Bat man
aquaman

HWishows analways find a circum. traje

Lemma 2 The density of a triangle $\triangle ABC$ in a Delaunay triangulation for a saturated circle configuration C is less than or equal to $\pi/\sqrt{12}$. The equality holds only for the regular triangle with side-length 2.

Proof: Let say that B is the largest internal angle of $\triangle ABC$. Then, by the above lemma,

the area of
$$\triangle ABC = \frac{1}{2}\overline{AB} \cdot \overline{BC} \cdot \sin B \ge \frac{1}{2} \cdot 2 \cdot 2 \cdot \frac{\sqrt{3}}{2} = \sqrt{3}$$
.

Therefore, we have

the density of
$$\triangle ABC = \frac{\pi/2}{\text{the area of } \triangle ABC} \le \frac{\pi}{\sqrt{12}}$$
.

It is obvious from the computation that the equality holds only when ΔABC is a regular triangle and side-length of ΔABC is 2. Q.E.D.

The density of the union of any finite Delaunay triangles in a saturated circle configuration is a weighted average of the densities of the Delaunay triangles. i.e.

we density Δ_i : Delaunay triangle (the area of Δ_i) × (the density of Δ_i) $\sum_{\Delta_i: \text{Delaunay triangle}}$ the area of Δ_i .

Since we have shown that the density of a Delaunay triangle is less than or equal to $\pi/\sqrt{12}$, the density of the union of any finite Delaunay triangles in a saturated circle configuration is also less than or equal to $\pi/\sqrt{12}$. Therefore, we obtain a simple proof of Thue theorem.

Listhis a
PRODET

Cauhy-Schwarz Dre Morday fg.4(ity?