Math 408

L-functions and Sphere Packing

Steven Miller: sim1@williams.edu
https://web.williams.edu/Mathematics/sjmiller/public html/408Fa20/
Lecture 34: December 7, 2020

The Kepler Conjecture


https://web.williams.edu/Mathematics/sjmiller/public_html/408Fa20/

The Kepler Conjecure:

Kepler conjecture

From Wikipedia, the free encyclopedia

The Kepler conjecture, named after the 17th-century mathematician and astronomer Johannes Kepler, is a mathematical theorem about sphere packing in three-dimensional Euclidean
space. It states that no arrangement of equally sized spheres filling space has a greater average density than that of the cubic close packing (face-centered cubic) and hexagonal close

packing arrangements. The density of these arrangements is around 74.05%.

In 1998 Thomas Hales, following an approach suggested by Fejes Toth (1953), announced that he had a proof of the Kepler conjecture. Hales' proof is a proof by exhaustion involving the
checking of many individual cases using complex computer calculations. Referees said that they were "99% certain" of the correctness of Hales' proof, and the Kepler conjecture was
accepted as a theorem. In 2014, the Flyspeck project team, headed by Hales, announced the completion of a formal proof of the Kepler conjecture using a combination of the Isabelle and

HOL Light proof assistants. In 2017, the formal proof was accepted by the journal Forum of Mathematics, Pi.l!]
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History

e Kepler: 1611: On the six-cornered snowflake:
e See https://www.nature.com/articles/480455a for commentary.
e See http://www.joostwitte.nl/M Galilei/Johannes kepler snowflake.pdf for text.

* Proof announced 1998: https://annals.math.princeton.edu/wp-
content/uploads/annals-v162-n3-p01.pdf

* Fermat’s Last Theorem: stated in 1637, solution published in 1995.
e Summary: https://www.ams.org/notices/199507 /faltings.pdf

* Richard Taylor and Andrew Wiles (May 1995). "Ring-theoretic properties of certain
Hecke algebras"”. Annals of Mathematics. 141 (3): 553—
572. https://en.wikipedia.orq/wiki/ISTOR (identifier)

» Wiles, Andrew (1995). "Modular elliptic curves and Fermat's Last Theorem". Annals of
Mathematics. 141 (3): 443-551. https://en.wikipedia.orq/wiki/JSTOR (identifier)

* Good links: http://math.albany.edu/q/Math/topics/fermat/
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Geometry

Images from my book on Operations Research

Figure 1. Thomas Harriot’s Cannonball Packing Scheme. (From Good Old-

Fashioned Challenging Puzzles (page 28), H. E. Dudeney, (¢) Summersdale
Publishers Ltd. 2007.)

Figure 3. Aerial view of the Face-centered Cubic Packing (FCC). The spheres
are placed in hexagonal patterns in rows, with the centers of one row directly
above the holes of the previous.

.

Figure 4. Hexagonal Close Packing (HCP) (image from [H2]).




A first difficulty is defining a rigorous notion of density for sphere packing. Up
until now we have talked about density in mostly vague terms. The conjecture
concerns the density of a packing arrangement that fills all of three-dimensional
Euclidian space. At the same time, we have not yet mentioned how one can go
about defining density of a packing. This problem of defining density for sphere
packings is resolved using limiting notions of packing a large region and letting its
diameter increase to infinity. As natural as it seems, this notion was not clarified
until the 20" century. One can then prove a result asserting that a packing exists
that attains a maximal limiting density.



A second difficulty is that these notions of limiting density are very crude in
the sense that one can always remove spheres from an arbitrarily large finite region
without changing the limiting density. Therefore we wish to impose further local
restrictions on our notion of a “densest” packing. We require from our packing
that it contain no large “holes.” Hales and Ferguson formulated this restriction by
defining a saturated packing of spheres to be one into which no new sphere can be
inserted, i.e., there is no “hole” of diameter 2 or larger in the packing. Another
related problem is that one might be able to increase density locally by removing
a finite collection of spheres in a region and repacking that region to squeeze in
one more sphere. This sort of condition is more difficult to analyze, but it already
motivates the study of “local” conditions specifying density of a packing | BBC].




A third difficulty is that there exist uncountably many “optimally dense” pack-
ings that are, strictly speaking, different from each other. Here we consider packings
as essentially different if they are not congruent under a Euclidean motion of space
Lag3|. Consider the packing that starts with a planar layer of hexagonally close
packed spheres. That is, there is a planar slice through this layer that intersects
all the sphere centers, giving a circle packing of the plane, and this packing is the
optimal two-dimensional hexagonal circle packing. Now one can fit a second iden-
tical layer of spheres on top of this layer, so that the spheres fit as deep as possible
in indentations between the spheres in the first layer. If we mark one sphere as the
center of the first layer, there are two possible ways to do this: each such packing




A Voronoi cell around a given sphere center is the set of all points in space
closer to that sphere center than to any other sphere center. In the case of the
packing arrangements using hexagonal packing layers that we just described, all
Voronoi cells have one of two shapes, each having 12 faces and 14 vertices. Each of

these shapes is a type of dodecahedron (see for an illustration).



Another difficulty is posed by the fact that the optimization problem is essen-
tially infinite dimensional. There are an infinite number of spheres to pack and
therefore there are an infinite number of coordinates that need to be determined.
The approaches that are aimed at dealing with this issue of infinite-dimensionality
seek to prove stronger results which only involve finite-dimensional optimizations
that encode local conditions. This is called the local density inequality ap-
proach. The underlying idea is to assign, by some recipe, to each sphere in a
sphere packing a (weighted) sum of the covered and uncovered volume near that
sphere center. This recipe is said to be “local” because the weighted sum for a given
sphere center is completely determined by the locations of all spheres in the sphere
packing nearby, within a fixed distance C' of the given sphere center. When the
recipe quantities are added up over all spheres in a given sphere packing, it should
count all volume with weight 1. As a result, an upper bound on the weighted area
will give an upper bound on global sphere packing density. We call such a local
density inequality “optimal” if it produces the Kepler upper bound for density of

sphere packing, i.e., m/+/18.




Proof of inequalities via interval arithmetic: A key element of the Hales-
Ferguson proof was the use of computers to do interval arithmetic [H3].
The goal was to reduce very large computations to relatively small calculations
and to ensure that there are no errors. Computers were used to prove vari-
ous inequalities in a small number of variables using interval arithmetic. The
computers produced upper and lower bounds for a desired value, the score
function in our case, in significantly less time than it would have taken to
compute an exact result. This significantly reduced the computational time
needed to prove all the inequalities needed for the proof. Explicitly, the goal




Linear Programming Bounds: This was perhaps the part of the proof where
the help of computers was of greatest importance, and the main reason we have
included a discussion of this topic. Hales and Ferguson reduced the problem
to a finite number of finite-dimensional problems. In practice, however, these
problems were still out of the reach of humans because they involved about
150 variables and because of the very large number of individual problems.
Thankfully, modern computers were able to save the day yet again, just like
they did with the four color theorem. Many of the nonlinear optimization
problems for the scores of decomposition stars are replaced by linear prob-
lems that dominate the original score. They then used computers to solve
linear programming problems. A typical one has between 100 and 200 vari-
ables and 1000 and 2000 constraints. Nearly 100,000 such problems enter into
the proof |[Lag3]. When linear programming methods do not give sufficiently
good bounds, they have been combined with branch and bound methods from
global optimization. In addition to all of the computations, optimizations,
and combinatorics, computers were also employed by Hales and Ferguson to
organize their output. The organization of the few gigabytes of code and data
that enter into the proof was in itself a nontrivial undertaking.




Chess Problem:
https://www.youtube.com/watch?v=aMorrlh4Egs

Place 5 queens on a 5x5 board so that 3 pawns can be safely placed.

How should we explore i

all the possibilities

efficiently? i
A

.-I.



https://www.youtube.com/watch?v=aMorr1h4Egs

Chess Problem:
https://www.youtube.com/watch?v=aMorrl1h4Egs

Place 5 queens on a 5x5 board so that 3 pawns can be safely placed.
How should we explore
all the possibilities

efficiently?

Can we do better?



https://www.youtube.com/watch?v=aMorr1h4Egs

Chess Problem:
https://www.youtube.com/watch?v=aMorr1h4Egs

Place 5 queens on a 5x5 board so that 3 pawns can be safely placed.

THE DUAL PROBLEM

How should we explore
all the possibilities
efficiently?

What does this remind
you of?

Place 3 gueens so that s Paeons are Safe


https://www.youtube.com/watch?v=aMorr1h4Egs

Definition 4.3.1 (Canonical Linear Programming Problem). The canonical Linear
Programmang problem has the following form:

(1) We have variables x; > 0 for j € {1,...,N}.

(2) The variables satisfy linear constraints, which we can write as AZ = b (where
A is a matriz with M rows and N columns, and b is a column vector with M
components).

(3) The goal is to minimize a linear function of the variables: € T% = cyxy +-- -+
CN.LN .

e Seen canonical forms before: solving polynomials!

* Generalizing linear algebra: AT = b |, Difference is that we have constraints on the variables
and we have a linear function we wish to minimize. Over or under-determined?



Dual Problem: Given a canonical linear programming problem, its Dual Problem
is the following.

e Constraints: ' A <7, y; € R.

e Objective function: maximize ' b.

Lemma 5.2.1. Let & be a feasible solution to the canonical linear programming
problem, and let i be a feasible solution to the dual problem. Then

i’ < &7

and if equality holds then r 1s optimal.




Diet Problem: two foods. Imagine we have two foods and two nutrients, where
one unit of the first has a;; units of the first nutrient and as; of the second, while
our second food has a;, units of the first nutrient and a-, of the second. Assume
we need b; units of the nutrient 7 each day to survive, and the cost of food k is ¢
dollars per unit. Our goal is to minimize

C1T1 + C2X9

subject to the condition that

11 a1z L1 ~ b1 T1.T9 > 0
(1 (99 Io o by |’ T

We can rewrite this as

T

Goal : minimize ¢ * ¥ subject to AZ > b and ¥ > 0.




We're trying to minimize the cost 20x; + 2x5. Consider the linear function
Cost(x1,72) = 20z; + 2z2. We look at contours where the function is constant:
Cost(xzy,x5) = ¢; we sketch some constant cost contours in Figure
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Figure 5. Solving the diet problem. Problem.



Power of Duality:

For functions f with suitable decay, we have the Poisson Summation For-

mula:
Yo o fn) = ) fn);

TN——0oC NM—=—0oC

f being in the Schwartz space suffices. Poisson summation is often used to convert
a slowly decaying sum, where we need to take many terms to obtain a good ap-
proximation, to another sum with rapid decay, where just a few terms (sometimes
even just one term) provides an excellent approximation. The next problem gives
an important example; that result plays a key role in a variety of subjects, such
as the Riemann zeta function and the distribution of primes and Benford’s law of
digit bias.

Exercise 5.4.30. Prove

1 2 T

. 2 InT . 2 nr
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v N o
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So far all the variables in our linear programming problems are real, taking
values from a continuum. For many problems this is reasonable, though at first
glance it might not appear so. For example, we might worry about being able to
ship any amount of oil (perhaps we can only send an integral number of gallons),
or charge any amount (for most products the cost must be some number of cents);
however, if the quantities are large then for all practical purposes there’s no harm
in allowing these quantities to vary continuously. If we're looking at the cost of a
flight, which is measured in hundreds of dollars, a hundredth of a cent is immaterial;
if we're shipping oil on a tanker, which can transport millions of gallons, part of a
gallon will not be noticeable.

Unfortunately, in other problems we cannot make such a simplifying assump-
tion. For example, if we consider the Diet Problem and we only have a few items,
you can’t purchase just part of a product and leave the rest (as Kramer found out
when we wanted to buy part of a can of coke and part of an apple in the Seinfeld
episode The Seven, or as Steve Martin’s character found out in the movie Father
of the Bride with hot dog buns). In these settings, we need to restrict to integer
amounts: not surprisingly, this leads to the subject of Integer Programming.

https://www.youtube.com/watch?v=r-C82iNY8jk https://www.youtube.com/watch?v=0YIHLUxzRr8



https://www.youtube.com/watch?v=oYIHLUxzRr8
https://www.youtube.com/watch?v=r-C82iNY8jk

Assumptions for Integer Programming: For problems involving integer vari-
ables, we assume the following always hold.

(1) Any quantity A under consideration is bounded; this means there is some
number N such that [A] < N. We frequently include a subscript and write
N 4 for the bound to highlight its dependence on A.

(2) We assume our quantities are discrete with a fixed smallest unit (which ev-
erything else is ajn integral multiple). We often denote this small quantity by
J.

Theorem 8.2.1. Consider a quantity A such that —Na < A < N4 (i.e., |A] is at
most N4 ), and A is discrete (i.e., A € {0,£06,%20,...}). The following constraints
ensure that z4 is 1 if A > 0 and z4 1s 0 otherwise:

(1) :54 € {0, 1}
(‘@) N A 2“‘\'_,4_ izé
(3) z4 < 1—|—m.




What can Linear Programming handle?

* Are we above / below a threshold.
* Logical operations: and, if-then, or, xor.
* Trunctation.

* Max/min and absolute values.



Efficient Programming

How many constraints to check?

5|3 7 5|3(4|6|7|8]9(|1]2
6 11915 6|1712]1(9|5]13(4(8
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Figure 1. An example of a Sudoku problem (left) and its solution (right).
Images from Wikimedia Commons (left from Lawrence Leonard Gilbert, right
from Colin M. L. Burnett; licensed under the Creative Commons Attribution
Share Alike 3.0 Unported (https://creativecommons.org/licenses/by-sa/
3.0/deed.en) license).
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Figure 1. An example of a Sudoku problem (left) and its solution (right).
Images from Wikimedia Commons (left from Lawrence Leonard Gilbert, right
from Colin M. L. Burnett; licensed under the Creative Commons Attribution
Share Alike 3.0 Unported (https://creativecommons.org/licenses/by-sa/
3.0/deed.en) license).

A clever choice makes _fﬂrniu]a,ting the constraints significantly easier:
wi; € {1,10,100, 1000, ..., 105},

Why is this better? Notice the only way to have nine numbers from this list sum to
111,111,111 is to have one of each. Thus, instead of a massive use of OR statements

we could do
0

Vie{l,...,9}: ) @y = 111,111,111,
j=1



Linear Programming: Harder than Non-Linear

Traveling Salesman Problem

El,_\' a\.

'OREC

(a) Greedy Algorithm Solution (b) Optimal Solution

Figure 3. For this arrangement of cities, the greedy algorithm finds a sub-
optimal path from city a to city b.



Greedy Algorithm issues....

* Timothy J. Pennings: Do dogs know calculus?
http://www.math.pitt.edu/~bard/bardware/classes/0220/dkc.pdf

* Roland Minton and Timothy J. Pennings: Do dogs know bifurcations?
https://www.maa.org/sites/default/files/pdf/upload library/22/Polya
/minton356.pdf

ek —————————————



http://www.math.pitt.edu/%7Ebard/bardware/classes/0220/dkc.pdf
https://www.maa.org/sites/default/files/pdf/upload_library/22/Polya/minton356.pdf

The physical pmblem also helps us determine the length of the top of this trapezoid.

= — oo, the running time along the beach approaches zero, so the total SRS time
cquals the time to swim x; + x, meters. At the bifurcation point, the S and SRS times
are equal, so the S path must also have length x, + x, meters, as in Figure 5. Check
this out geometrically!

VOL. 38, NO. 5, NOVEMBER 2007 THE COLLEGE MATHEMATICS JOURNAL 359

X, X,
X4 X
2y 2,

Figure 4. The SRS path. Figure 5. A mean triangle.
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