Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion	Feeling Equations	Oth

Extending Pythagoras

Steven J. Miller, Williams College sjml@williams.edu, Steven.Miller.MC.96@aya.yale.edu http://web.williams.edu/Mathematics/sjmiller/ public_html/

Hampshire College, July 28, 2015

Pythagorean Theorem 00 	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion O	Feeling Equations	Oth 00
Goals of the	Talk					

- Often multiple proofs: Say a proof rather than the proof.
- Different proofs highlight different aspects.
- Too often rote algebra: Explore! Generalize! Conjecture!
- General: How to find / check proofs: special cases, 'smell' test.
- Specific: Pythagorean Theorem.

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion	Feeling Equations	Oth

Pythagorean Theorem

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion	Feeling Equations	Oth
0 00						

Geometry Gem: Pythagorean Theorem

Theorem (Pythagorean Theorem)

Right triangle with sides a, b and hypotenuse c, then $a^2 + b^2 = c^2$.

Most students know the statement, but the proof?

Why are proofs important? Can help see big picture.

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion	Feeling Equations	Oth
0 00						

Figure: Euclid's Proposition 47, Book I. Why these auxiliary lines? Why are there equalities?

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion	Feeling Equations	Oth
0 00						

Figure: Euclid's Proposition 47, Book I. Why these auxiliary lines? Why are there equalities?

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion	Feeling Equations	Oth
0 00						

Figure: A nice matching proof, but how to find these slicings!

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion	Feeling Equations	Oth
0 00						

Figure: Four triangles proof: I

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion	Feeling Equations	Oth
0 00						

Figure: Four triangles proof: II

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion	Feeling Equations	Oth
0 00						

Figure: President James Garfield's (Williams 1856) Proof.

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion	Feeling Equations	Oth
0 00						

Lots of different proofs.

Difficulty: how to find these combinations?

At the end of the day, do you know why it's true?

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion	Feeling Equations	Oth

Dimensional Analysis

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion	Feeling Equations	Oth
	0000					

Possible Pythagorean Theorems....

$$\diamond c^{2} = a^{3} + b^{3}.$$

$$\diamond c^{2} = a^{2} + 2b^{2}.$$

$$\diamond c^{2} = a^{2} - b^{2}.$$

$$\diamond c^{2} = a^{2} + ab + b^{2}.$$

$$\diamond c^{2} = a^{2} + 110ab + b^{2}.$$

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion	Feeling Equations	Oth
	0000					

Possible Pythagorean Theorems....

$$\diamond c^2 = a^3 + b^3$$
. No: wrong dimensions.

 $\diamond c^2 = a^2 + 2b^2$. No: asymmetric in *a*, *b*.

 $\diamond c^2 = a^2 - b^2$. No: can be negative.

 $\diamond c^2 = a^2 + ab + b^2$. Maybe: passes all tests.

 $\diamond c^2 = a^2 + 110ab + b^2$. No: violates a + b > c.

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion	Feeling Equations	Oth
	0000					

 \diamond Area is a function of hypotenuse *c* and angle *x*.

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion	Feeling Equations	Oth
	0000					

 \diamond Area is a function of hypotenuse *c* and angle *x*.

 \diamond Area $(c, x) = f(x)c^2$ for some function f (similar triangles).

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion	Feeling Equations	Oth
	0000					

 \diamond Area is a function of hypotenuse *c* and angle *x*.

 \diamond Area $(c, x) = f(x)c^2$ for some function f (similar triangles).

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion	Feeling Equations	Oth
	0000					

 \diamond Area is a function of hypotenuse *c* and angle *x*.

 \diamond Area $(c, x) = f(x)c^2$ for some function f (CPCTC).

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion	Feeling Equations	Oth
	0000					

 \diamond Area is a function of hypotenuse *c* and angle *x*.

 \diamond Area $(c, x) = f(x)c^2$ for some function f (CPCTC).

$$\diamond f(x)a^2 + f(x)b^2 = f(x)c^2$$

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion	Feeling Equations	Oth
	0000					

 \diamond Area is a function of hypotenuse *c* and angle *x*.

 \diamond Area $(c, x) = f(x)c^2$ for some function f (CPCTC).

$$\diamond f(x)a^2 + f(x)b^2 = f(x)c^2 \Rightarrow a^2 + b^2 = c^2$$

Dimensional Analysis and the Pendulum

Dimensional Analysis and the Pendulum

Period: Need combination of quantities to get seconds.

Dimensional Analysis and the Pendulum

Period: Need combination of quantities to get seconds.

$$T = f(x)\sqrt{L/g}$$
.

23

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion	Feeling Equations	Oth

Guessing Pythagoras:

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion	Feeling Equations	Oth
		00000				

Finding the Functional Form

Idea is to try and guess the correct functional form for Pythagoras.

Guess will have some free parameters, determine by special cases.

Natural guesses: linear, quadratic,

Pythagorean Theorem 0 00	Dimensional Analysis	Guessing Pythagoras ○●○○○	Extending Pythagoras	Conclusion O	Feeling Equations	Oth 00
Linear Attem	npt					

Guess linear relation: $c = \alpha a + \beta b$: what are α, β ?

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras ○●○○○	Extending Pythagoras	Conclusion O	Feeling Equations	Oth 00
Linear Attem	npt					

Guess linear relation: $c = \alpha a + \beta b$: what are α, β ?

Consider special cases:

• $a \rightarrow 0$ have very thin triangle so $b \rightarrow c$ and thus $\beta = 1$.

• $b \rightarrow 0$ have very thin triangle so $a \rightarrow c$ and thus $\alpha = 1$.

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion O	Feeling Equations	Oth 00'	
Linear Attempt							

Guess linear relation: $c = \alpha a + \beta b$: what are α, β ?

Consider special cases:

• $a \rightarrow 0$ have very thin triangle so $b \rightarrow c$ and thus $\beta = 1$.

• $b \rightarrow 0$ have very thin triangle so $a \rightarrow c$ and thus $\alpha = 1$.

Question: Does c = a + b make sense?

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion	Feeling Equations	Oth
		00000				

Linear Attempt: Analyzing c = a + b (so a = b = 1 implies c = 2)

So, *if* linear, *must* be c = a + b. Using:

- Area rectangle *x* by *y* is *xy*.
- Area right triangle of sides x by y is $\frac{1}{2}xy$.

Linear Attempt: Analyzing c = a + b (so a = b = 1 implies c = 2)

So, *if* linear, *must* be c = a + b. Using:

- Area rectangle *x* by *y* is *xy*.
- Area right triangle of sides x by y is $\frac{1}{2}xy$.

Figure: Four triangles and a square, assuming c = a + b and a = b = 1.

Linear Attempt: Analyzing c = a + b (so a = b = 1 implies c = 2)

So, *if* linear, *must* be c = a + b. Using:

- Area rectangle *x* by *y* is *xy*.
- Area right triangle of sides x by y is $\frac{1}{2}xy$.

Figure: Four triangles and a square, assuming c = a + b and a = b = 1.

Calculate area of big square two ways:

- Four triangles, each area $\frac{1}{2}1 \cdot 1$: total is 2.
- Square of sides 2: area is $2 \cdot 2 = 4$.

Contradiction! Cannot be linear!

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras ○○○●○	Extending Pythagoras	Conclusion ○	Feeling Equations	Oth 00'		
Quadratic Attempt:								

Guess quadratic: $c^2 = \alpha a^2 + \gamma ab + \beta b^2$: what are α, β, γ ?

Guess quadratic:
$$c^2 = \alpha a^2 + \gamma ab + \beta b^2$$
: what are α, β, γ ?

Consider special cases: as before get $\alpha = \beta = 1$; difficulty γ .

Figure: Four triangles and a square: a = b = 1.

Guess quadratic:
$$c^2 = \alpha a^2 + \gamma ab + \beta b^2$$
: what are α, β, γ ?

Consider special cases: as before get $\alpha = \beta = 1$; difficulty γ .

Figure: Four triangles and a square: a = b = 1.

Equating areas:
$$c^2 = 4\left(rac{1}{2}\mathbf{1}\cdot\mathbf{1}
ight)$$
, so $c^2 = 2$ or $c = \sqrt{2}$.

Guess quadratic:
$$c^2 = \alpha a^2 + \gamma ab + \beta b^2$$
: what are α, β, γ ?

Consider special cases: as before get $\alpha = \beta = 1$; difficulty γ .

Figure: Four triangles and a square: a = b = 1.

Equating areas:
$$c^2 = 4(\frac{1}{2}1 \cdot 1)$$
, so $c^2 = 2$ or $c = \sqrt{2}$.
Thus $2 = 1 + \gamma 1 \cdot 1 + 1$, so $\gamma = 0$ and $c^2 = a^2 + b^2$.

Not a proof: just shows that if quadratic, must be $c^2 = a^2 + b^2$.

In lowest terms:

$$\frac{16}{64} = \frac{1}{4}, \quad \frac{19}{95} = \frac{1}{5}, \quad \frac{49}{98} = \frac{1}{2},$$

$$\frac{16}{64} = \frac{1}{4}, \quad \frac{19}{95} = \frac{1}{5}, \quad \frac{49}{98} = \frac{1}{2}, \quad \frac{12}{24} =$$

$$\frac{16}{64} = \frac{1}{4}, \quad \frac{19}{95} = \frac{1}{5}, \quad \frac{49}{98} = \frac{1}{2}, \quad \frac{12}{24} = \frac{1}{4}.$$

$$\frac{16}{64} = \frac{1}{4}, \quad \frac{19}{95} = \frac{1}{5}, \quad \frac{49}{98} = \frac{1}{2}, \quad \frac{12}{24} = \frac{1}{4}$$
$$\frac{16}{64} = \frac{1}{4}, \quad \frac{19}{95} = \frac{1}{5}, \quad \frac{49}{98} = \frac{1}{2},$$

$$\frac{16}{64} = \frac{1}{4}, \quad \frac{19}{95} = \frac{1}{5}, \quad \frac{49}{98} = \frac{1}{2}, \quad \frac{12}{24} = \frac{1}{4}.$$
$$\frac{16}{64} = \frac{1}{4}, \quad \frac{19}{95} = \frac{1}{5}, \quad \frac{49}{98} = \frac{1}{2}, \quad \frac{12}{24} = \frac{1}{4}.$$

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion	Feeling Equations	Oth

Extending Pythagoras: The Sphere

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion	Feeling Equations	Oth
			00000000			

Pythagoras on a Sphere

What should the Pythagorean Theorem be on a sphere?

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion	Feeling Equations	Oth
			00000000			

Spherical Coordinates

Spherical Coordinates: $\rho \in [0, R]$, $\theta \in [0, \pi]$, $\phi \in [0, 2\pi)$.

•
$$\mathbf{x} = \rho \sin(\theta) \cos(\phi)$$
.

•
$$y = \rho \sin(\theta) \sin(\phi)$$
.

•
$$z = \rho \cos(\theta)$$
.

Note $z = \rho \cos(\theta)$, then (x, y) from circle of radius $r = \rho \sin(\theta)$ and angle ϕ .

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	0,0	Conclusion o	Feeling Equations	Oth 00
Special Case	es					

What could the Pythagorean Formula be on a sphere?

Pythagorean Theore	m Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion	Feeling Equations	Oth
			00000000			

Special Cases

What could the Pythagorean Formula be on a sphere?

- If *a*, *b*, *c* small relative to radius *R* should reduce to planar Pythagoras.
- Can have equilateral right triangle with a = b = c.
- Only depends on ratios a/R, b/R, c/R.

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion	Feeling Equations	Oth
			00000000			

Special Cases

What could the Pythagorean Formula be on a sphere?

- If *a*, *b*, *c* small relative to radius *R* should reduce to planar Pythagoras.
- Can have equilateral right triangle with a = b = c.
- Only depends on ratios a/R, b/R, c/R.

Maybe a relation involving cosines of a/R, b/R, c/R as arc length is related to angle!

$$\cos(u) = 1 - u^2/2! + u^4/4! - \cdots \approx 1 - u^2/2$$
 (u small).

Ingredients (will consider *R* large relative to *a*, *b*, *c*:

•
$$\cos(a/R) \approx 1 - \frac{1}{2} \frac{a^2}{R^2}$$
.
• $\cos(b/R) \approx 1 - \frac{1}{2} \frac{b^2}{R^2}$.
• $\cos(c/R) \approx 1 - \frac{1}{2} \frac{c^2}{R^2}$.

Algebra: $\cos(c/R) \approx \cos(a/R) \cos(b/R)$:

$$\begin{split} 1 - \frac{1}{2} \frac{c^2}{R^2} \ \approx \ \left(1 - \frac{1}{2} \frac{a^2}{R^2} \right) \left(1 - \frac{1}{2} \frac{b^2}{R^2} \right) \ = \ 1 - \frac{a^2 + b^2}{2R^2} + \frac{a^2 b^2}{4R^4} \\ c^2 \ \approx \ a^2 + b^2 - \frac{2a^2 b^2}{R^2}. \end{split}$$

Needed Input: Dot Product $\overrightarrow{v} \cdot \overrightarrow{w}$

$$(v_1,\ldots,v_n)\cdot(w_1,\ldots,w_n) = v_1w_1+\cdots v_nw_n.$$

Theorem

If θ_{vw} is the angle between \overrightarrow{v} and \overrightarrow{w} then

 $\overrightarrow{v} \cdot \overrightarrow{w} = |\overrightarrow{v}| |\overrightarrow{w}| \cos \theta_{vw}$, where $|\overrightarrow{v}| = \sqrt{v_1^2 + \dots + v_n^2}$.

Proof of Dot Product Formula (Plane)

Use the Law of Cosines: $c^2 = a^2 + b^2 - 2ab \cos \theta_{ab}$.

Proof of Dot Product Formula (Plane)

Use the Law of Cosines: $c^2 = a^2 + b^2 - 2ab\cos\theta_{ab}$. $(v_1 - w_1)^2 + (v_2 - w_2)^2 = (v_1^2 + v_2^2) + (w_1^2 + w_2^2) - 2|\overrightarrow{v}| |\overrightarrow{w}| \cos\theta_{vw}$.

Proof of Dot Product Formula (Plane)

Use the Law of Cosines: $c^2 = a^2 + b^2 - 2ab\cos\theta_{ab}$. $(v_1 - w_1)^2 + (v_2 - w_2)^2 = (v_1^2 + v_2^2) + (w_1^2 + w_2^2) - 2|\overrightarrow{v}| |\overrightarrow{w}| \cos\theta_{vw}$.

After some algebra:

$$v_1 w_1 + v_2 w_2 = |\overrightarrow{v}| |\overrightarrow{w}| \cos \theta_{vw},$$

completing the proof.

51

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion	Feeling Equations	Oth
			000000000			

Spherical Proof

Three points: P_0 , P_A , P_B :

•
$$P_0: (R, 0, 0)$$
.
• $P_A: (R, \theta_A, \phi_A): |\overrightarrow{P_A P_0}| = \frac{\theta_A}{2\pi}R = \frac{a}{R}$.
• $P_B: (R, \theta_B, \phi_B): |\overrightarrow{P_B P_0}| = \frac{\theta_B}{2\pi}R = \frac{b}{R}$.
Length $\overrightarrow{P_B P_A}$ is $\frac{\theta_{AB}}{2\pi}R$, where θ_{AB} angle between $\overrightarrow{P_A P_0}$ and $\overrightarrow{P_B P_0}$.

Proof follows from dot product:

$$\overrightarrow{P} \cdot \overrightarrow{Q} = |\overrightarrow{P}| |\overrightarrow{Q}| \cos(\theta_{PQ}).$$

Spherical Proof: Continued

Cartesian Coordinates for Dot Product: Remember right triangle: can take $\phi_A = 0$, $\phi_B = \pi/2$.

•
$$\overrightarrow{P_AP_0}$$
: ($R\sin\theta_A, 0, R\cos\theta_A$), length is R .

•
$$\overline{P_BP_0'}$$
: (0, $R\sin\theta_B$, $R\cos\theta_B$), length is R .

$$\overrightarrow{P_B} \cdot \overrightarrow{P_A} = 0 + 0 + R^2 \cos \theta_A \cos \theta_B.$$

Dot product now gives

$$\cos(\theta_{AB}) = \frac{\overrightarrow{P_B} \cdot \overrightarrow{P_A}}{|\overrightarrow{P_BP_0}| |\overrightarrow{P_AP_0}|} = \frac{\overrightarrow{P_B} \cdot \overrightarrow{P_A}}{R^2}.$$

Substituting yields

$$\cos(\theta_{AB}) = \frac{R^2 \cos \theta_A \cos \theta_B}{R^2} = \cos \theta_A \cos \theta_B$$

proving spherical Pythagoras!

53

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion	Feeling Equations	Oth
			00000000			

Keep going! Generalize further!

What's the next natural candidate?

Pythagorean Theorem	Guessing Pythagoras	Extending Pythagoras		Oth

Keep going! Generalize further!

What's the next natural candidate? Hyperbolic!

Guess:

Keep going! Generalize further!

What's the next natural candidate? Hyperbolic!

Guess: cosh(c) = cosh(a) cosh(b), where cosh is the hyperbolic cosine!

$$\cos(x) = \frac{1}{2} \left(e^{ix} + e^{-ix} \right), \quad \cosh(x) = \frac{1}{2} \left(e^{x} + e^{-x} \right).$$

Keep going! Generalize further!

What's the next natural candidate? Hyperbolic!

Guess: cosh(c) = cosh(a) cosh(b), where cosh is the hyperbolic cosine!

$$\cos(x) = \frac{1}{2} \left(e^{ix} + e^{-ix} \right), \quad \cosh(x) = \frac{1}{2} \left(e^{x} + e^{-x} \right).$$

Fun identities:

•
$$\cosh^2(x) - \sinh^2(x) = 1$$
.

- $\sinh(x + y) = \sinh(x)\cosh(y) + \cosh(x)\sinh(y)$.
- $\cosh(x + y) = \cosh(x) \cosh(y) + \sinh(x) \sinh(y) \dots$

		Feeling Equations	

Conclusion

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Feeling Equations	Oth 00
Conclusion					

- Math is not complete explore and conjecture!
- ◊ Different proofs highlight different aspects.
- Get a sense of what to try / what might work.

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion	Feeling Equations	Oth

Feeling Equations

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Conclusion O	Feeling Equations ●○○○○○	Oth 00
Sabermetric	e				

Sabermetrics is the art of applying mathematics and statistics to baseball.

Danger: not all students like sports (Red Sox aren't making life easier!).

Lessons: not just for baseball; try to find the right statistics that others miss, competitive advantage (business, politics).

Estimating Winning Percentages

Assume team *A* wins *p* percent of their games, and team *B* wins *q* percent of their games. Which formula do you think does a good job of predicting the probability that team *A* beats team *B*? Why?

$$egin{aligned} & p+pq \ \hline p+q+2pq', & rac{p+pq}{p+q-2pq} \ \hline p+q+2pq', & rac{p-pq}{p+q-2pq} \end{aligned}$$

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion	Feeling Equations	Oth
					000000	

$$rac{p+pq}{p+q+2pq}, \quad rac{p+pq}{p+q-2pq}, \quad rac{p-pq}{p+q+2pq}, \quad rac{p-pq}{p+q-2pq}$$

How can we test these candidates?

Can you think of answers for special choices of *p* and *q*?

mar Analysis Odessing Fyt	hagoras Extending Pythagora	as Conclusion	Feeling Equations	Oth
			000000	

$$\frac{p+pq}{p+q+2pq}, \quad \frac{p+pq}{p+q-2pq}, \quad \frac{p-pq}{p+q+2pq}, \quad \frac{p-pq}{p+q-2pq}$$

Homework: explore the following:

 $\diamond p = 1, q < 1$ (do not want the battle of the undefeated).

 $\diamond p = 0, q > 0$ (do not want the Toilet Bowl).

 $\diamond p = q.$

$$\diamond p > q$$
 (can do $q < 1/2$ and $q > 1/2$).

Anything else where you 'know' the answer?

mar Analysis Odessing Fyt	hagoras Extending Pythagora	as Conclusion	Feeling Equations	Oth
			000000	

$$\frac{p+pq}{p+q+2pq}, \quad \frac{p+pq}{p+q-2pq}, \quad \frac{p-pq}{p+q+2pq}, \quad \frac{p-pq}{p+q-2pq}$$

Homework: explore the following:

 $\diamond p = 1, q < 1$ (do not want the battle of the undefeated).

 $\diamond p = 0, q > 0$ (do not want the Toilet Bowl).

 $\diamond p = q.$

$$\diamond p > q$$
 (can do $q < 1/2$ and $q > 1/2$).

Anything else where you 'know' the answer?

65

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion	Feeling Equations	Oth
					0000000	

$$rac{p-pq}{p+q-2pq} = rac{p(1-q)}{p(1-q)+(1-p)q}$$

Homework: explore the following: $\diamond p = 1, q < 1$ (do not want the battle of the undefeated).

 $\diamond p = 0, q > 0$ (do not want the Toilet Bowl).

 $\diamond p = q.$

$$\diamond p > q$$
 (can do $q < 1/2$ and $q > 1/2$).

Anything else where you 'know' the answer?

Pythagorean Theorem 0 00	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion o	Feeling Equations	Oth oo
Estimating V	Vinning Perc	entages: 'P	roof'			
9						
		Start ●				

A has a good game with probability p

B has a good game with probability q

Figure: First see how A does, then B.

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion	Feeling Equations	Oth
					0000000	

Figure: Two possibilities: A has a good day, or A doesn't.

68

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion	Feeling Equations	Oth
					0000000	

Figure: B has a good day, or doesn't.

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion	Feeling Equations	Oth
					0000000	

Figure: Two paths terminate, two start again.

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion	Feeling Equations	Oth
					0000000	

Figure: Probability A beats B.

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion o	Feeling Equations ○○○○○●○	Oth 00
Lessons						

Special cases can give clues.

Algebra can suggests answers.

Better formula: Bill James' Pythagorean Won-Loss formula.
Numerical Observation: Pythagorean Won-Loss Formula

Parameters

- RS_{obs}: average number of runs scored per game;
- RA_{obs}: average number of runs allowed per game;
- γ : some parameter, constant for a sport.

James' Won-Loss Formula (NUMERICAL Observation)

Won – Loss Percentage =
$$\frac{RS_{obs}}{RS_{obs}}$$

 γ originally taken as 2, numerical studies show best γ is about 1.82. Used by ESPN, MLB.

See http://arxiv.org/abs/math/0509698 for a 'derivation'.

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion	Feeling Equations	Oth

Other Gems

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras		Oth ●○

$$S_n := 1 + 2 + \cdots + n = \frac{n(n+1)}{2} \approx \frac{1}{2}n^2.$$

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion	Feeling Equations	Oth
						00

$$S_n := 1 + 2 + \cdots + n = \frac{n(n+1)}{2} \approx \frac{1}{2}n^2.$$

Proof 1: Induction. Proof 2: Grouping: $2S_n = (1 + n) + (2 + (n - 1)) + \dots + (n + 1).$

Pythagorean Theorem	Guessing Pythagoras		Oth ●○

$$S_n := 1 + 2 + \cdots + n = \frac{n(n+1)}{2} \approx \frac{1}{2}n^2.$$

Proof 1: Induction. Proof 2: Grouping: $2S_n = (1 + n) + (2 + (n - 1)) + \dots + (n + 1).$

Instead of determining sum useful to get sense of size.

Pythagorean Theorem	Dimensional Analysis			Oth ●○

$$S_n := 1 + 2 + \cdots + n = \frac{n(n+1)}{2} \approx \frac{1}{2}n^2.$$

Proof 1: Induction. Proof 2: Grouping: $2S_n = (1 + n) + (2 + (n - 1)) + \dots + (n + 1).$

Instead of determining sum useful to get sense of size.

Have $\frac{n}{2}\frac{n}{2} \leq S_n \leq n$; thus S_n is between $n^2/4$ and n^2 , have the correct order of magnitude of *n*.

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras		Oth ●○

$$S_n := 1 + 2 + \cdots + n = \frac{n(n+1)}{2} \approx \frac{1}{2}n^2.$$

Proof 1: Induction. Proof 2: Grouping: $2S_n = (1 + n) + (2 + (n - 1)) + \dots + (n + 1).$

Instead of determining sum useful to get sense of size.

Have $\frac{n}{2}\frac{n}{2} \leq S_n \leq n$; thus S_n is between $n^2/4$ and n^2 , have the correct order of magnitude of *n*.

Can improve: divide and conquer again: lather, rinse, repeat....

$$\frac{n}{4}\frac{n}{4} + \frac{n}{4}\frac{2n}{4} + \frac{n}{4}\frac{3n}{4} \le S_n, \text{ so } \frac{6}{16}n^2 \le S_n.$$

 Pythagorean Theorem
 Dimensional Analysis
 Guessing Pythagoras
 Extending Pythagoras
 Conclusion
 Feeling Equations
 Oth

 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o<

Geometric Irrationality Proofs: http://arxiv.org/abs/0909. 4913

Figure: Geometric proof of the irrationality of $\sqrt{2}$.

 Pythagorean Theorem
 Dimensional Analysis
 Guessing Pythagoras
 Extending Pythagoras
 Conclusion
 Feeling Equations
 Oth

 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o<

Geometric Irrationality Proofs: http://arxiv.org/abs/0909. 4913

Figure: Geometric proof of the irrationality of $\sqrt{3}$

 Pythagorean Theorem
 Dimensional Analysis
 Guessing Pythagoras
 Extending Pythagoras
 Conclusion
 Feeling Equations
 Oth

 0
 0
 0000
 00000000
 0
 00000000
 0
 000000000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Geometric Irrationality Proofs: http://arxiv.org/abs/0909. 4913

Figure: Geometric proof of the irrationality of $\sqrt{5}$.

Geometric Irrationality Proofs: http://arxiv.org/abs/0909. 4913

Figure: Geometric proof of the irrationality of $\sqrt{5}$: the kites, triangles and the small pentagons.

 Pythagorean Theorem
 Dimensional Analysis
 Guessing Pythagoras
 Extending Pythagoras
 Conclusion
 Feeling Equations
 Oth

 0
 0
 0000
 00000000
 0
 00000000
 0
 000000000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Geometric Irrationality Proofs: http://arxiv.org/abs/0909. 4913

Figure: Geometric proof of the irrationality of $\sqrt{6}$.

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion	Feeling Equations	Oth

Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing *C* identical cookies among *P* distinct people is $\binom{C+P-1}{P-1}$.

Pythagorean Theorem	Dimensional Analysis	Guessing Pythagoras	Extending Pythagoras	Conclusion	Feeling Equations	Oth

Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing *C* identical cookies among *P* distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line. **Cookie Monster** eats P - 1 cookies: $\binom{C+P-1}{P-1}$ ways to do. Divides the cookies into P sets.

Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing *C* identical cookies among *P* distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line. **Cookie Monster** eats P - 1 cookies: $\binom{C+P-1}{P-1}$ ways to do. Divides the cookies into P sets. **Example**: 8 cookies and 5 people (C = 8, P = 5):

Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing *C* identical cookies among *P* distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line. **Cookie Monster** eats P - 1 cookies: $\binom{C+P-1}{P-1}$ ways to do. Divides the cookies into P sets.

Example: 8 cookies and 5 people (C = 8, P = 5):

Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing *C* identical cookies among *P* distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line. **Cookie Monster** eats P - 1 cookies: $\binom{C+P-1}{P-1}$ ways to do. Divides the cookies into P sets. **Example**: 8 cookies and 5 people (C = 8, P = 5):

Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing *C* identical cookies among *P* distinct people is $\binom{C+P-1}{P-1}$. Solved $x_1 + \cdots + x_P = C$, $x_i \ge 0$.

Proof: Consider C + P - 1 cookies in a line. **Cookie Monster** eats P - 1 cookies: $\binom{C+P-1}{P-1}$ ways to do. Divides the cookies into P sets. **Example**: 8 cookies and 5 people (C = 8, P = 5):

