Math 331: Problem Solving Steven J Miller (sjm1@Williams.edu)

First Remote Participation Lecture March 3, 2017

Zombie Infection: Rules

- If share walls with 2 or more infected, become infected.
- Once infected, always infected.

Initial Configuration

Zombie Infection: Rules

- If share walls with 2 or more infected, become infected.
- Once infected, always infected.

Initial Configuration One moment later

Zombie Infection: Rules

- If share walls with 2 or more infected, become infected.
- Once infected, always infected.

Initial Configuration One moment later

Two moments later Three moments later

Easiest initial state that ensures all eventually infected is...?

Easiest initial state that ensures all eventually infected is...?

Next simplest initial state ensuring all eventually infected...?

Next simplest initial state ensuring all eventually infected...?

Perimeter of infection unchanged.

Monovariant: quantity that only increases or decreases as we "move".

Monovariant: quantity that only increases or decreases as we "move".

Question: where else can we find monovariants?

Fibonacci numbers: $F_1 = 1$, $F_2 = 2$, $F_{n+1} = F_n + F_{n-1}$.

Zeckendorf's Theorem: Every positive integer can be written uniquely as a sum of non-adjacent Fibonacci numbers.

```
Example: 82 = 55 + 21 + 5 + 1 (Greedy algorithm)
```

Fibonacci numbers: $F_1 = 1$, $F_2 = 2$, $F_{n+1} = F_n + F_{n-1}$.

Zeckendorf's Theorem: Every positive integer can be written uniquely as a sum of non-adjacent Fibonacci numbers.

Example: 82 = 55 + 21 + 5 + 1 (Greedy algorithm)

Given any decomposition as a sum of Fibonaccis, two moves:

- Split a double: $2 F_n = F_n + F_{n-1} + F_{n-2} = F_{n+1} + F_{n-2}$.
- Combine adjacent: $F_n + F_{n-1} = F_{n+1}$.

Fibonacci numbers: $F_1 = 1$, $F_2 = 2$, $F_{n+1} = F_n + F_{n-1}$.

Zeckendorf's Theorem: Every positive integer can be written uniquely as a sum of non-adjacent Fibonacci numbers.

Example: 82 = 55 + 21 + 5 + 1 (Greedy algorithm)

Given any decomposition as a sum of Fibonaccis, two moves:

- Split a double: $2 F_n = F_n + F_{n-1} + F_{n-2} = F_{n+1} + F_{n-2}$.
- Combine adjacent: $F_n + F_{n-1} = F_{n+1}$.

THEOREM: Among all decompositions of a number as a sum of Fibonaccis, none have fewer summands than the Zeckendorf.
