Math 408

L-functions and Sphere Packing

Steven Miller: sim1@williams.edu
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Lecture 31: November 30, 2020

Gauss Circle Problem


https://web.williams.edu/Mathematics/sjmiller/public_html/408Fa20/
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https://mathworld.wolfram.com/GausssCircleProblem.html

Discrete Mathematics > Point Lattices =
Geometry > Plane Geometry > Circles >
Interactive Entries = Interactive Demonstrations =

Gauss's Circle Problem

D DO'WNLOAD  CONTRIBUTE
Walfram Notebook To this Entry

Count the number of lattice points N (r) inside the boundary of a circle of radius p with center at the origin. The exact solution is given by the sum

N(r)=1+4|_rj+4% #—FJ
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https://mathworld.wolfram.com/GausssCircleProblem.html

Gauss Circle Problem:

What do you think the main term is?

How many lattice points (standard lattice) inside the circle of radius r centered at the origin?



Gauss Circle Problem:

What do you think the main term is?
How many lattice points (standard lattice) inside the circle of radius r centered at the origin?

Gauss showed that
N@)=nr+E({), (7)
where

E(r)<2V2 nr ®)
(Hardy 1999, p. 67).
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The first few values of N (r)/rz are 5, 13/4, 29/9, 49/16, 81/25, 113/36, 149/49, 197/64, 253/81, 317/100, 377/121, 49/16, ... (OEIS A000328 and A093837). As can be seen in the plot
above, the values of »- such that N (r)/r'2 >narer=2, 34,6, 11, 16, 21, 36, 52, 63, 86, 101, ... (OEIS A093832).




Gauss Circle Problem:

What do you think the main term is?

How many lattice points (standard lattice) inside the circle of radius r centered at the origin?

What are the issues with counting?



Gauss Circle Problem:

How many lattice points (standard lattice) inside the circle of radius r centered
at the origin?

What are the issues with counting?

One issue are points on the boundary — how many can there be?

The number of lattice points on the Circumference of circles centered at (0, 0) with radii 0, 1, 2, ... are 1, 4,
4.4,4,12,4,4,4,4,12, 4,4, ... (Sloane's A046109). The following table gives the smallest Radius
r < 368,200 for a circle centered at (0, 0) having a given number of Lattice Points L(r). Note that the

high water mark radii are always multiples of five.

https://archive.lib.msu.edu/crcmath/math/math/c/c314.htm

L(r)

L(r)

r r
1 0| 108 1.105
4 1| 132]| 40,625
12 5| 140| 21.125
20 25|| 156(203,125
28 125 180| 5.525
36 65|| 196(274.625
44 3.125| 252/ 27.625
52 15.625| 300| 71,825
60 325 324( 32,045
68 390,625| 420(359,125
76| < 1,993,125 540|160,225
84 1.625
92 || < 48,828,125
100 4,225



https://archive.lib.msu.edu/crcmath/math/math/c/c314.htm

Gauss Circle
Problem: )4

What do you think the main term is? / /
How many lattice points (standard lattice) . [ /
inside the circle of radius r centered at the l

origin? \ \
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https://link.springer.com/chapter/10.1007/978-3-030-02604-2 9



https://link.springer.com/chapter/10.1007/978-3-030-02604-2_9

Gauss Circle Problem:

How many lattice points (standard lattice) inside the circle of radius r centered at the origin?

Understand the main term: expect r?, what is the error term? Write as N(r) = nr? + E(r), |[E(r)| £ 9.



Gauss Circle Problem:

How many lattice points (standard lattice) inside the circle of radius r centered at the origin?

Understand the main term: expect r?, what is the error term? Write as N(r) = nr? + E(r), |[E(r)| T

8
1
2/3
37156
33/50
2741
15/23
24137
35/54
2761429
34/53
7
46/73
131/208

approx.
1.00000
0.66667
0.66071
0.66000
0.65854
0.65217
0. 64865
064815
0. 64802
0.64151
063636
063014
062981

citation

Dinichlet

Voronoi (1903), Sierpinski (1906), van der Corput (1923)
Littlewood and Walfisz (1925)

van der Corput (1922}

van der Corput (1928)

Chen (1963), Kolesnik {1969)
Kolesnik (1982)

Kolesnik

Vinogradov (1935)

lwaniec and Mozzochi (1988)
Huxley (1993)

Huxley (2003)
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Philosophy of Square-Root Cancelation

For many problems if summing N “random” terms of order 1 expect sum to be 0, with fluctuations of size VN.
Homework problem: Write a computer program to do at least 100,000,000 tosses of a fair coin, with +1 for each head and
-1 for each tail. Plot where after each of the first 10,000 tosses. Also plot where you are after every 10,000t" toss. Compare

your plots to +2+/N. If you have issues coding look below or happy to chat; took less than 5 minutes in Mathematica.



The Central Limit Theorem 1s one of the gems of probability, saying the sum
of nice independent random variables converges to being normally distributed as the
number of summalﬂds; grows. As a powerful application of Stirling’s formula, we’ll
show 1t implies the Central Limit Theorem for the special case when the random
variables X{..... Xon are all binomial random variables with parameter p = 1/2.
It’s technically easiest 1if we normalize these by

(1/2 ifn=1
Prob(X; =n) = ¢1/2 ifn=-1 (18.1)
0 otherwise.

\



Let Xq..... Xopn be independent binomial random variables with probability
density given by (18.1). Then the mean is zeroas 1 - (1/2) + (—1)-(1/2) = 0. and
the variance of each 1s

1 1
:2 2 | : 2 i
1 [} * J_ [} * J—'
( ) ;! ( ) .!

Finally, we set
Sony = X1+ -+ Xapn.

Its mean 1s zero. This follows from
E[SQN] = E[Xl] + -+ E[XQM] = 0+---+0 = 0.

Similarly, we see the variance of Sopn 1s 2/N. We therefore expect So to be on the
order of 0. with fluctuations on the order of v/2./V.



Let’s consider the distribution of Ssy. We first note that the probabaility that
Son = 2k + 1 1s zero. This 1s because Son equals the number of heads minus the
number of tails, which is always even: 1f we have k£ heads and 2N — k tails then Son
equals 2N — 2k.

The probability that Sy equals 2k 1s just (ﬁ_ﬂ)( )MH(Q)M_’I“. This 1s be-
cause for Son to equal 2/, we need 2k more 1’s (heads) than —1°s (tails), and the
number of 1’s and —1’s add to 2/NV. Thus we have N + £ heads (1°s) and NV — £ tails

(—1°s). There are 22 strings of 1’s and —1°s, (M + k) have exactly /N + k heads and

N — F tails, and the probability of each string 1s (5 L)2N | We wrote (5 )Nk 2)“‘r k

to show how to handle the more general case wheu there 1s a pIOb“lbﬂl'[}’ p of heads
and 1 — p of tails.



We now use Stirling’s Formula to approximate (NJU:L,) We find

ON
N+ k
(2N)*Ne2N\/2m . 2N
(N + k)N+ke=(N+R) A7 (N + k)(N — k)N—ke=(N=k) /27(N — k)
(2N)2N N
T N+ NFRN —)NF\[ 7(N + k) (N — k)
22N 1
/=N (1 + %)N—l—%—l—k(l _ %)N—l—%—k'

&

The rest of the argument 1s just doing some algebra to show that this converges to a
normal distribution. There 1s. unfortunately, a very common trap people frequently
fall into when dealing with factors such as these. To help you avoid these in the
future, we’ll describe this common error first and then finish the proof.



I N+3+k J: N+Li—k )
1 _ | — — _{Qﬁc ﬂ\r.
( —|_ -\ ) ( j\l: ) %‘ t

N+i+k AN+ -k
) T (L-y)

We show that (l + % N — /N The importance of
this calculation 1s that 1t hitrhlighta how crucial rates of convergence are. While 1t’s
true that the main terms of (1 + £ ) are % the error terms (in the convergence)
are quite important, and yield hrge secondary terms when £ 1s a power of V. What
happens here 1s that the secondary terms from these two factors remforce each other.
Another way of putting 1t 1s that one factor tends to infinity while the other tends to
zero. Remember that oo - 0 1s one of our undefined expressions; it can be anything
depending on how rapidly the terms grow and decay:; we’ll say more about this at the
end of the section.

The short of it 1s that we cannot, sadly, just use (l + E)N ~ €. We need to
be more careful. The correct approach 1s to take the logarithms of the two factors.
Taylor expand the logarithms, and then exponentiate. This allows us to better keep
track of the error terms.



Before doing all of this, we need to know roughly what range of & will be 1m-

portant. As the standard deviation 1s vV 2/N, we expect that the only k’s that really
matter are those within a few standard deviations from 0; equivalently, £’s up to a bit

more than V2N . We can carefully quantify exactly how large we need to study £
by using Chebyshev’s Inequality (Theorem|[17.3.1). From this we learn that we need

. o1 . .
only study k where |k| is at most N27¢. This is because the standard deviation of
Son 1s V2N . We then have

1
< ——.
~ (2N)%*
because (2N)1/2T¢ = (2N)StDev(San ). Thus it suffices to analyze the probabil-
ity that Soy = 2k for |k| < N1/2+1/9

We now come to the promised lemma which tells us what the right value 1s for the
product; the proof will show us how we should attack problems like this in general.

Probh(

Son — 0] > (2N)1/2F9)




Lemma 18.3.1 Forany e < 1/9, for N — oo with |k| < (2N)1/27€, we have

I N+5+k ] N+3—k
(1+5)  (1-g) > meon,
N N

Proof: Recall that for |z]| < 1,

log(1 4+ a i

n=1

n—l—l e




As we’re assuming k < (2)V)1/?2T¢€_ note that any term below of size k2 /N2, k3 /N2
or k4 /N3 will be negligible. Thus if we define

I N+L1+k I N+1i—k
= () ()
then using the big-Oh notation from §B.4/we find
| . N+3z+k
log Py = (N + 3 -+ fc) log (1 — \_)

N (th;k‘) log (1 i})N-l—ék
_ (N+%+ff) (%‘%*O(%))

N (N+ % _,L;) (_ i _ ;\22 +0 (ii))
- R (v ) g (R 5)

AQ k2 k3 kA
— O :
N (\* Nz N3)




As k < (2N)Y/2%¢ for ¢ < 1/9 the big-Oh term is dominated by N ~1/6 and we
finally obtain that

2 —1/6
Pun = o /NEO(N )‘

which completes the proof. O

We now finish the proof of Sy converging to a Gaussian. Combining Lemma

18

-

..

|

(the careful analysis 1in the lemma alerted us to the existence of the factor ¢

with (18.2) yields

2NV L 1 e
N + k) 22N ViN

—k?/N

which our fast and loose calculations missed). The proof of the Central Limit The-
orem 1n this case is completed by some simple algebra. We’re studying Son = 2k,
so we should replace k? with (2k)? /4. Similarly, since the variance of Sop is 21V,
we should replace NV with (2/NV)/2. While these may seem like unimportant algebra
tricks, 1t’s very useful to become comfortable at doing this. By doing such small
adjustments we make 1t easier to compare our expression with 1ts conjectured value.



We find

: 2N 1 2 012
probla =2 (Nw) PN T far 2N I

Remember S 1s never odd. The factor of 2 in the numerator of the normal-
1zation constant above reflects this fact. namely the contribution from the probability

that Sov 1s even 1s twice as large as we would expect, because 1t has to account for
the fact that the probability that Son 1s odd 1s zero. Thus it looks like a Gaussian
with mean 0 and variance 2/N. For NV large such a Gaussian is slowly varying, and
integrating from 2k to 2k + 2 is basically 2/1/27(2N) - exp —(2k)?/2(2N). O

As our proof was long, let’s spend some time going over the key points. We
were fortunate in that we had an explicit formula for the probability, and that for-
mula involved binomial coefficients. We used Chebyshev’s inequality to limit which
probabilities we had to mvestigate. We then expanded using Stirling’s formula, and
did some algebra to make our expression look like a Gaussian.

For a nice challenge: Can you generalize the above arguments to handle the case
when p £ 1/2.









