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exactly 5 consecutive heads somewhere in n tosses? There’s a nice way to find this

number. We simply find the probability of getting at least 5 consecutive blacks, and

subtract off the probability of getting at least 6 consecutive blacks.

23.2 General Theory of Recurrence Relations

We’ve just seen the power of recurrence relations in probability. We used them to

analyze the roulette problem, and found that what seemed like a sure-fire method is

in fact fatally flawed. As there are many problems where recurrence relations pop-

up, it’s not a bad idea to know more about them. To help, we’ve collected some facts

about them below.

23.2.1 Notation

Before developing the theory, we first set some notation. We’ll study linear recur-

rence relations. A linear recurrence relation of depth k is a sequence of numbers

{an}∞n=0 where

an+1 = c1an + c2an−1 + · · ·+ ckan−k+1 (23.1)

for some fixed, given real numbers c1, c2, . . . , ck. If we specify the first k terms of

the sequence, all remaining terms are uniquely determined. For example, for the

Fibonacci numbers we have k = 2, c1 = c2 = 1, F0 = 0 and F1 = 1. Here the
recurrence is Fn+1 = Fn + Fn−1. The sequence starts off 0, 1, 1, 2, 3, 5, 8, 13, 21,

34, 55, and so on, where each term (from the third onward) is the sum of the previous

two terms.

In some sense, we’re done. Once we’ve specified the recurrence relation and

the initial conditions, all subsequent terms are uniquely determined. As this is the

case, why should we spend time developing an advanced theory? The main reason

is efficiency. We saw in the roulette problem that we might only care about one

specific term deep in the sequence; we’d love to be able to jump to it and not have

to go through all the previous terms. Related to this, we might be interested in the

general behavior of terms in the sequence. Is it possible to say something about their

general behavior without computing exactly what they are? For these reasons, there

is a real need to find a better approach than just computing term by term.

23.2.2 The Characteristic Equation

Let’s see how to find an as a function of k, the ci’s and the initial conditions (the
values for a0, a1, . . . , ak−1). We begin by guessing that an = rn for some constant

r; this is the Method of Divine Inspiration we mentioned earlier (we could also use

the methods of §19.2 to find the answer via generating functions). It turns out this

will always give us a solution to Equation (23.1), though we’ll have to do a little

work to satisfy the initial conditions.

Plugging an = rn into Equation (23.1) gives

rn+1 = c1r
n + c2r

n−1 + · · ·+ ckr
n−k+1. (23.2)

Dividing both sides by rn−k+1, Equation (23.2) becomes

rk = c1r
k−1 + c2r

k−2 + · · ·+ ck. (23.3)
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We call Equation (23.3) the characteristic polynomial of the difference equation

given by Equation (23.1). Subtracting c1r
k−1 + c2r

k−2 + · · ·+ ck from both sides,

we can rewrite Equation (23.3) as

rk − c1r
k−1 − c2r

k−2 − · · · − ck = 0. (23.4)

Equation (23.4) is a polynomial of degree k, and by the Fundamental Theorem
of Algebra (see §20.8 for a review of this theorem) has k roots. We call these roots

r1, r2, . . . , rk. Note these roots might not be distinct; in fact, if there are repeated
roots the analysis is a little harder. For now, we’ll assume the roots r1, r2, . . . , rk are
all distinct.

We know an = rni is a solution to Equation (23.1) for 1 ≤ i ≤ k; each ri
solves the characteristic polynomial, and we created the characteristic polynomial

by simple algebraic manipulation of Equation (23.2). Because we’re solving a linear

difference equation, once we know that each of rn1 , r
n
2 , . . . , r

n
k is a solution, we know

that a linear combination of these solutions also satisfies Equation (23.1). That is,

for constants γ1, γ2, . . . , γk, we have

an = γ1r
n
1 + γ2r

n
2 + · · ·+ γkr

n
k . (23.5)

This fact depends on our original recurrence relation being linear. For example, if

we had

an+1 = n2an + enan−1,

Equation (23.5) would not be valid.

Let’s prove this in full gore for the Fibonacci numbers; the proof in general in

similar. For the Fibonacci numbers, we get a characteristic equation of r2 − r − 1,
with roots r1 = (1 +

√
5)/2 and r2 = (1 −

√
5)/2. Knowing that each of these

roots solves the characteristic equation, let’s look at an arbitrary linear combination

γ1r
n
1 + γ2r

n
2 for Fn. We find

Fn+1 − Fn − Fn−1

=
(

γ1r
n+1

1
+ γ2r

n+1

2

)

− (γ1r
n
1 + γ2r

n
2 )−

(

γ1r
n−1

1
+ γ2r

n−1

2

)

= γ1
(

rn+1

1 − rn1 − rn−1

1

)

+ γ2
(

rn+1

2 − rn2 − rn−1

2

)

= γ1r
n−1

1

(

r21 − r1 − 1
)

+ γ2r
n−1

2

(

r22 − r2 − 1
)

= 0 + 0 = 0.

What makes the algebra work is the linearity: sums of solutions are solutions, and a

multiple of a solution is a solution.

23.2.3 The Initial Conditions

We’ve made it about two-thirds of the way to finding a solution to Equation (23.1).

We have Equation (23.5) as the general form for the an’s. In addition, we solved
the characteristic polynomial for the roots r1, r2, . . . , rk (which we assume are dis-

tinct). Unfortunately, we’re not done yet. We still need to determine the values of

γ1, γ2, . . . , γk in order to find out what an is.

Using our initial conditions, which are the values for a0, a1, . . . , ak−1, and our

assumption that an = γ1r
n
1 + · · · + γkr

n
k , we can set up the following system of
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equations:

γ1 + γ2 + · · ·+ γk = a0

γ1r1 + γ2r2 + · · ·+ γkrk = a1

γ1r
2
1 + γ2r

2
2 + · · ·+ γkr

2
k = a2
... =

...

γ1r
k−1

1 + γ2r
k−1

2 + · · ·+ γkr
k−1

k = ak−1.

From linear algebra, we know that we can rewrite this system of equations as the

product of matrices:















1 1 . . . 1
r1 r2 . . . rk
r21 r22 . . . r2k
...

...

rk−1

1 rk−1

2 . . . rk−1

k





























γ1
γ2
γ3
...

γk















=















a0
a1
a2
...

ak−1















. (23.6)

It’s a wonderful fact that if r1, r2, . . . , rk are distinct, then our k × k matrix

is invertible. This is a non-trivial fact; for those who are really interested, a proof

is given in §23.2.4. In this case, we can solve for the vector of γ1, γ2, . . . , γk by

multiplying both sides of Equation (23.6) to the left by the inverse of the k × k
matrix:















γ1
γ2
γ3
...

γk















=















1 1 . . . 1
r1 r2 . . . rk
r21 r22 . . . r2k
...

...

rk−1

1 rk−1

2 . . . rk−1

k















−1 













a0
a1
a2
...

ak−1















. (23.7)

Then, Equation (23.7) gives us values for each of γ1, γ2, . . . , γk. We already solved

for r1, r2, . . . , rk and, according to Equation (23.5), this is all the information we

need to find an. That is, we substitute the ri values that we found by solving the
characteristic polynomial and the γi values we find by Equation (23.7) into Equation
(23.5) to solve for an.

Let’s end by applying this to the Fibonacci numbers. Remember r1 = (1+
√
5)/2

and r2 = (1 −
√
5)/2, the initial conditions are F0 = 0 and F1 = 1, and Fn =

γ1r
n
1 + γ2r

n
2 . Our system of equations becomes

(

1 1
r1 r2

)(

γ1
γ2

)

=

(

0
1

)

.

The determinant of the matrix is r2 − r1 = −
√
5; as this is non-zero, the matrix is

invertible. We find
(

γ1
γ2

)

=
−1√
5

(

r2 −1
−r1 1

)(

0
1

)

=

(

1/
√
5

−1/
√
5

)

.

This leads to

an =
1√
5

(

1 +
√
5

2

)n

− 1√
5

(

1−
√
5

2

)n

,
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and we recover Binet’s formula. It’s a spectacular formula. It allows us to jump to

any Fibonacci number without having to compute the intermediate ones. It makes

for very efficient computations.

We leave the rest of the roulette problem as an exercise for the interested reader.

The difficulty is that the characteristic polynomial has degree 5, and there is no ana-

logue of the quadratic formula. Sadly, this means we can’t just write down the roots

in terms of the coefficients of the polynomial, but instead have to approximate them.

The five roots are approximately−0.339175± 0.229268i, 0.0976883± 0.424427i,
and 0.982974.

In analyzing the solutions to recurrence relations, the large n behavior is typically
governed by the root whose absolute value is larger. This is because, as n grows, the

powers of this root far exceed the powers of the other roots. The only time when it

won’t control the limiting behavior is if its corresponding coefficient happens to be

zero (which only happen for very special, pathological choices of initial conditions).

23.2.4 Proof that distinct roots imply invertibility

To solve the recurrence relation, we needed the k × k matrix in Equation (23.7) to

be invertible. We need to show that if

A =















1 1 . . . 1
r1 r2 . . . rk
r21 r22 . . . r2k
...

...

rk−1

1 rk−1

2 . . . rk−1

k















,

then A is invertible if and only if the roots are distinct. This is a very special type

of matrix, called a Vandermonde matrix, and it turns out that a simple matching

argument shows that it’s invertible if the roots are distinct.

In linear algebra, you learned (or will learn) that a square matrix is invertible if

and only if its determinant is non-zero. If two roots are the same, then two columns

are the same and the matrix isn’t invertible. We see we can therefore restrict our-

selves to the case when all roots are distinct.

From linear algebra (basically expand by minors), we know that det(A) is a
function of r1, r2, . . . , rk. In addition, we know that, in calculating a determinant of a

k×k matrix, we have k! summands, with each summand a product of k terms. In the
product, we always have exactly one element from each row, and exactly one element

from each column. We’re going to get a massive polynomial in r1, r2, . . . , rk. The
first question to ask is: what is its degree? Well, the first row is just all 1’s, and

thus contributes 0 to the degree. The second row gives us an ri for some i, and this
contributes 1 to the degree. For the third row, we get an r2j , which contributes 2 to

the degree. And so on and so on until the last row, which gives us a factor like rk−1

` ,

and adds k − 1 to the degree. Thus the degree of det(A) is

1 + 2 + · · ·+ k − 1 =
(k − 1)k

2
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(see Appendix A.2.1 for a proof of this sum). We know det(A) is a polynomial

involving r1, . . . , rk. We’re going to show it’s just
∏

1≤i<j≤k

(rj − ri).

For a minute, let’s go back and consider what happens if ri = rj for some i 6= j.
If this is the case, then det(A) = 0 as two columns are equal. As i and j are

arbitrary, we see det(A) must always be divisible by ri − rj , or
∏

1≤i<j≤k

(rj − ri)

divides det(A).

Now consider the degree of
∏

1≤i<j≤k

(rj − ri), which we know to be a factor of

det(A). We have 2 ≤ j ≤ k and 1 ≤ i ≤ j − 1. Therefore, the degree of this
polynomial is

k
∑

j=2

(j − 1) =

k−1
∑

j=1

j =
k(k − 1)

2
.

We see that the degree of
∏

1≤i<j≤k

(rj − ri), which we know to be a factor of det(A),

is the same as the degree of det(A). This means that

det(A) = α ·
∏

1≤i<j≤k

(rj − ri) (23.8)

for some constant α. Then, we see from Equation (23.8) that det(A) can be zero

only if at least one of α or
∏

1≤i<j≤k

(rj − ri) is zero. We know that
∏

1≤i<j≤k

(rj − ri)

is zero if ri = rj , but we’ve already shown that det(A) is zero in this case, and

we’re currently considering the situation in which we have k distinct roots. Thus, we

assume that
∏

1≤i<j≤k

(rj−ri) 6= 0, and we must show only that α 6= 0. What’s really

nice is that α is independent of the ri’s, so if we can determine α in one special case,

we’ll know it in every case.

Let’s try ri = 1010
i−1

. This sequence is growing rapidly. We have r1 = 1,
r2 = 1010, r3 = 10100 and so on. Clearly, rk will be so large that the determinant

cannot vanish (the determinant will be essentially r01r
1
2r

2
3 · · · rk−1

k ), and therefore we

cannot have α = 0. Consequently, we see that having k distinct roots r1, r2, . . . , rk
is enough to know that A will be invertible.

23.3 Markov Processes

We end with one final example of how difference equations can be applied to proba-

bility. We start with a completely deterministic, incredibly oversimplified situation;

after we understand this problem, we’ll make the model more reasonable and then

explore related applications.


