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Goals of the Talk

Often multiple proofs: Say a proof rather than the proof.

Different proofs highlight different aspects.

Too often rote algebra: Explore! Generalize! Conjecture!

General: How to find / check proofs: special cases, ‘smell’
test.

Specific: Pythagorean Theorem.
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Pythagorean Theorem
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Geometry Gem: Pythagorean Theorem

Theorem (Pythagorean Theorem)

Right triangle with sides a, b and hypotenuse c, then
a2 + b2 = c2.

Most students know the statement, but the proof?

Why are proofs important? Can help see big picture.
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Geometric Proofs of Pythagoras

Figure: Euclid’s Proposition 47, Book I. Why these auxiliary lines?
Why are there equalities?
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Geometric Proofs of Pythagoras

Figure: Euclid’s Proposition 47, Book I. Why these auxiliary lines?
Why are there equalities?
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Geometric Proofs of Pythagoras

Figure: A nice matching proof, but how to find these slicings!
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Geometric Proofs of Pythagoras

Figure: Four triangles proof: I
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Geometric Proofs of Pythagoras

Figure: Four triangles proof: II
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Geometric Proofs of Pythagoras

Figure: President James Garfield’s (Williams 1856) Proof.
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Geometric Proofs of Pythagoras

Lots of different proofs.

Difficulty: how to find these combinations?

At the end of the day, do you know why it’s true?
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Dimensional Analysis
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Possible Pythagorean Theorems....

⋄ c2 = a3 + b3.

⋄ c2 = a2 + 2b2.

⋄ c2 = a2 − b2.

⋄ c2 = a2 + ab + b2.

⋄ c2 = a2 + 110ab + b2.
13
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Possible Pythagorean Theorems....

⋄ c2 = a3 + b3. No: wrong dimensions.

⋄ c2 = a2 + 2b2. No: asymmetric in a,b.

⋄ c2 = a2 − b2. No: can be negative.

⋄ c2 = a2 + ab + b2. Maybe: passes all tests.

⋄ c2 = a2 + 110ab + b2. No: violates a + b > c.
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Dimensional Analysis Proof of the Pythagorean Theorem

⋄ Area is a function of hypotenuse c and angle x .
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Dimensional Analysis Proof of the Pythagorean Theorem

⋄ Area is a function of hypotenuse c and angle x .

⋄ Area(c, x) = f (x)c2 for some function f (similar triangles).
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Dimensional Analysis Proof of the Pythagorean Theorem

⋄ Area is a function of hypotenuse c and angle x .

⋄ Area(c, x) = f (x)c2 for some function f (similar triangles).

⋄ Must draw an auxiliary line, but where? Need right angles!
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Dimensional Analysis Proof of the Pythagorean Theorem

⋄ Area is a function of hypotenuse c and angle x .

⋄ Area(c, x) = f (x)c2 for some function f (CPCTC).

⋄ Must draw an auxiliary line, but where? Need right angles!
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Dimensional Analysis Proof of the Pythagorean Theorem

⋄ Area is a function of hypotenuse c and angle x .

⋄ Area(c, x) = f (x)c2 for some function f (CPCTC).

⋄ Must draw an auxiliary line, but where? Need right angles!

⋄ f (x)a2 + f (x)b2 = f (x)c2
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Dimensional Analysis Proof of the Pythagorean Theorem

⋄ Area is a function of hypotenuse c and angle x .

⋄ Area(c, x) = f (x)c2 for some function f (CPCTC).

⋄ Must draw an auxiliary line, but where? Need right angles!

⋄ f (x)a2 + f (x)b2 = f (x)c2 ⇒ a2 + b2 = c2.
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Dimensional Analysis and the Pendulum
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Dimensional Analysis and the Pendulum

Period: Need combination of quantities to get seconds.
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Dimensional Analysis and the Pendulum

Period: Need combination of quantities to get seconds.

T = f (x)
√

L/g.
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Guessing Pythagoras:
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Finding the Functional Form

Idea is to try and guess the correct functional form for
Pythagoras.

Guess will have some free parameters, determine by special
cases.

Natural guesses: linear, quadratic, ....
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Linear Attempt

Guess linear relation: c = αa + βb: what are α, β?
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Linear Attempt

Guess linear relation: c = αa + βb: what are α, β?

Consider special cases:

a → 0 have very thin triangle so b → c and thus β = 1.

b → 0 have very thin triangle so a → c and thus α = 1.
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Linear Attempt

Guess linear relation: c = αa + βb: what are α, β?

Consider special cases:

a → 0 have very thin triangle so b → c and thus β = 1.

b → 0 have very thin triangle so a → c and thus α = 1.

Question: Does c = a + b make sense?
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Linear Attempt: Analyzing c = a + b (so a = b = 1 implies c = 2)

So, if linear, must be c = a + b. Using:

Area rectangle x by y is xy .
Area right triangle of sides x by y is 1

2xy .
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Linear Attempt: Analyzing c = a + b (so a = b = 1 implies c = 2)

So, if linear, must be c = a + b. Using:

Area rectangle x by y is xy .
Area right triangle of sides x by y is 1

2xy .

Figure: Four triangles and a square, assuming c = a + b and
a = b = 1.
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Linear Attempt: Analyzing c = a + b (so a = b = 1 implies c = 2)

So, if linear, must be c = a + b. Using:

Area rectangle x by y is xy .
Area right triangle of sides x by y is 1

2xy .

Figure: Four triangles and a square, assuming c = a + b and
a = b = 1.

Calculate area of big square two ways:

Four triangles, each area 1
21 · 1: total is 2.

Square of sides 2: area is 2 · 2 = 4.

Contradiction! Cannot be linear!
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Quadratic Attempt:

Guess quadratic: c2 = αa2 + γab + βb2: what are α, β, γ?
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Quadratic Attempt:

Guess quadratic: c2 = αa2 + γab + βb2: what are α, β, γ?

Consider special cases: as before get α = β = 1; difficulty γ.

Figure: Four triangles and a square: a = b = 1.
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Quadratic Attempt:

Guess quadratic: c2 = αa2 + γab + βb2: what are α, β, γ?

Consider special cases: as before get α = β = 1; difficulty γ.

Figure: Four triangles and a square: a = b = 1.

Equating areas: c2 = 4
(1

21 · 1
)

, so c2 = 2 or c =
√

2.
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Quadratic Attempt:

Guess quadratic: c2 = αa2 + γab + βb2: what are α, β, γ?

Consider special cases: as before get α = β = 1; difficulty γ.

Figure: Four triangles and a square: a = b = 1.

Equating areas: c2 = 4
(1

21 · 1
)

, so c2 = 2 or c =
√

2.
Thus 2 = 1 + γ1 · 1 + 1, so γ = 0 and c2 = a2 + b2.
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Warnings:

Not a proof: just shows that if quadratic, must be c2 = a2 + b2.

In lowest terms:

16
64

=
1
4
,

19
95

=
1
5
,

49
98

=
1
2
,
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Warnings:

Not a proof: just shows that if quadratic, must be c2 = a2 + b2.

In lowest terms:

16
64

=
1
4
,

19
95

=
1
5
,

49
98

=
1
2
,

12
24

=
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Warnings:

Not a proof: just shows that if quadratic, must be c2 = a2 + b2.

In lowest terms:

16
64

=
1
4
,

19
95

=
1
5
,

49
98

=
1
2
,

12
24

=
1
4
.
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Warnings:

Not a proof: just shows that if quadratic, must be c2 = a2 + b2.

In lowest terms:

16
64

=
1
4
,

19
95

=
1
5
,

49
98

=
1
2
,

12
24

=
1
4
.

16
64

=
1
4
,

19
95

=
1
5
,

49
98

=
1
2
,
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Warnings:

Not a proof: just shows that if quadratic, must be c2 = a2 + b2.

In lowest terms:

16
64

=
1
4
,

19
95

=
1
5
,

49
98

=
1
2
,

12
24

=
1
4
.

16
64

=
1
4
,

19
95

=
1
5
,

49
98

=
1
2
,

12
24

=
1
4
.
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Extending Pythagoras:
The Sphere
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Pythagoras on a Sphere

What should the Pythagorean Theorem be on a sphere?

42
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Spherical Coordinates

Spherical Coordinates: ρ ∈ [0,R], θ ∈ [0, π], φ ∈ [0,2π).

x = ρ sin(θ) cos(φ).

y = ρ sin(θ) sin(φ).

z = ρ cos(θ).

Note z = ρ cos(θ), then (x , y) from circle of radius r = ρ sin(θ)
and angle φ.
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Special Cases

What could the Pythagorean Formula be on a sphere?
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Special Cases

What could the Pythagorean Formula be on a sphere?

If a,b, c small relative to radius R should reduce to planar
Pythagoras.

Can have equilateral right triangle with a = b = c.

Only depends on ratios a/R, b/R, c/R.

45



Pythagorean Theorem Dimensional Analysis Guessing Pythagoras Extending Pythagoras Conclusion Feeling Equations Other

Special Cases

What could the Pythagorean Formula be on a sphere?

If a,b, c small relative to radius R should reduce to planar
Pythagoras.

Can have equilateral right triangle with a = b = c.

Only depends on ratios a/R, b/R, c/R.

Maybe a relation involving cosines of a/R, b/R, c/R as arc
length is related to angle!
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Cosine Guess

cos(u) = 1 − u2/2! + u4/4!− · · · ≈ 1 − u2/2 (u small).

Ingredients (will consider R large relative to a,b, c:

cos(a/R) ≈ 1 − 1
2

a2

R2 .

cos(b/R) ≈ 1 − 1
2

b2

R2 .

cos(c/R) ≈ 1 − 1
2

c2

R2 .

Algebra: cos(c/R) ≈ cos(a/R) cos(b/R):

1 − 1
2

c2

R2 ≈
(

1 − 1
2

a2

R2

)(

1 − 1
2

b2

R2

)

= 1 − a2 + b2

2R2 +
a2b2

4R4

c2 ≈ a2 + b2 − 2a2b2

R2 .
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Needed Input: Dot Product −→v · −→w

(v1, . . . , vn) · (w1, . . . ,wn) = v1w1 + · · · vnwn.

Theorem

If θvw is the angle between −→v and −→w then

−→v · −→w = |−→v | |−→w | cos θvw , where |−→v | =
√

v2
1 + · · ·+ v2

n .
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Proof of Dot Product Formula (Plane)

Use the Law of Cosines: c2 = a2 + b2 − 2ab cos θab.
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Proof of Dot Product Formula (Plane)

Use the Law of Cosines: c2 = a2 + b2 − 2ab cos θab.
(v1−w1)

2+(v2−w2)
2 =

(

v2
1 + v2

2

)

+
(

w2
1 + w2

2

)

−2|−→v | |−→w | cos θvw .
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Proof of Dot Product Formula (Plane)

Use the Law of Cosines: c2 = a2 + b2 − 2ab cos θab.
(v1−w1)

2+(v2−w2)
2 =

(

v2
1 + v2

2

)

+
(

w2
1 + w2

2

)

−2|−→v | |−→w | cos θvw .

After some algebra:

v1w1 + v2w2 = |−→v | |−→w | cos θvw ,

completing the proof.
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Spherical Proof

Three points: P0, PA, PB:

P0 : (R,0,0).

PA : (R, θA, φA): |
−−−→
PAP0| = θA

2πR = a
R .

PB : (R, θB, φB): |
−−−→
PBP0| = θB

2πR = b
R .

Length
−−−→
PBPA is θAB

2π R, where θAB angle between
−−−→
PAP0 and

−−−→
PBP0.

Proof follows from dot product:

−→
P · −→Q = |−→P | |−→Q | cos(θPQ).
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Spherical Proof: Continued

Cartesian Coordinates for Dot Product:
Remember right triangle: can take φA = 0, φB = π/2.

−−−→
PAP0 : (R sin θA,0,R cos θA), length is R.
−−−→
PBP0 : (0,R sin θB,R cos θB), length is R.

−→
PB · −→PA = 0 + 0 + R2 cos θA cos θB.
Dot product now gives

cos(θAB) =

−→
PB · −→PA

|−−−→PBP0| |
−−−→
PAP0|

=

−→
PB · −→PA

R2 .

Substituting yields

cos(θAB) =
R2 cos θA cos θB

R2 = cos θA cos θB,

proving spherical Pythagoras!
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Next Step: Generalize

Keep going! Generalize further!

What’s the next natural candidate?
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Next Step: Generalize

Keep going! Generalize further!

What’s the next natural candidate? Hyperbolic!

Guess:
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Next Step: Generalize

Keep going! Generalize further!

What’s the next natural candidate? Hyperbolic!

Guess: cosh(c) = cosh(a) cosh(b), where cosh is the
hyperbolic cosine!

cos(x) =
1
2

(

eix + e−ix
)

, cosh(x) =
1
2

(

ex + e−x) .
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Next Step: Generalize

Keep going! Generalize further!

What’s the next natural candidate? Hyperbolic!

Guess: cosh(c) = cosh(a) cosh(b), where cosh is the
hyperbolic cosine!

cos(x) =
1
2

(

eix + e−ix
)

, cosh(x) =
1
2

(

ex + e−x) .

Fun identities:

cosh2(x)− sinh2(x) = 1.

sinh(x + y) = sinh(x) cosh(y) + cosh(x) sinh(y).

cosh(x + y) = cosh(x) cosh(y) + sinh(x) sinh(y)....
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Conclusion
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Conclusion

⋄ Math is not complete – explore and conjecture!

⋄ Different proofs highlight different aspects.

⋄ Get a sense of what to try / what might work.
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Feeling Equations
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Sabermetrics

Sabermetrics is the art of applying mathematics and statistics
to baseball.

Danger: not all students like sports (Red Sox aren’t making life
easier!).

Lessons: not just for baseball; try to find the right statistics that
others miss, competitive advantage (business, politics).
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Estimating Winning Percentages

Assume team A wins p percent of their games, and team B
wins q percent of their games. Which formula do you think
does a good job of predicting the probability that team A beats
team B? Why?

p + pq
p + q + 2pq

,

p + pq
p + q − 2pq

p − pq
p + q + 2pq

,

p − pq
p + q − 2pq
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Estimating Winning Percentages

p + pq
p + q + 2pq

,
p + pq

p + q − 2pq
,

p − pq
p + q + 2pq

,
p − pq

p + q − 2pq

How can we test these candidates?

Can you think of answers for special choices of p and q?
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Estimating Winning Percentages

p + pq
p + q + 2pq

,
p + pq

p + q − 2pq
,

p − pq
p + q + 2pq

,
p − pq

p + q − 2pq

Homework: explore the following:
⋄ p = 1, q < 1 (do not want the battle of the undefeated).

⋄ p = 0, q > 0 (do not want the Toilet Bowl).

⋄ p = q.

⋄ p > q (can do q < 1/2 and q > 1/2).

⋄ Anything else where you ‘know’ the answer?
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Estimating Winning Percentages

p + pq
p + q + 2pq

,
p + pq

p + q − 2pq
,

p − pq
p + q + 2pq

,
p − pq

p + q − 2pq

Homework: explore the following:
⋄ p = 1, q < 1 (do not want the battle of the undefeated).

⋄ p = 0, q > 0 (do not want the Toilet Bowl).

⋄ p = q.

⋄ p > q (can do q < 1/2 and q > 1/2).

⋄ Anything else where you ‘know’ the answer?
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Estimating Winning Percentages

p − pq
p + q − 2pq

=
p(1 − q)

p(1 − q) + (1 − p)q

Homework: explore the following:
⋄ p = 1, q < 1 (do not want the battle of the undefeated).

⋄ p = 0, q > 0 (do not want the Toilet Bowl).

⋄ p = q.

⋄ p > q (can do q < 1/2 and q > 1/2).

⋄ Anything else where you ‘know’ the answer?
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Estimating Winning Percentages: ‘Proof’

Figure: First see how A does, then B.
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Estimating Winning Percentages: ‘Proof’

Figure: Two possibilities: A has a good day, or A doesn’t.
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Estimating Winning Percentages: ‘Proof’

Figure: B has a good day, or doesn’t.
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Estimating Winning Percentages: ‘Proof’

Figure: Two paths terminate, two start again.
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Estimating Winning Percentages: ‘Proof’

Figure: Probability A beats B.
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Lessons

Special cases can give clues.

Algebra can suggests answers.

Better formula: Bill James’ Pythagorean Won-Loss formula.
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Numerical Observation: Pythagorean Won-Loss Formula

Parameters
RSobs: average number of runs scored per game;

RAobs: average number of runs allowed per game;

γ: some parameter, constant for a sport.

James’ Won-Loss Formula (NUMERICAL Observation)

Won − Loss Percentage =
RSobs

γ

RSobs
γ + RAobs

γ

γ originally taken as 2, numerical studies show best γ is about
1.82. Used by ESPN, MLB.
See http://arxiv.org/abs/math/0509698 for a
‘derivation’.
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Other Gems

74
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Sums of Integers

Sn := 1 + 2 + · · · + n =
n(n + 1)

2
≈ 1

2
n2.
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Sums of Integers

Sn := 1 + 2 + · · · + n =
n(n + 1)

2
≈ 1

2
n2.

Proof 1: Induction.
Proof 2: Grouping:
2Sn = (1 + n) + (2 + (n − 1)) + · · ·+ (n + 1).

76



Pythagorean Theorem Dimensional Analysis Guessing Pythagoras Extending Pythagoras Conclusion Feeling Equations Other

Sums of Integers

Sn := 1 + 2 + · · · + n =
n(n + 1)

2
≈ 1

2
n2.

Proof 1: Induction.
Proof 2: Grouping:
2Sn = (1 + n) + (2 + (n − 1)) + · · ·+ (n + 1).

Instead of determining sum useful to get sense of size.
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Sums of Integers

Sn := 1 + 2 + · · · + n =
n(n + 1)

2
≈ 1

2
n2.

Proof 1: Induction.
Proof 2: Grouping:
2Sn = (1 + n) + (2 + (n − 1)) + · · ·+ (n + 1).

Instead of determining sum useful to get sense of size.

Have n
2

n
2 ≤ Sn ≤ n; thus Sn is between n2/4 and n2, have the

correct order of magnitude of n.
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Sums of Integers

Sn := 1 + 2 + · · · + n =
n(n + 1)

2
≈ 1

2
n2.

Proof 1: Induction.
Proof 2: Grouping:
2Sn = (1 + n) + (2 + (n − 1)) + · · ·+ (n + 1).

Instead of determining sum useful to get sense of size.

Have n
2

n
2 ≤ Sn ≤ n; thus Sn is between n2/4 and n2, have the

correct order of magnitude of n.

Can improve: divide and conquer again: lather, rinse, repeat....

n
4

n
4
+

n
4

2n
4

+
n
4

3n
4

≤ Sn, so
6
16

n2 ≤ Sn.
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Geometric Irrationality Proofs: http://arxiv.org/abs/0909.
4913

b

a-b

ba-b

2b-a

Figure: Geometric proof of the irrationality of
√

2.
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Geometric Irrationality Proofs: http://arxiv.org/abs/0909.
4913

a

b

2b-a

Figure: Geometric proof of the irrationality of
√
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Geometric Irrationality Proofs: http://arxiv.org/abs/0909.
4913

Figure: Geometric proof of the irrationality of
√

5.
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Geometric Irrationality Proofs: http://arxiv.org/abs/0909.
4913

Figure: Geometric proof of the irrationality of
√

5: the kites, triangles
and the small pentagons.
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Geometric Irrationality Proofs: http://arxiv.org/abs/0909.
4913

Figure: Geometric proof of the irrationality of
√

6.
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Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies among P
distinct people is

(C+P−1
P−1

)

.
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Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies among P
distinct people is

(C+P−1
P−1

)

.

Proof : Consider C + P − 1 cookies in a line.
Cookie Monster eats P − 1 cookies:

(C+P−1
P−1

)

ways to do.
Divides the cookies into P sets.
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Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies among P
distinct people is
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Proof : Consider C + P − 1 cookies in a line.
Cookie Monster eats P − 1 cookies:

(C+P−1
P−1

)

ways to do.
Divides the cookies into P sets.
Example: 8 cookies and 5 people (C = 8, P = 5):
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The Cookie Problem
The number of ways of dividing C identical cookies among P
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Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies among P
distinct people is

(C+P−1
P−1

)

. Solved x1 + · · · + xP = C, xi ≥ 0.

Proof : Consider C + P − 1 cookies in a line.
Cookie Monster eats P − 1 cookies:

(C+P−1
P−1

)

ways to do.
Divides the cookies into P sets.
Example: 8 cookies and 5 people (C = 8, P = 5):
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