^{\infty} |\widehat{f}(n)|^2 \le \langle f, f \rangle$.
- 4. Riemann-Lebesgue Lemma: if $\langle f, f \rangle < \infty$ then $\lim_{|n| \to \infty} \widehat{f}(n) = 0$ (this holds for more general f; it suffices that $\int_0^1 |f(x)| dx < \infty$).
- 5. Assume f is differentiable k times; integrating by parts, show $|\widehat{f}(n)| \ll \frac{1}{n^k}$ and the constant depends only on f and its first k derivatives.

Multiplying by 1 in a clever way (one of the most useful proof techniques) gives

$$\lim_{x \to 0} \frac{f(x_0 + x) - f(x_0)}{\sin(\pi x)} = \lim_{x \to 0} \frac{f(x_0 + x) - f(x_0)}{\pi x} \cdot \frac{\pi x}{\sin(\pi x)} = \frac{f'(x_0)}{\pi},$$
(11.41)

where we used L'Hospital's rule to conclude that $\lim_{x\to 0} \frac{\pi x}{\sin(\pi x)} = 1$. Therefore $g_{x_0}(x)$ is bounded everywhere, say by B. As g_{x_0} is a bounded function, it is square-integrable, and thus the Riemann-Lebesgue Lemma (see Exercise 11.2.2) implies that its Fourier coefficients tend to zero. This completes the proof, as

$$i \int_{-\frac{1}{2}}^{\frac{1}{2}} g_{x_0}(x) \sin((2N+1)\pi x) dx = \Im\left(\int_{-\frac{1}{2}}^{\frac{1}{2}} g_{x_0}(x) e^{2\pi i(2N+1)x} dx\right); (11.42)$$

thus our integral is just the imaginary part of the $2N+1^{st}$ Fourier coefficient, which tends to zero as $N \to \infty$. Hence as $N \to \infty$, $S_N(x_0)$ converges (pointwise) to $f(x_0)$.

Ш

Remark 11.3.9. If f is twice differentiable, by Exercise 11.2.2 $\widehat{f}(n) \ll \frac{1}{n^2}$ and the series $S_N(x)$ has good convergence properties.

What can be said about pointwise convergence for general functions? It is possible for the Fourier series of a continuous function to diverge at a point (see §2.2 of [SS1]). Kolmogorov [Kol] (1926) constructed a function such that $\int_0^1 |f(x)| dx$ is finite and the Fourier series diverges everywhere; however, if $\int_0^1 |f(x)|^2 dx < \infty$, the story is completely different. For such f, Carleson proved that for almost all $x \in [0,1]$ the Fourier series converges to the original function (see [Ca, Fef]).

Exercise 11.3.10. Let $\widehat{f}(n) = \frac{1}{2^{\lfloor n \rfloor}}$. Does $\sum_{-\infty}^{\infty} \widehat{f}(n) e_n(x)$ converge to a continuous, differentiable function? If so, is there a simple expression for that function?