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New upper bounds on sphere packings 1

By HENRY COHN and NoamM ELKIES*

Abstract

We develop an analogue for sphere packing of the linear programming
bounds for error-correcting codes, and use it to prove upper bounds for the
density of sphere packings, which are the best bounds known at least for di-
mensions 4 through 36. We conjecture that our approach can be used to solve
the sphere packing problem in dimensions 8 and 24.
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known! for sphere packing in dimensions 4 through 36. In dimensions 8 and 24,
our bounds are very close to the densities of the known packings: they are too
high by factors of 1.000001 and 1.0007071 in dimensions 8 and 24, respectively.
(The best bounds previously known were off by factors of 1.01216 and 1.27241.)

We conjecture that our techniques can be used to prove sharp bounds in 8 and
24 dimensions.

If linear programming bounds can indeed be used to prove the optimality
of these lattices, it would not come as a complete surprise, because other pack-
ing problems in these dimensions can be solved similarly. The most famous
example is the kissing problem: how many nonoverlapping unit balls can be
arranged tangent to a given one? If we regard the points of tangency as a spher-
ical code, the question becomes how many points can be placed on a sphere
with no angles less than 7/3. Odlyzko and Sloane [OS]| and Levenshtein [Lev|
independently used linear programming bounds to solve the kissing problem in



Dimension | Best Packing Known | Rogers’ Bound | New Upper Bound
41 - 1 0.5 0.5 0.5

upper curve: Rogers’ upper bound 2 0.28868 0.28868 0.2886%

34 lower curve: New upper bound 1 3 0-17?73 0.1847 0.18616

bottom line: Best packing known 4 0.125 0-13127 013126

p & 5 0.08839 0.09987 0.09975
i 6 0.07217 0.08112 0.08084
7 0.0625 0.06981 0.06933
8 0.0625 0.06326 0.06251
- 9 0.04419 0.06007 0.05900
10 0.03906 0.05953 0.05804
11 0.03516 0.06136 0.05932
12 0.03704 0.06559 0.06279
13 0.03516 0.07253 0.06870
i 14 0.03608 0.08278 0.07750
15 0.04419 0.09735 0.08999
16 0.0625 0.11774 0.10738
- 17 0.0625 0.14624 0.13150
18 0.07508 0.18629 0.16503
19 0.08839 0.24308 0.21202
i 20 0.13154 0.32454 0.27855
21 0.17678 0.44289 (.37389
22 0.33254 0.61722 0.51231
Figure 1. Plot of logy § + n(24 — n)/96 vs. dimension n. 23 0.5 0.87767 0.71601
24 1.0 1.27241 1.01998
For many purposes, it is more convenient to talk about the center den- 25 0.70711 1.8798 1.48001
. . . . . 26 0.57735 2.8268 2.18614
sity 0. It is the number of sphere-centers per unit volume, if unit spheres are - gy pp— 3 aReo7
used in the packing. Thus, 28 1.0 6.7295 5.02059
/2 29 0.70711 10.642 7.79782

A=—39, 30 1.0 17.094 12.30390

(n/2)! 31 1.2095 27.880 19.71397

32 2.065H8 46.147 32.06222

since a unit sphere has volume /2 /(n/2)!. Of course, for odd n we interpret 33 2.2220 77.487 52.90924

(n/2)! as T(n/2 + 1). 34 2.2220 131.94 88.55925
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JIINDISE LEVELS e,

Office noise,  noisy restaurant, Chainsaw,
Average inside car power lawn Boom box, ATV, leaf blower, Stock car
home noise at 60 mph mower ﬂmtulqrcle snowmobile races
AVERAGE : =a-4
DECIBELS (dB] -
Leaves rustling, Normal Vacuum Subway, school Sports crowd,  Gun shot,
soft music, conversation,  cleaner, shouted dance rock concert,  siren at
whisper background average , conversation loud symphony 100 feet
music radio
Source: www.webmd. com & Sounds above 85 dB are harmful

dB Scale Increases as Sound Intensity Grows

In some ways, you can compare the dB scale to the Richter scale, which measures the intensity of
earthquakes. The measurement levels increase almost exponentially. 10 dB is 10 times more intense
than O dB. A sound that is 1,000 times more intense than O dB (near total silence) is 30 dB.

https://blog.echobarrier.com/blog/the-decibel-scale-explained
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Base 10 Logarithms of Scales of Typical Objects
in the Physical Universe in Units of Meters

| Typical objects [ Powers of 10 (meters) | I
Observable Universe (Quasars, etc.) 27 |
Super-clusters 25
Clusters of galaxies 24
Size of Virgo clusier 23
Dnstance 1o Andromeda galaxy 22
Milky Way diameter 21
Distance to Ornon arm 19
Distance to the nearest stars 17
Size of the solar system 13
Venus, Earth, and Mars 11
Earth-Moon distance Y
Earth diameter 7
San Francisco 4 o 0o M0 ot

| Human scale u ’ _ Q ol

| Micro-Organisms / Hair Thickness -4 my A . -
Size of a red blood cell -5
DNA Structure -8 N ..cne
Carbon Nucleus -14

| Planck length -35 | o




Given a lattice A C R", the dual lattice A® is defined by
AN ={y| (z,y) € Zforall z € A};

it is easily seen to be the lattice with basis given by the dual basis to any
basis of A. The covolume |A| = vol(IR" /A) of a lattice A is the volume of any
fundamental parallelotope. It satisfies |A||A*| = 1. Given any lattice A with

PROPOSITION 2.1. Leta=n/2—1. If f: R" — & s a radial function,
then

I:ﬂ:l
— 2|t~ f T (2mr|t))r/2 dr.,

where “f(r)" denotes the common value of f on vectors of length r.

For a proof, see Theorem 9.10.3 of [AAR|. Here .J,, denotes the Bessel
function of order «.



For our purposes, we need only the following sufficient condition:

Definition 2.2. A function f : R"™ — R is admissible if there is a constant
d > 0 such that |f(x)| and |f(x)| are bounded above by a constant times

L+ |z])—"°

We will deal with functions f : "™ — R to which the Poisson summation
formula applies; i.e., for every lattice A C R" and every vector v € ",

(2.1) > fla+v) —l PR (U

-IE A t'E..!"u.t

with both sides converging absolutely. It is not hard to verify that the right-
hand side of the Poisson summation formula is the Fourier series for the left-
hand side (which is periodic under translations by elements of A), but of course
even when the sum on the left-hand side converges, some conditions are needed
to make it equal its Fourier series.



THEOREM 3.1. Suppose f : R" — R is an admissible function, is not
identically zero, and satisfies the following two conditions:

(1) f(z) <0 for |z| = 1, and
(2) f(t) =0 for all t.

Then the center density of n-dimensional sphere packings is bounded above by

10
2" f(0)

Notice that because f is nonnegative and not identically zero, we have
f(0) > 0. If f(0) =0, then we treat f( };’f[[l} as +00, so the theorem is still
true, although only vacuously.



Proof. 1t is enough to prove this for periodic packings, since they come
arbitrarily close to the greatest packing density (see Appendix A). In particu-
lar, suppose we have a packing given by the translates of a lattice A by vectors
U1....,Uy. Whose differences are not in A. If we choose the scale so that the
radius of the spheres in our packing is 1/2 (i.e., no two centers are closer than
1 unit). then the center density is given by

N
- 2Af

By the Poisson summation formula (2.1),

Zf$+ﬂ _|ﬁ| Z —‘.Em.lrt

reA tEA®
for all v € E"™. It follows that

|

)3 ZfIJF*fJ—“k}:m S f(t)

1<j.k<N zxel teA®

E EE:rri'{vJ,t}

1<j<N

Every term on the right is nonnegative, so the sum is bounded from below by
the summand with ¢ = 0, which equals N2f(0)/ IA|. On the left, the vector



As an example of how to apply Theorem 3.1 in one dimension, consider
the function (1 — |z])x—1)(z). It satisfies the hypotheses of Theorem 3.1 in
dimension n = 1, because it is the convolution of x[_y /3 1/9)(x) with itself, and

(Hil‘l i ) 2
it '

Thus, this function satisfies the hypotheses of Theorem 3.1. We get a bound

therefore its Fourier transform is

of 1/2 for the center density in one dimension, which is a sharp bound. This
example generalizes to higher dimensions by replacing x[-1/2,1/2)(x) with the
characteristic function of a ball about the origin. However, the bound obtained
is only the trivial bound (density can be no greater than 1), so we omit the
details. In later sections we apply Theorem 3.1 to prove nontrivial bounds.
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Suppose A is any lattice of covolume 1, such as an isodual lattice, and f
is a radial function giving a sharp bound on A via Theorem 3.2 (i.e., r is the
length of the shortest nonzero vector of A). By Poisson summation, we have

Y fx) =Y f(a).

rel reEA*

Given the inequalities on f and f, the only way this equation can hold is if f
vanishes on A\ {0} and f vanishes on A*\ {0}. This puts strong constraints
on f and f. When A is isodual, the vector lengths in A and A* are the same,
so f and f must both vanish on A\ {0}.

Of course, there are similar constraints on f for a sharp bound in Theo-
rem 3.1 (as opposed to Theorem 3.2), but we prefer to work with this context,
since the isodual normalizations are more pleasant, and are the standard nor-
malizations for Ey and the Leech lattice.

[t is natural to try to guess [ from our knowledge of its roots. For example,
in one dimension we could try



Determining a function from its roots:

Assume we know a function f vanishes at x,, x,, ....
Does this uniquely determine f?
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Does this uniquely determine f?

Do easier case first.

Assume there are only finitely many roots.....

Must f(x) = a (x = x;) (x—X,) ... (x—x,) for some constant a?

No: f(x) = g(x) (x —x;) (x—X,) ... (x—x,) for some g(x) which is never O.

What if there are infinitely many roots? What “should” the answer be?
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Determining a function from its roots:

Assume we know a function f vanishes at x,, x,, ....
Does this uniquely determine f?

Do easier case first.

Assume there are only finitely many roots.....

Must f(x) = a (x — x;) (x—X,) ... (x—x,) for some constant a?

No: f(x) = g(x) (x —x;) (x—X,) ... (x—x,) for some g(x) which is never O.

What if there are infinitely many roots? What “should” the answer be?

fx)= glx) H(x — X)), where g(x) is non — zero.
n=1

Is this right? Not necessarily — we need to show the above converges.



Determining a function from its roots:

fx)= glx) H(x — X)), where g(x) is non — zero.
n=1

What would the answer be if the x s are the integers? In this case it is better to
have the product going from —oo to oo.



Determining a function from its roots (Continued):
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n=1

What would the answer be if the x s are the integers? In this case it is better to
have the product going from —oo to oo.
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Determining a function from its roots (Continued):

fx)= glx) H(x — X)), where g(x) is non — zero.
n=1

What would the answer be if the x s are the positive integers?



The elementary factors 2], also referred to as primary factors [?], are functions that combine the properties of

~
zero slope and zero value (see graphic): N
.‘M"'-\. 4
. -
(1 - .z) ifn — 03 i ‘\H“\_
E,(z)= 1 2 : . —_— ~
n(2) (1 —z)exp (zT + % + e ’%) otherwise. — x\\:j?:::\\\
k .Hx‘x \\\‘\\
00 z ~ \
For |z| <1 andn > 0, one may express it as E, (z) = exp(—= Ek—nm) and one can read off \\“Q‘&
how those properties are enforced. : : -
Plot of Ey, () forn=0,.._4 and x in
The utility of the elementary factors E, () lies in the following lemma:[?] the interval [-1.1].

Lemma (15.8, Rudin) for |z|<1,n € N
11— En(2)] < [2*.

The Weierstrass factorization theorem |[edit]

Let f be an entire function, and let {an} be the non-zero zeros of f repeated according to multiplicity; suppose also that f has a zero at = = 0 of
order m > 0 (a zero of order m = 0 at = = 0 means f(0) # 0). Then there exists an entire function g and a sequence of integers {p,, } such that

_ m () mE Z ) M
1) = = [ B )



Little Picard Theorem: If a function f: € — € is entire and non-constant, then the set of values
that f{z) assumes is either the whole complex plane or the plane minus a single point.

Great Picard's Theorem: If an analytic function f has an essential singularity at a point w, then on
any punctured neighborhood of w, f(z) takes on all possible complex values, with at most a single
exception, infinitely often.




We do not know how to use Theorem 3.1 to match the best density bound
known in high dimensions, that of Kabatiansky and Levenshtein [KL]. How-
ever, it provides a new proof of the second-best bound known, due to Leven-
shtein [Lev]:

In/2
<
As (n/2)124n°

where j; is the smallest positive zero of the Bessel function .J;. (For more
information about the asymptotics of this bound and how it compares with
other bounds, see page 19 of [CS|, but note that equation (42) is missing the

exponent in j7,.) We will show how to use a calculus of variations argument
tosfindyfumetions thatyprovesthaubownd. This approach is analogous to that
used by Levenshtein. Yudin [Y] has also given a proof of Levenshtein's bound

that seems reminiscent of our general approach, but not identical.

https://politics.theonion.com/cia-realizes-its-been-using-black-highlighters-all-thes-1819568147
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