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New upper bounds on sphere packings 1

By HENRY COHN and NoamM ELKIES*

Abstract

We develop an analogue for sphere packing of the linear programming
bounds for error-correcting codes, and use it to prove upper bounds for the
density of sphere packings, which are the best bounds known at least for di-
mensions 4 through 36. We conjecture that our approach can be used to solve
the sphere packing problem in dimensions 8 and 24.
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We do not know how to use Theorem 3.1 to match the best density bound
known in high dimensions, that of Kabatiansky and Levenshtein [KL]. How-
ever, it provides a new proof of the second-best bound known, due to Leven-
shtein [Lev]:
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where j; is the smallest positive zero of the Bessel function .J;. (For more
information about the asymptotics of this bound and how it compares with
other bounds, see page 19 of [CS|, but note that equation (42) is missing the

exponent in j7,.) We will show how to use a calculus of variations argument
tosfindyfumetions thatyprovesthaubownd. This approach is analogous to that
used by Levenshtein. Yudin [Y] has also given a proof of Levenshtein's bound

that seems reminiscent of our general approach, but not identical.

https://politics.theonion.com/cia-realizes-its-been-using-black-highlighters-all-thes-1819568147
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Optimization in one dimension:
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Optimization in one dimension:
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Optimization in several dimensions:
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Differentiability
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* What is differentiability in several variables?

* Is it enough for the partials 0f/dx. to exist?



Differentiability
* What is differentiability in several variables?

* Is it enough for the partials of/dx. to exist?
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Consider f(x,y) = (x;}l/3. > bz

Note the partials are zero but if we consider y = x?

then along this path the derivative is not zero (chain
rule...). So partials are not enough. ®)



Derivative in one dimension:
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Derivative in several dimensions:

f(x) = f(a) —f'(a)(x—a) i
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Brachistochrone curve

From Wikipedia, the free encyclopedia

In mathematics and physics, a brachistochrone curve (from Ancient Greek BpaxioTtoc xpovoc
(brékhistos khrénos) 'shortest time'),l"! or curve of fastest descent, is the one lying on the plane \
between a point A and a lower point B, where B is not directly below A, on which a bead slides

ey,

frictionlessly under the influence of a uniform gravitational field to a given end point in the shortest \\v
The curve of fastest descent is not =

a straight or polygonal line (blue) but a
the portion of the cycloid used for each of the two varies. More specifically, the brachistochrone can cycloid (red).

time. The problem was posed by Johann Bernoulli in 1696.

The brachistochrone curve is the same shape as the tautochrone curve; both are cycloids. However,

use up to a complete rotation of the cycloid (at the limit when A and B are at the same level), but
always starts at a cusp. In contrast, the tautochrone problem can only use up to the first half rotation,
and always ends at the horizontal.[2! The problem can be solved using tools from the calculus of variations and optimal control.l°]

The curve is independent of both the mass of the test body and the local strength of gravity. Only a parameter is chosen so that the curve fits
the starting point A and the ending point B.[%! If the body is given an initial velocity at A, or if friction is taken into account, then the curve that

minimizes time will differ from the tautochrone curve.

https://en.wikipedia.org/wiki/Brachistochrone curve
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Johann and his brother Jakob Bernoulli derived the same solution, but Johann's derivation was incorrect, and he tried to pass off Jakob's
solution as his own.l”] Johann published the solution in the journal in May of the following year, and noted that the solution is the same curve
as Huygens's tautochrone curve. After deriving the differential equation for the curve by the method given below, he went on to show that it
does yield a cycloid.!?!°®] However, his proof is marred by his use of a single constant instead of the three constants, v,,,, 2g and D, below.

Bernoulli allowed six months for the solutions but none were received during this period. At the request of Leibniz, the time was publicly
extended for a year and a half.l'%! At 4 p.m. on 29 January 1697 when he arrived home from the Royal Mint, Isaac Newton found the
challenge in a letter from Johann Bernoulli.l'"l Newton stayed up all night to solve it and mailed the solution anonymously by the next post.
Upon reading the solution, Bernoulli immediately recognized its author, exclaiming that he "recognizes a lion from his claw mark". This story
gives some idea of Newton's power, since Johann Bernoulli took two weeks to solve it.[*l12] Newton also wrote, "I do not love to be dunned

[pestered] and teased by foreigners about mathematical things...", and Newton had already solved Newton's minimal resistance problem,
which is considered the first of the kind in calculus of variations.

https://en.wikipedia.org/wiki/Brachistochrone curve
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Theorem 1 (Fundamental Lemma of the Calculus of Variations). Let f : [0,1] — R™ be a
continuous function which obeys

[ ro.hayae=o
for all C* functions h+ [0,1] = R" with h(0) = h(1) = 0. Then f =0.

https://www.maths.ed.ac.uk/~jmf/Teaching/Lectures/CoV.pdf
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Theorem 1 (Fundamental Lemma of the Calculus of Variations). Let f : [0,1] — R™ be a
continuous function which obeys
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for all C* functions h : [0,1] — R™ with h(0) = h(1) = 0. Then f = 0.
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5. THE EULER-LAGRANGE EQUATION

Let Cpgo be the space of C? curves = : [0,1] — R™ with z(0) = P and z(1) = Q. Let
L : R**1 — R be a sufficiently differentiable function (typically smooth in applications) and
let us consider the functional S : Cpn — R defined by

Sla] :/{; L(z(t),#(t),t) dt .

The function L is called the lagrangian and the functional S is called the action. Extremising
S will yield a differential equation for z. Recall that a path z is a critical point for the action
if, for all endpoint-fixed variations &, we have

d
— S|z + s
5 ds

Differentiating under the integral sign, we find

=0.
s=0




Slz] = /{; L(x(t), &(t), 1) dt .

Differentiating under the integral sign, we find
dt

b d
02/ —L(z + se, & + s€,t)
o ds =D
- oL
g’ dt
/ (Z 8;1: )

/ oL d ('JL i
oxr'  dt Oz ¢t

where we have integrated by parts and used that £(0) = (1) = 0. Using the Fundamental
Lemma, this is equivalent to

oL _ d oL
or'  dt O

for all 2 =1,2,...,n. This is the Euler-Lagrange equation.
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Conservative force [edit]
A particle of mass m moves under the influence of a conservative force derived from the gradient V of a scalar potential,
F=-VV(r).

If there are more particles, in accordance with the above results, the total kinetic energy is a sum over all the particle kinetic energies, and the
potential is a function of all the coordinates.

Cartesian coordinates [ edit]

The Lagrangian of the particle can be written
I <. ey 1 -2 .« 2 -2 174
(m:y:zamﬁy:z) - Em{m +y° +z ) - (mayaz)'
The equations of motion for the particle are found by applying the Euler—-Lagrange equation, for the x coordinate
d ( 8L) AL
dt \ 8z oz’

with derivatives

OL av oL : d /oL ..
_—= = = mx — | — ) =mzx
Oz oz = 0Ok ©odt \ 0z ’
hence
. oV
me = —
oz’
and similarly for the y and z coordinates. Collecting the equations in vector form we find
mi = —VV

which is Newton's second law of motion for a particle subject to a conservative force.



I think vou have some problems, because yvou use an incorrect notation. Let me rewrite your

original problem:

minimize J(y) = f F(z,y(z),y'(z)) d=z
L
subject to G(z,y(z),y'(z)) =0 forallx € [zg, z].

Here, F:E xR xR - Rand G : R x R x R — R". Do you see the differences? J only
depends on the function 4, whereas the integrand F' and the constraint ¢ depend on real

numbers.

Now (if a constraint qualification is satisfied), you get a multiplier A : [zg, z1] — R"
(compare with section 6.2 in your link: you get a multplier for each constraint, that is, for

each x), such that the derivative of the Lagrangian

J(y) + L Gz, y(2), ¥ (2)) \(z) da

with respect to y is zero (that is, the derivative of vour lagrangian w.r.t. the optimization

variable). Now, vou can continue like for the derivation of the euler-lagrange equation.

https://math.stackexchange.com/questions/279518/constrained-variational-problems-intuition
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16. Position, momentum, and the Uncertainty Principle

Suppose f is a function in L*(R) with norm 1, Then |f{x}|*. which has integral 1. can
be thought of as a probability density, so that the probability of that a point r lies in an
interval I R is

{16.1) Prob{r e I} = ju{x}Fd:.
I

Then the expected value of the position of the point is
(16.2) E= f r|fiz)| de.
R

The variance (square of the standard deviation) is a measure of how spread out the prol-
ability distribution is; it is

(16.3) V- fu — EP|f(x)[*dx;
R

It is small ouly if most of the mass of |f|* is concentrated near the mean E. The hehavior
of the Fourier transform under scaling (see Problem 15.5) suggests that if f has small
variance then f may be expected to have large variance. Note that we need a factor of
1/2r to make the Fourier transform have norm 1, so the mean and variance for f are

& 1 " 2
(16.4) E= E;/nflﬂﬂl df
B L. i - 2 F 2
(16.5) V= /n{i EV|fe)de.

The remark above about the relation between the variances V and V can be given quan-
titative form.

Proposition. If f is an element of L*(R) such that ||f|| = 1, then the product of the
variances of f and off, V - V', is at least 1.

Sketch of proof. We use the results of some of the problems above. Let @ and P be the
linear transformations on functions

1df(r)
i odr

Qflr)=afir) Pflr) =

Then the Fourier transform of Pf is £f(£), so

(16.6) V=IQ-E)IF: V=[(P-E)f]

Denoting the identity operator by I, note that

(16.7) PQ - QF = —il; (@F.g)=(f Qg); (Pf,9) = (f, Pg).

It follows from (16.7) and the Cauchy-Schwartz inequality that

(16.8) 1= IfIF = (f.£) = i(PQf - QPf, ) = il(Qf. Pf) - (Pf,Qf)]
= 2Im(Pf,Qf) < 2|Qf1| - ||PS].

Now it 15 also trive that
(P—EINQ - EIN=(Q - EI)(P - EI) = —il

50 we may repeat the caleulation (16.8) with @ — ET in place of Q and P - EJ in place of
P to obtain the desired inequality.

The simplest case in quantum mechanies consists of a single particle in one dimension.

Its wave funetion is an element v € L*R) having norm 1. Any physical measurement i=
characterized by a linear transformation T defined on some subspace of L*(R) which lias
the praperty (Tf. f) = (f,Tf) for all f in its domain, The theory is probabilistie: if the
wave function of the particle at a given moment is v then the mean and variance of the
measurement of the quantity associated to T are
{16.9) Er = (Ty,v); = (T = ExIyy|?.
In the usual representation of the wave function, the position aperator is the operator
Q) above and the momentum operator is hP, where P is the operator above and h >
0 is Planck’s constant. Thus the inequality proved above gives the quantitative form
of the relationship between uncertainty in measurement of position and uncertainty in
measurement of velocity known as the Heisenberg Uncertainty Principle:

T s

(16,10} 3
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