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11.2.3 Dirichlet and Fejér Kernels

We define two functions which will be useful in investigating convergence of Fourier
series. Set
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Exercise 11.2.10. Prove the two formulas above. The geometric series formula
will be helpful:
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Theorem 11.3.1 (Fejér). Let f(x) be a continuous, periodic function on |0, 1].
Given € > O there exists an Ny such that for all N > N,

[f(z) = Tn(z)| < e (11.28)
forevery x € [0, 1]. Hence as N — oo, T'n f(2) — f(x).

Proof. The starting point of the proof 1s multiplying by 1 in a clever way, a very
powerful technique. We have
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flx) = f(fr)/D Fn(y)dy = fc_ f(x)Fn(y)dy: (11.29)

this is true as Fv (y) is an approximation to the identity and thus integrates to 1.



Definition 11.3.3 (Trigonometric Polynomials). Any finite linear combination of
the functions ey, (x) is called a trigonometric polynomial.

From Fejér’s Theorem (Theorem 11.3.1) we immediately obtain the

Theorem 11.3.4 (Weierstrass Approximation Theorem). Any continuous periodic
function can be uniformly approximated by trigonometric polynomials.

Remark 11.3.5. Weierstrass proved (many years before Fejér) that if f is continu-
ous on |a, b, then for any € > 0 there is a polynomial p(2) such that | f(2)—p(x)| <
e for all € [a, b|]. This important theorem has been extended numerous times (see,
for example, the Stone-Weierstrass Theorem in [Rud]).

Exercise 11.3.6. Prove the Weierstrass Approximation Theorem implies the origi-
nal version of Weierstrass™ Theorem (see Remark 11.3.5).

We have shown the following: if f is a continuous, periodic function, given any
€ > 0 we can find an Ny such that for N > Ny, T (x) is within € of f(x). As €
was arbitrary, as N — oo, Ty (z) — f(x).



Recall f(n) is the n™ Fourier coefficient of f(2). Consider the Fourier series

N R
> et (11.37)

n=—N

Exercise 11.3.7. Let f(x) be periodic function with period 1. Show

Sn(zo) / f(z)Dn(x —20)d / flzo —2)Dpn(x)dz.  (11.38)

Theorem 11.3.8 (Dirichlet). Suppose
I. f(x) is real valued and periodic with period 1;
2. |f(x)] is bounded;

3. f(x) is differentiable at x.

Then liﬂlwﬂhgﬁ_ SN (il?n) — f(lﬂ)



Proof. Let Dy (x) be the Dirichlet kernel. Previously we have shown that D y ()
sin((2N+1)mx)

1 |
(e and f_‘?l Dy (x)dx = 1. Thus
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flxo) = flao — ) -sin((2N + 1)7x)da
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f(xo) — Sn(xo)
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_ / Gro () sin((2N + 1)7a)da. (11.39)

We claim g, (7) = (I'}E?m{g)ﬂ —%) is bounded. As [ is bounded, the numerator

is bounded. The denominator is only troublesome near = 0:; however, as [ is
differentiable at x,

1111‘6 f(ao + rg — J(ao) = f'(x9). (11.40)




Multiplying by | in a clever way (one of the most useful proof techniques) gives

flao+2) = flro) . [flao+2)=flwg) 7z ['(xo)
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where we used L"Hospital’s rule to conclude that lim,_,o ==+ = 1. Therefore

sin(mx)
Jz, () is bounded everywhere, say by B. As ¢, is a bounded function, it is square-
integrable, and thus the Riemann-Lebesgue Lemma (see Exercise 11.2.2) implies
that its Fourier coefficients tend to zero. This completes the proof, as

B[ =t
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thus our integral is just the imaginary part of the 2N + 1% Fourier coefficient, which
tends to zero as N — oo. Hence as N — oo, Sy (xg) converges (pointwise) to

f(xo).

]



Exercise 11.2.2. Prove

l.

2.

3.

(f(z) = SNn(z),en(z)) =0if [n| < N.
|J?(ﬂ]| < fnl f(x)|da.

Bessel’s Inequality: if (f, f) < oo theny " F(n)|2 < (f, f).

et

. Riemann-Lebesgue Lemma: if (f.f) < oo then lim,|_ f(n) = 0 (this

holds for more general f, it suffices that ful f(x)|dx < o).
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Assume [ is differentiable k times; integrating by parts, show | f(n)| < —

and the constant depends only on [ and its first k derivatives.



Multiplying by | in a clever way (one of the most useful proof techniques) gives

flao+2) = flro) . [flao+2)=flwg) 7z ['(xo)

lim : lim - — |
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where we used L"Hospital’s rule to conclude that lim,_,o ==+ = 1. Therefore

sin(mx)
Jz, () is bounded everywhere, say by B. As ¢, is a bounded function, it is square-
integrable, and thus the Riemann-Lebesgue Lemma (see Exercise 11.2.2) implies
that its Fourier coefficients tend to zero. This completes the proof, as

B[ =t
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thus our integral is just the imaginary part of the 2N + 1% Fourier coefficient, which
tends to zero as N — oo. Hence as N — oo, Sy (xg) converges (pointwise) to

f(xo).

]



Remark 11.3.9. If [ is twice differentiable, by Exercise 11.2.2 f(n) < é and
the series Sy () has good convergence properties.

What can be said about pointwise convergence for general functions? It 1s possi-
ble for the Fourier series of a continuous function to diverge at a point (see §2.2 of

[SS1]). Kolmogorov [Kol] (1926) constructed a function such that fﬂl \f(x)|dx is

finite and the Fourier series diverges everywhere: however, if fﬂl | f(2)]?2dx < oo,
the story is completely different. For such f, Carleson proved that for almost all
r € |0, 1] the Fourier series converges to the original function (see [Ca, Fef]).

Exercise 11.3.10. Ler f(n) = zlnl Does >~ ) e, () converge to a continu-
ous, differentiable function? If so, is there a smwk? expression for that function?






