MATH 416: ADVANCED APPLIED LINEAR ALGEBRA: FALL 2012
COMMENTS ON HW PROBLEMS

STEVEN J. MILLER (SIM1@WILLIAMS.EDU): MATH 416, FALL 2012

ABSTRACT. A key part of any math course is doing the homework. This earfgom reading the material
in the book so that you can do the problems to thinking aboaitpitoblem statement, how you might go
about solving it, and why some approaches work and other$. damother important part, which is often
forgotten, is how the problem fits into math. Is this a cookbpmblem with made up numbers and functions
to test whether or not you've mastered the basic materialpes it have important applications throughout
math and industry? Below I'll try and provide some commeatplace the problems and their solutions in
context.

1. HW #2: DUE SEPTEMBER17, 2012

1.1. Assignment. First assignment: Section 2.2.3 of my notes: Exercises243,2.5. Final problem:
the diet problem with two products and two constraints ledouan infinite region, and then searching
for the cheapest diet led us to a vertex point. Modify the pieblem by adding additional constraints so
that, in general, we have a region of finite volume, and agaimvghat the optimal point is at a vertex.
Your constraints should be reasonable, and you shouldyjuls&ir inclusion.

1.2. Solutions. First assignment:

#1: Exercise 2.3: Find the optimal solution to the diet peoblvhen the cost function @ost (1, z2) =
xr1 + 2.
Solution: Unfortunately | made a mistake in describing the Diet Probie the notes. In the text | had
one unit of cereal contributing 30 units of iron and 5 unitpiaftein; however, when | wrote the equations
in (1) I transposed things, and had one unit of cereal givibgdits of iron and 15 units of protein. I'll
thus solve the problem both ways.

Using the numbers in the book, we have the following systeegoftions:

30x1 + 1529 > 60 (iron)
5x1 + 10xo 70 (protein)
T1, T2 0, (1.2)

and now we want to minimiz€ost(x1,x2) = x1 + x2. It isn’t immediately clear what the optimal
solution is, as both products have the same cost per unigriutielivers more iron and the other more
protein. We give a plot in Figuid 1.

Here is the Mathematica code to generate the plot.
linel[x ] :=If[-2 x +4 >0, -2 x + 4, 0]

Cost[x_, ¢c_] :=If[ -x +¢c >0, -x + ¢, 0]
Plot[{linel[x], -.5 x + 7, Cost[x, 10.0], Cost[x, 10.1],

Cost[x, 10. 2], Cost[x, 10.3], Cost[x,10.4], Cost[x,10.5]}, {x,0, 14}]

The cost falls as we shift the cost lines down and to the leftidé that whenever the protein constraint
is satisfied then the iron constraint holds as well, and is &xiraneous. (To see this, note the coefficients
from this equation are all larger than those of the one bedod the required amount is less!) The optimal
diet will be entirely steak (i.e., only the second produttjusz; = 0 andz, = 7.
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FIGURE 1. Diet Problem 1: Plot of the first diet problem, with severast lines.

FIGURE 2. Diet Problem 1: Plot of the second diet problem, with seMeost lines.

We now consider the other diet problem:

30x1 + 522 > 60 (iron)
1521 4+ 10z > 70 (protein)
x1,22 2 0, (1.2)

and now we want to minimiz€ost(x1, x2) = 21 + x2. We give a plot in Figurgl2.
The Mathematica code is

line2[x_ ] :=If[-6 x + 12 >0, -6 x + 12, 0]

Cost[x_, ¢_] :=If[ -x +¢c >0, -x + ¢, 0]

Plot[{line2[x], -1.5 x + 7, Cost[x, 10.0], Cost[x, 10.1],
Cost[x, 10. 2], Cost[x, 10.3], Cost[x,10.4], Cost[x,10.5]}, {x,0,5}]

The cost is falling as the cost line moves down and to the M#. flow until we have none of the
second product, only buying the first product (thus= 4% andzs = 0).

#2: Exercise 2.4: There are three vertices on the boundahegdolygon (of feasible solutions); we
have seen two choices of cost functions that lead to two offtfee points being optimal solutions; find
a linear cost function which has the third vertex as an ogtsoktion.



MATH 416: COMMENTS ON HOMEWORK PROBLEMS 3

Solution: Based on the wording, we want the matrix formulation fromltbek (not the equations in the
paragraphs in the text, but equation (1)):

30x1 + 522 > 60 (iron)
1521 4+ 10z > 70 (protein)
x1,we = 0. (1.3)

The two lines have slope -6 and -1.5; if we choose our costtimméo have a slope between these two
values, then the intersection of those two lines will be thigiue optimal point. We can do this if we take
a slope of -4, or equivalently if the cost functionGsst(z1, z2) = 41 + x2 (though we may replace the
4 with any number strictly between 1.5 and 6).

#3: Exercise 2.5: Generalize the diet problem to the casewhere are three or four types of food,
and each food contains one of three items a person needgaldiilg (for example, calcium, iron, and
protein). The region of feasible solutions will now be a stlsf R3. Show that an optimal solution is
again a point on the boundary.

Solution: If each food can contain exactly one item, then the only wayarehave a solution is if each
food contains a different iterar we have more food choices than needed items. If we only haee th
food items, each food must contain a different nutrient, tueeh there is only one feasible diet: take the
appropriate amount of each food. If instead we have fourdyiéood, we need two of the food types to
have the same nutrient, and the other two foods to have th&mérg two nutrients. In this case, the only
interesting aspect of the problem concerns the nutrienesgmted by two different foods. We simply
take whichever food has a better price per unit of nutrient.

The problem is more interesting if the foods can containhaé¢ items. In this case, if we have
units of foody, and food; deliversa;; units of nutrient then, assuming we neegunits of nutrient to
stay alive, our constraints are

a11T1 + a12%2 + aizrs = 11
G211 + a22%2 + a23r3 = T2
a31T1 + azaT2 + azzrs = T3
T1,T2,T3 Z O (14)

The cost function i€ost (1, 2, v3) = c121 + cox2 + c3x3.

The same logic as before shows that an optimal solution naushla boundary; the difference is now
we need to use words like planes rather than lines. Insteadregion in the upper right quadrant we
get a region in the positive octant. We now have planes oftaohsost; we can decrease the cost by
moving towards the origin, and thus if we're at an interioinpave can lower the cost by shifting ‘down’.
Similarly, once we hit the boundary, we can continue to lothercost by moving to a vertex (we might
not be lowering the cost if the slopes align, but in that caseteast keep the cost constant).

It's a bit harder of course to visualize things in three-disiens. We give a plot in Figuid 3; the
constraints are

2r+y+2z > 4
br+2y+2 > 4
3xr+4y+z > 6

z,y,z > 0.

The Mathematica code is
planel[x_, vy_] If[-2x -y +4>=0, -2x-1y+4, 0];
plane2[x_, vy_] If[-.6 x -2y +4>=0, -.6x-2y+4, 0];
plane3[x_, y_ ] :=I1f[-3 x - 4y +6 >0, -3x- 4y + 6, 0];
Pl ot 3D[ { pl anel[x,y], plane2[x,y], plane3[x,y]}, {x, 0,2}, {y,0,2}]
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FIGURE 3. Diet Problem 3D: Plot of constraints in a 3-dimensionat giroblem.
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FIGURE 4. Diet Problem 3: Plot of the third diet problem, now with nraym daily allowances.

#4: The diet problem with two products and two constraintsus to an infinite region, and then
searching for the cheapest diet led us to a vertex point. fdke diet problem by adding additional
constraints so that, in general, we have a region of finitame!l, and again show that the optimal point
is at a vertex. Your constraints should be reasonable, andlyould justify their inclusion.

Solution: There are lots of ways to keep things finite. A ‘fun’ way is t@bpibit you from eating too
much of any nutrient (in other words, too much of a good thiagkill you!). Right now we said we
need at least 60 units of iron and at least 70 units of proteaybe we die if we eat more than 100 units
of iron or 140 units of protein. We give a plot in Figlire 4.

The Mathematica code is
line3[x_, c_] If[-6 x + ¢/5 >0, -6 x + ¢/5, 0]
lined4[x_, c_] If[-1.5 x + ¢/10 >0, -1.5 x + ¢/10, 0]

Plot[{line3[x, 60], line3[x, 100], line4[x, 70], line4[x, 140]},
{x, 0, 10}]

There is a very nice consequence to our restrictions. We raow &a closed and bounded subset of the
plane. We know from real analysis that any continuous famotin a closed and bounded set attains its
maximum and its minimum. Thus, theigean optimal diet (i.e., a cheapest diet that will keep yougliv
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The problem is we don't necessarily know how to find it. Whenstaet studying the simplex method,
we’ll learn how to flow from a guess to a better guess. Thisislar to some items you may have seen.
For example, in Lagrange Multipliers we know candidatesaftmcal extremum of to the region with
constraint functiory satisfyV f = AVyg; if the two gradients are not aligned, we obtain informaton
which direction to flow. Of course, what's best locally migtdt be best globally — it might be better
to take a small hit in the beginning to get to the global extremsadly this issue causes enormous
complications in the subject. Another situation where ydghnhhave seen this is in contraction map-
pings, which give an iterative procedure to find fixed poirtsice application of this is in differential
equations).
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2. HW #3: DUE SEPTEMBERZ24, 2012

2.1. Assignment. Section 2.3.1 of my notes: Exercise 2.7 (The notes might ae¢ bbeen clear: take as
the original problemd”z < b, 2 arbitrary, minimizec” z, and take the dual problem to & A > 7,

y arbitrary, minimizey” (—b)). Problem #2: Formulate Sudoku as a linear programminglenoligyou
can do either 4x4 or 9x9 Sudoku). Problem #3: Medical Resi@sn Imagine there are P people who
have just graduated from medical school and H hospitals. Merging to match medical students
with hospitals. Each student ranks the hospitals and easpitabranks the students. Formulate this
assignment problem as a linear programming problem; you mes¢gl to make some assumptions to
finish the modeling. There are a lot of ways to do this; what do want to maximize? Does a feasible
solution always exist, and if so when? Does the existencefedisible solution depend on the function
you want to optimize? Problem #4: Exercise 2.10 from thesidiote this is thed’ from the text, and
thus thek columns ofA’ are linearly independent. #5: Exercise 2.11 from the notes.

2.2. Solutions. #1: Exercise 2.7 (note there is an omission in the notes; tia¢ mroblem should ask
you to minimize or maximize a given quantity; part of the hevoek assignment is to figure out exactly
what should be minimized or maximized, and if we Want a maxima a minimum).
Solution: We'll consider the canonical problesiz < b with 7 consisting of real numbers and with
objective functlonc i¢ T2 to minimize. The dual problem ?TA > 77T andwe WISh to maximize the
funcuon?T b . We may rewrite this as A7y < — ¢ with objective fUI"ICtIOI’]?T ) to minimize.
Thus our original problem has matrit, constraint vectort and objective vector?, while the dual
problem has matrix- A7, constraint vector-¢ and objective vecto#? (and both are minimization
problems).

Thus taking the dual replaces the matrix with its negatimagpose, and interchanges the constraint
and objective vectors (we still have a minimization prob|éut in interchanging we must add a minus
sign). We thus have the map

Dual(4, 5, @) = (AT, —2,- D).
If we apply this map again, we find
Dual(4,~ ¢, b) = ((AT)T,?,?) .
Since the transpose of the transposela$ A, we have returned to our initial problem.
#2: Formulate Sudoku as a linear programming problem (yowceeither 4x4 or 9x9 Sudoku).

Solution: Let z;;4 be the binary variable which is 1 if the cell in roivand columnj is d, and zero
otherwise. Let be either 4 or 9. Then the constraints are

e Forallj e {1,...,n}andforalld € {1,...,n}: >, 2;;a = 1. This means each column has
each digit exactly once.
e Foralli € {1,...,n}andforalld € {1,...,n}: 3°7 ;3 = 1. This means each row has

each digit exactly once.

o Let F = {(1,1),(1,2),...,(v/n,+/n)}, and let(a,b) + F be the set of all pairs of the form
(a+z,b+y) forsome(z,y) € F. ThenForalk,b € {0,1,...,y/n—1}andalld € {1,...,n}
we have)_; i, +7 Tija = 1. This means that in eagin x /n box we have each digit.

We need an objective function. As all we care is for a feasiblation, we can take as our objective
function >, >, >, ija-

Finally, often Sudokus have certain cells given to us; in tase, we simply add these as constraints:
if S is the set of indices where we are given values, @nds the given value, then for aff, j) € S we
haver;;q = 1if d — v;; and O otherwise.

There are other ways to try and solve this. We could insteiag;Jec {1,2,3,4} and try to make
that work. | know one group tried the constraint that eachiewl, each row and each of the four blocks
of four had to sum to 10, trying to use the only way to get 10 fitthvese numbers is + 2 + 3 + 4.
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Unfortunately2 + 3 + 2 + 3 also works, but leads to an invalid Sudoku:

2 3 2 3
3 2 3 2
2 3 2 3
3 2 3 2

#3: Medical Residencies: Imagine there are P people whojbst/graduated from medical school and
H hospitals. We are trying to match medical students witlphals. Each student ranks the hospitals and
each hospital ranks the students. Formulate this assigrpnaélinlem as a linear programming problem;
you may need to make some assumptions to finish the modelirge®re a lot of ways to do this; what
do you want to maximize? Does a feasible solution alwayg,exial if so when? Does the existence of
a feasible solution depend on the function you want to oéi
Solution: First, the existence of a feasible solution is independentioether or not an optimal solution
exists. Letr,;, equal 1 if we assign studeptio hospitalk, and 0 otherwise. What are the constraints?

¢ No student can be assigned to more than one hospital: feall1, ..., P} we haveZhH:1 Tph <
1. We write less than or equal to and not equal to as perhaps smgentswill not be assigned
to hospitals!

e Perhaps each hospital has a certain number of studentsdiesmied;. Then for allh €
{1,...,H} we haverzl zpn, > d;. We might want equality here (no need to hire people
you don't need, unless you want to keep them in the labor podlave them gain experience
for later).

The difficulty is in choosing an objective function. What de want to minimize? A simple possibility
is to have each student rank tti& hospitals and each hospital rank each student, giving a firfbr
choice, 2 for second and so on. We then want to minimize tfa $obre. Letting-,;, be the rank person
p attaches to working at hospital, andp,,, the rank hospitak attaches to having persgnwe need to
minimize - >, (rph + Pph)Tph-

There are other rankings we can use. Perhaps each persd9@egisints and must assign them among
the H hospitals. Or perhaps each person writes down how happytbelgd be working at each hospital,
with 100 high and O low. There are lots of tweaks like this tvatcan do that will keep the objective
function linear. Note something similar to thésused in assigning doctors to residency programs.

#4: Exercise 2.10 from the notes. Prove thatlifhasM rows andk columns, withM > k, then
A'T A" is invertible. Note this is thel’ from the text, and thus the columns ofA’ are linearly indepen-
dent.

Solution: If z is any vector withk components, then” A7 A’> = || A’z||?, wherg||v|| denotes the length
of a vectorv. ImagineA’” A’ is not invertible. Then the columns of this matrix are degamdand there
is some non-zero vectarsuch thatA’” A’y is the zero vector. Thus! A’T A’v = 0, or ||A’v||? = 0.
The only way the length of the vectal'v can be zero is ifA’v is zero. What does it mean fer'v to be
zero? Ifv is not the zero vector, it means the columnsdéfare linearly dependent. As we know these
columns are linearly dependent, we must havke zero vector. This contradicts our assumption that
is not the zero vector, completing the proof.

#5: Exercise 2.11 from the notes. For fixgf] find some lower bounds for the size@kMZ1 (). 1f
M = N = 1000 (which can easily happen for real world problems), how maasidfeasible solutions
could there be? There are less tHaf’ sub-atomic objects in the universal (quarks, photons,tetag
Assume each such object is a supercomputer capable of dgekfki® basic solutions a second (this
is much faster than current technology!). How many yearslavtde required to check all the basic
solutions?
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Solution: The binomial coefficients are increasing to the middle, tthecreasing. I/ < N/2 a decent
bound for the sum |$I]\\§) if N/2 < M < N areasonable bound (%1\//2)’ though even better would be
s(1+ DN,

A basic feasible solution is a feasible solution where theroos corresponding to the non-zero entries
are linearly independent. If we letbe the number of such columns, we fihd< ¢ < 1000, and for
eachc the largest number of basic feasible solutions would 13€°). We thus have" % (*°°). By
the Binomial Theorem, this 8'°°° — 1 (we subtract 1 as we don’t have= 0), which is approximately
1.07151 - 103°L, Under our assumptions, we can chd¢k'® possibilities a second, which means we
need about.07151 - 101! seconds. As there are abdu$2016 - 10% seconds in a year, we would need
approximately8.11651 - 1082 years, far longer than the 15 billion or so years we beliegeuthiverse
has existed.

Preview: Week 4: Sept 24 to Sept 28, 2012:
HW: Due Monday, October 1: #1: Choose a tentative topic farymper and class presentation, and a
tentative group (of between 2 and 4 people). Have one pereanthe group email me a few paragraphs
listing all group members, describing the project and stpivhat you want the class to get out of your
write-up and talk. If you are having trouble coming up witlpitts, let me know. #2: Consider tlex 3
constraint matrixA where the first row is 1, 2, 3, the second row is 4, 5, 6 and thd tiow 7, 8, 9
(thus it's the numbers 1 througR). Let the vector b equdll, 1,1)7. Find all basic feasible solutions to
Az = bwith z > 0. #3: ProveM z = w has either 0, 1 or infinitely many solutions, and no otherai
can happen. #4: Let’s revisit the chess problem from classsider am x n chess board. We want to
put downn queens and maximize the number of pawns that can be safelgdotan the board. Set this
up as a linear programming problem. #5: Do Exercise 2.14 frgmmotes.

Extra credit: Modify #2 so that we have anx n matrix with the entries going from 1 to?, with
n > 3. Letb= (1,1,...,1)7. Find all basic feasible solutions.
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3. HW #4: DUE OCTOBER1, 2012

3.1. Assignment: HW: Due Monday, October 1: #1: Choose a tentative topic farymaper and class
presentation, and a tentative group (of between 2 and 4 eedpave one person from the group email
me a few paragraphs listing all group members, describiagptibject and stating what you want the
class to get out of your write-up and talk. If you are havirgutsle coming up with topics, let me know.
#2: Consider th& x 3 constraint matrixA where the first row is 1, 2, 3, the second row is 4, 5, 6 and
the third row 7, 8, 9 (thus it's the numbers 1 throutfh. Let the vector b equdll, 1,1)”. Find all basic
feasible solutions telz = b with = > 0. #3: ProveM z = w has either 0, 1 or infinitely many solutions,
and no other options can happen. #4: Let's revisit the cheddgam from class. Consider anx n chess
board. We want to put down queens and maximize the number of pawns that can be safelydota
the board. Set this up as a linear programming problem. #5Xaocise 2.14 from my notes.

Extra credit: Modify #2 so that we have anx n matrix with the entries going from 1 te?, with
n >3.Letb= (1,1,...,1)T. Find all basic feasible solutions.

3.2. Solutions: #1: Choose a tentative topic for your paper and class prasentand a tentative group
(of between 2 and 4 people). Have one person from the groujp era few paragraphs listing all group
members, describing the project and stating what you wantléss to get out of your write-up and talk.
If you are having trouble coming up with topics, let me know.

#2: Consider th@ x 3 constraint matrix4 where the first row is 1, 2, 3, the second row is 4, 5, 6 and
the third row 7, 8, 9 (thus it's the numbers 1 throufh. Let the vector b equdll, 1,1)”. Find all basic
feasible solutions telx = b with z > 0.

Solution: We give a one-line solution at the end; as a large part of harleis to learn the methods and
techniques, it is good to see the straightforward approach.

The matrixA4 is not invertible (the: x n matrix with entries going from 1 ta? is invertible only when
n < 2); one way to see this is to note that the first plus third colsieme twice the second. Note that any
pair of columns are linearly independent, and any columiméakly independent. Thus there are 6 sub-
matrices that generate basic feasible solutions, and eaddrates a unique candidate for a basic feasible
solution. If A" is the reduced matrix, then the candidate for the basiclasblution is found by solving
A'x’ = b. We multiply by A’T on the left sinced’” A’ is invertible. This givesd’” A’z’ = A’"b, or
2’ = (AT A")~TATb. This gives us the non-zero entries of the candidate for #sictfeasible solution;
we finish by adding the zero entries.

e Using the first column(1, 4, 7), we get a non-zero element ®f11 and thus the candidate for
the basic feasible solution {8/11,0,0).

e Using the second columif2, 5, 8), we get a non-zero element 8f31 and thus the candidate
for the basic feasible solution {8, 5/31,0).

e Using the third column(3,6,9), we get a non-zero element df7 and thus the candidate for
the basic feasible solution {§,0,1/7).

e Using the first two columns we get non-zero elemdnrts, 1), and thus the candidate for the
basic feasible solution is-1, 1, 0).

e Using the first and third columns we get non-zero eleménts/2, 1/2), and thus the candidate
for the basic feasible solution {s-1/2,0,1/2).

e Using the second and third columns we get non-zero elenteritsl), and thus the candidate
for the basic feasible solution {8, —1, 1).

Note we can check to make sure these are feasible solutiomsnWe check, however, the first three
all fail to satisfyAxz = b, though the last three do. What wentwrong? The problem tdtisaot a linear
combination of fewer than 2 columns df and when we try to take just one column it breaks down. This
shouldn’t be surprising. In that casé” A is al x 1 matrix andb is not in the column space of . While
the last three solve the constraints, they are not basitbfea®lutions as each has a negative entry. Thus,
there areno basic feasible solutions.
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One can do these calculations in a system such as Mathentaticah you have to be careful with
the syntax. Here’s the code for it.
A= {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
Transpose[ A];
b = Transpose[{{1, 1, 1}}];
Ab
Ap = Transpose[{{1, 4, 7}, {2, 5, 8}}];
Transpose[ Ap] . Ap
I nver se[ Transpose[ Ap] . Ap]
I nverse[ Transpose[ Ap] . Ap]. (Transpose[Ap] . b)

Now, for the promised one-line solutiotmagine there is a basic feasible solution. Then we have
Ax = b with the entries oft non-negative and each entry bbfs 1. Notice that the second row df
dominates the first row (each matrix element in the secondsdarger than the corresponding entry in
the first row), yet the constraints want the resulting dotipiais to be equal. In other words, + 225 +
3z3 = 1 and4z; + 5x2 + 623 = 1. This is impossible, as the second constraint can be widtten

(:vl + 229 + 3$3) =+ 3(,%1 + x0 + ,Tg) =1

aswy + 2zo + 3zg = 1 thisimplies3(z; + z2 + x3) = 0, which implies eachr; = 0 (as they must be
non-negative for a feasible solution), clearly violatihg tveighted sum equalling 1.

#3: ProveM z = w has either 0, 1 or infinitely many solutions, and no otherapgican happen.
Solution: If Mz = w has exactly 0 or 1 solution we're done. Assume that it hasaat levo solutions, say
Mz, = wand Mz = w with 21 # 2z5; we have to show there are infinitely many solutions. Notf t
M(z1 — 2z2) = 0; thusz; — 29 is a non-zero vector in the nullspaceldf. If we letzy = 21 + A(z1 — 22)
then we sed/z, = w, and thus there are infinitely many solutions.

#4: Let’s revisit the chess problem from class. Considet am chess board. We want to put down
queens and maximize the number of pawns that can be safelydotan the board. Set this up as a linear
programming problem.

Solution: Let z;; = 1 if we have a queen on the board in rewnd columnyj, and zero otherwise. Our

first constraint is

szij = n.

=1 j=1
This constraint says we place exaatlyjueens on the board. In fact, this is the only ‘real’ constfahe
other constraints come from helping to write the objectiwaction.

For each pointi, j) on the chessboard, lgt; ; denote the squares that a queen placéd gj can at-
tack (plus the squarg, j)). For example, ifs, j) = (1, 1) thenA, ; is the first row, the first column, and
the diagonal of all pair&d, d). We're going to introduce some new binary varialjgs We should think
of these as being 1 if we can place a pawn safelfi agt) and zero otherwise. Consider the constraints
for all pairs(4, j) such that thereisa queen at (i, j) we have

Z yij = 0.
(i,5)€Asj
This means we cannot place a pawn in the kill zone caused bgencai(i, j); the difficulty, though, is

we don't know where the queens are. One solution is to myltlgs constraint byz;; on the left, so it
only comes into play if there is a queen(at;j). In other words, consider

zij Y, v = 0;

(4,5) €A
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X|X|X
X | X[X]|X
X|X|X
X X
TABLE 1. The 12 squares that attack (2,3) ofi:a 4 board.

if z;; = 0 (so no queen &t, j)) then they;;'s are free; if there is a queen there then egagh= 0 (i.e.,
cannot place a pawn there). Unfortunately, this is not linéfat were, we'd be done, and we'd try to
maximize the sum of thg;;’s, as that would give us the most pawns placeable; techyicat need a
minimization problem, so we minimize
n
=D v

7,j=1
This would give us aquadratic programming problem; the constraints are quadratic inqdaal-
though the objective function is still linear. It is possitib do this problem, however, with linear con-
straints.
Let Q,; be the set of all pairs on the x n chessboard that can attack squétg) and the square
(,7) as well. We're using a script Q to emphasize that these arpl#oes to put a queen to eliminate
the possibility of a pawn being safely placedatj). For example, if» = 4 then

Q23 = {(2,1),(2,2),(2,3),(2,4),(1,3),(3,3),(4,3),(1,2),(3,4), (1,4),(3,2), (4, 1)}
(see Tablell for a visualization).

Our objective function is the same as before:

n
-2 v
i,j=1
We want this to be as small as possible, which means we wardLitmeof they;;’s to be as large as
possible. In other words, we want to have as many squaressaibfgonot under attack by queens.
As we are placing: queens on the board, at mesgjueens can make the squdig;j) unsafe for a

pawn. Consider the constraint: for &l j) € {1,...,n}? we have
2n(1 — yij) > Z Tt
(7,5")€Qi;5

What does this do?

o |fthere are no queens on the board attacking the squafethen the right hand side is zero and
there is no effect omy;;, as the left hand side is always non-negative. We thus havelete
freedom in choosing;; in this case. As we are trying to minimize the negative of tne ®f
they;;’s (or, equivalently, maximize the sum of thhg’s), we the program will takeg;; = 1 and
place a pawn safely there.

e What if there is at least one queen attacking the sqUiagg? Then the sum on the right hand
side is positive. Furtheit isat most n asthereareonly n queens. If y;; = 1 then the left hand
side is0, which is smaller tham and contradicts the inequality! Thus we cannot take= 1,
and this case forceg; to be zero. This is exactly what we want, as it now tells us wenoa
have a pawn safely placed @t j).

As we took a long path to the answer, it's worth writing dowa ttonstraints cleanly:

o ParametersQ;;: all the pairs(s, j) on ann x n chessboard that can attacked a pawn located at
(i,7), including (4, j); equivalently, these are all the squares where a queenddlheee would
attack a pawn ati, j).
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o Variables:z;; = 1if a queen is ati, j) and O otherwisey;; € {0,1} (constraints chosen later
will force y;; to be O if the location of the queens prevents a pawn from beliaced safely at
(i, 5)-

o Constraint: Location of Queen3Z;” | > " z;; = n. This forces exactly queens to be placed
on then x n board.

e Constraint: Location of Pawngn(1 — yi;) = > jiyeq,, ;- We may rewrite this in more
standard form as

2nyij + Z X’ 5! S 2n.
(i',5")€Qij
If a queen is placed and attacks j) theny;; must be zero (as otherwise the left hand side
exceeds the right hand side). If no queen is placed thatatsuardi, j) theny;; is free.

e Objective function: Minimize- """ | Z;;l yij. This is the negative of the number of pawns

that may safely be placed on the board.

Note that our choice of objective function will make us ggtto 1 whenever possible. If we wanted
to truly makey;; indicate whether or not a pawns safely placed af:, j), all we need to do isorce
ourselves to place a pawn(t j) if possible. We can do this by adding the constraint: foalj):

(4,§)€Qij
Why does this work? If there are no queens placed that atiagktheny;; is free. If, however, at least

one queen is there then we must hgye= 1 as otherwise the inequality fails (note the sum is at most
n, so takingy;; = 1 will ensure it is satisfied).

#5: Do Exercise 2.14 from my notes: Consider the followingdsr Programming problems; > 0,

T1
1 4 5 8 1 To 311
2 2 3 8 0 z3 | = | 389 |, (3.1)
3 2 1 6 0 Ty 989
T5
and we want to minimize
5r1 + 8xo + 923 + 2x4 + 11z5. (3.2)

Find (or prove one does not exist) an optimal solution.
Solution: There are several ways to go. We give a one-line solution tft@TA at the end; as a large
part of homework is to learn the methods and techniquesgibdsl to see the straightforward approach.
We have 5 columns, and a basic optimal solution (if it existast come from a basic feasible solution.
There are(g) = 10 ways to choose 3 columns from 5 to find a basic feasible solutiad the basic
feasible solution must have exactly 3 non-zero entries. @édclook at all of these candidates and
see which is the optimal solution; we know an optimal solutioust exist, as the objective function
is a positive linear combination of our variables. Thus thaction is bounded, as eaah satisfies
0 < x; < 989. Using standard results from analysis (a continuous fonain a compact set attains its
maximum and minimum).
We need to find a basic feasible solution. If we try the firstéhcolumns ofd, we getd’z = b. As A
is a3 x 3 matrix with linearly independent columns it is invertibded we getr = A’~'b. Unfortunately
A'~1b has a negative entry, and thus cannot be a basic feasibléosollRemember our method only
generatesandidatesfor basic feasible solutions; it cannot ensure that #r&basic feasible.
Undaunted, we continue. We find that there are no basic fieasibutions — all of the candidates have
a negative entry, and thus there are no solutions. Here sstoogenerate the matrices:
{{1, 4, 5}, {2, 2, 3}, {3, 2, 1}};
{{1, 4, 8}, {2, 2, 8}, {3, 2, 6}};
{{1, 4, 1}, {2, 2, 0}, {3, 2, 0}};
{{1, 5, 8}, {2, 3, 8}, {3, 1, 6}};

W W w
1 u
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B={{1, 5 1}, {1, 3, 0}, {3, 1, O}};
B={{1, 8, 1}, {2, 8, 0}, {3, 6, O}};
B={{4, 5 8}, {2, 3, 8}, {2, 1, 7}};
B={{4, 5 1}, {2, 3, 0}, {2, 1, O}};
B={{4, 8 1}, {2, 8, 0}, {2, 6, 0}};
B ={{5 8 1}, {3, 8, 0}, {1, 6, O}};

Here is code to check one of the cases:

B ={{4, 8 1}, {2, 8, 0}, {2, 6, 0}};

Print["Qur pruned matrix is ", MatrixForniB]];

b = Transpose[{{311, 389, 989}}];

Mat ri xFor nf b] ;

basi csoln = I nverse[ B]. b;

Print["Candidate for basic feasible is ", MatrixFornibasicsoln]];

We can try and solve this directly:

Clear[x1]; Cear[x2]; Cear[x3]; Cear[x4]; Cear[x5];
Solve[x1l + 4 x2 + 5 x3 + 8 x4 + x5 == 311 &&

2 x1 +2x2+ 3 x3 + 8 x4 == 389

&% 3 x1 + 2 x2 + x3 + 6 x4 == 989, {x1, x2, x3, x4, x5}]

The outputisel, 22 free and

{{x3 -> -(2789/5) + (6 x1)/5 + (2 x2)/5
x4 -> 1289/5 - (7 x1)/10 - (2 x2)/5,
x5 -> 5188/5 - (7 x1)/5 - (14 x2)/5}}

If we plot the three lines that arise from forcing, 24 andx; to be non-negative, we see that there is
no solution to these inequalities that has all five variaptesitive. The Mathematica code is

Plot[{-x1 + 5188/14, (-7/4) x1 + 1289/2, -3 x1 + 2789/3}, {x1,0,400}]
and we give the plot in Figufd 5.

Now, the one-line solutiohese numbers were not randomly chosen (though | forgot wtially
looking at this problem). | wanted something without anysfbke solutions. If(x1, z2, 23, 4, 25) >
(0,0,0,0,0) then there cannot be a solutionfa: = b. To see this, note that the sum of the entries in
the j column in the first and second rows exceeds the value irifrelumn in the third rowput the
sum of the first two entries dfis less than the third. There cannot be a solution. More madlieally,
adding the first two constraints gives

3x1 4 622 4+ 8x3 + 1624 + x5 = 700,
while the third row is
3x1 + 222 + x3 + 64 = 989.
Subtracting yields
4xo + Txg + 1024 + x5 = —289,
which is impossible as all the; are supposed to be non-negative.



14 STEVEN J. MILLER (SIM1@WILLIAMS.EDU): MATH 416, FALL 202

8ooF
600F

4001 T~

—200+

FIGURES. Plot of the three inequalities. The valid points betowthe first and third
lines (gold and blue) anabovethe middle (purple) line.

Remark: This (and the earlier problem with tfl8ex 3 matrix) indicate the value of really looking
at a problem and its algebra first before ploughing away. rOfte can make our lives much easier by
studying the problem, looking at symmetries, finding sonmgtho exploit. Wecan plug away, but we
can save time. | consider Henry David Thoreau the patront shimathematics for his sage advice of
Sinplify, sinplify. (Of course, this should be simplified 8mplify, but I'll grant him this as
he has a point to make.) Look for savings first before doingutations; this is in line with the spirit of
duality and the savings available there.

Homework #5: Due Monday, October 8: #1: Submit to me (sepdratm the rest of your homework)
an outline for your paper topic and class presentation. 3tnisild include a summary of what you want
to discuss, what you want the class to get out of your preSentawriteup, what sources you believe
you will use. #2: Write down linear constraints for the evenor B or C' must happen. #3: Find as
good of a functionf as you can such that you can find infinitely many pairs of intege: y with the
run-time of the Euclidean algorithm at leatx). For example, what we did in class shows you can't
take f(z) = 4log,(x); can you takef(z) = clog, « for somec < 1? #4: Consider am x n x n
chesscube. Write down a linear programming problem to figuténow many hyperpawns can safely be
placed given that hyperqueens are placed in the chesscube. Note the hypaspaeattack diagonally,
horizontally, vertically, and forward-backly.

Extra Credit: for a couple of values of figure out the maximum number of pawns that can safely be
placed on am x n chessboard given that there argueens that must be placed. Is this sequence in the
OEIShttp://oeis.org/)?


http://oeis.org/
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4. HW #5: DUE OCTOBERS, 2012

4.1. Assignment: Homework #5: Due Monday, October 8: #1: Submit to me (sepdratn the rest of
your homework) an outline for your paper topic and classgmtzgion. This should include a summary of
what you want to discuss, what you want the class to get oubarf gresentation / writeup, what sources
you believe you will use. #2: Write down linear constrairdsthe eventd or B or C' must happen. #3:
Find as good of a functiorf as you can such that you can find infinitely many pairs of intage: y
with the run-time of the Euclidean algorithm at legi$t:). For example, what we did in class shows you
can'ttakef(z) = 4log,(x); can you takef (x) = clog, x for somec < 1? #4: Consider an x n x n
chesscube. Write down a linear programming problem to figutdhow many hyperpawns can safely be
placed given that hyperqueens are placed in the chesscube. Note the hypaspareattack diagonally,
horizontally, vertically, and forward-backly.

4.2. Solutions:

#2: Write down linear constraints for the evehor B or C' must happen.
Solution: We start with decision variabless, z 5, zc wherezgp = 1 if event E happens and 0 if event
E does not occur. We have the inclusive or; thus our consti@simplyx 4 + x5 + z¢ > 1. The only
way this constraint failsis it 4 = zg = x¢ = 0, in other words, if none of the events happen.

#3: Find as good of a functiofi as you can such that you can find infinitely many pairs of intege
x < y with the run-time of the Euclidean algorithm at leggt:). For example, what we did in class
shows you can't takg (z) = 4log,(z); can you takef (z) = clog, x for somec < 1?
Solution: One way is to start at the ‘end’ of the Euclidean algorithm amak backwards. If we end
with the pair (1, 2), then the smallest pair we can have thelstéore is (2, 3) (as applying the Euclidean
algorithm to that pair yields (1, 2)). Continuing to move baee see the smallest pair leading to (2, 3) is
the pair (3, 5) (a$ = 1 -3 + 2). Similarly, the smallest pair that goes to (3,5) is (5, 8a 1-5 + 3).
A pattern is emerging; we want thés in the Euclidean algorithm to be 1 each time, and this l¢hds
Fibonacci numbers as the remainders. It suggests we #yF,, andy = F,,+1 = F,, + F,—1. Using
properties of the Fibonacci numbes,(,, = F,, + F,,—1 andF>, = 2 andF; = 1), we see it takes
n — 1 steps to get down to the pair (1, 2). To finish the problem, welrie know how bige = F,, is (as
a function ofn). We use Binet's formula, which says

P (M)"_i <1—7¢5> L
VB 2 Vi 2 T VE
wheres = (1 4+ +/5)/2 is the golden mean. See
http://en. w Ki pedi a. or g/ w ki / Fi bonacci _nunber #Rel ation_to_the gol den ratio
for a proof.
All that's left is to express — 1 as a function ofr = F,,. SinceF,, ~ ¢"//5, we getF, /5 ~ ¢"
orn ~ log(F,\/5)/ log(¢); actually, since we want to express our answer in terms @fritigns base 2,
it's better to use the base 2 logarithm and obtais log, (F,+/5)/ log,(¢), and thus

log, (F,v/5) 1
F,)=n—-1~ —"2—""—-1=~ log, (F},).
f(F) log: (6) log,(@) %2t
If we don't use the base 2 logarithm, then later we need tohesehtange of base formulag, v/ log, v =

log,, ).
Thus, there are some inputs where the Euclidean algorithhtake on the order of the logarithm of
x steps to run. We see

f(Fy) ~ %logQ(Fn) — log,(2)log,(Fy)

log,


http://en.wikipedia.org/wiki/Fibonacci_number#Relation_to_the_golden_ratio
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(where we used a log-law to rewrite the constant in a nice wdy)erefore the answer to the posed
question is ‘yes’ in that we do get an answer of size logaritifme, but ourc is not less than 1 as
c ~ log,(2) ~ 1.44042. This is the worst case scenario for the Euclidean algoritisit takes the most
steps to get back to our initial pair.

Remark: it's worth noting how important the change of basenfda is. Though often forgotten, it's one
of the most important of the log laws. The reason is that if ae @ompute logarithms in one base, we
can use this to get logarithms in any other. Thus, we only oeedtable! Ah, efficiency!

#4: Consider am x n x n chesscube. Write down a linear programming problem to figutéhow
many hyperpawns can safely be placed given thyperqueens are placed in the chesscube. Note the
hyperqueens can attack diagonally, horizontally, velfticand forward-backly.

Solution: We need to slightly generalize our arguments from the lasgament. Letr;;;, = 1 if we
place a queen 4, j, k) and 0 otherwise, and let;, = 1 if there is a pawn ati, j, k) and 0 otherwise.
Let Q,;i be the set of all locations that can attdckj, k).

Ouir first constraint is
n n n
MW IEE

i=1 j=1 k=1
this ensures we place exactlygueens on the board.
The second constraint is for the location of the pawnsiferi, j, k < n:

2n(1 = yiji) = S i
(i,5' k') € Qijk

If no queens attacki, j, k) then the sum on the right is zero and there is no effeay;on If however
there is at least one queen attacking the location &) then the only way the inequality is satisfied is
to havey;;, = 0 (note in this case the sum on the right is non-zero, and is at'mas there are only
queens on the board).

The objective function to minimize is >3i", >°7 | 371, vi;. This is the negative of the number of
pawns that may safely be placed on the board. Note now that dawplace a pawn at, j, k) we will.

Homework #6: Due Monday, October 15:; #1: Write an introduttio your problem / topic. Clearly
state what you are going to tackle. At the very least, enuteevhat additional material you'll need
to discuss your topic that has not been covered in class.etéthre items you want me to lecture on,
let me know. Summarize some of the literature. Thisstbe in TeX. It should be at least 3 full pages
(this includes the bibliography, but not a title page!). §t1 meant to be the nucleus of your write-up.
Presentations will start as soon as people are ready. Yaudrguwvhere from 20 minutes to 50 minutes.
Take the time to do a good, thorough job. Your write-up shalsb be complete. You may assume
your audience has the knowledge base of our class; anythagve haven’t covered must be explained
(though not necessarily proved).
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5. HW #6: DUE OCTOBER15, 2012

5.1. Assignment: Homework #6: Due Monday, October 15: #1: Write an introducto your problem

/ topic. Clearly state what you are going to tackle. At thepleast, enumerate what additional material
you'll need to discuss your topic that has not been coveradiaiss. If there are items you want me to
lecture on, let me know. Summarize some of the literatures fitustbe in TeX. It should be at least 3
full pages (this includes the bibliography, but not a titegp!). This is meant to be the nucleus of your
write-up. Presentations will start as soon as people adyreéou have anywhere from 20 minutes to
50 minutes. Take the time to do a good, thorough job. Youreaujh should also be complete. You may
assume your audience has the knowledge base of our claghjrenthat we haven’t covered must be
explained (though not necessarily proved).
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6. HW #8: DUE OCTOBER?29, 2012

6.1. Assignment: Due Monday October 29: #1: Give an example of a square matsich that there is

no orthogonal matrix) with Q7 AQ a diagonal matrix. #2: Lef) be an orthogonal matrix. Mu§}?® be
orthogonal? What abo@ + @Q + Q? Prove your claims. #3: Considat x N real symmetric matrices
such that each matrix element is at mBstFind as good as you can upper bound for the absolute values
of the eigenvalues in terms & and N. #4: A unitary matrixUU is such tha7?U = UUH = I, where

H stands for the Hermitian of the matrix (this means takingdbaplex conjugate of the transpose). In
class we proved the eigenvalues of real symmetric and contjgemitian matrices are real. Discover
and prove as much as you can about the eigenvalues of unitgrices. What can you say about them?
What about the eigenvalues of orthogonal matrices?

6.2. Solutions;

#1: Give an example of a square matrlxsuch that there is no orthogonal matéxwith Q7 AQ a
diagonal matrix.

0 1
0 0
is only one eigenvector directiod; = (1,0). If this matrix could be diagonalized then we would have

0 0
arae == (g7 ).

as the two eigenvalues are zero. By multiplying we see thigigaA = QAQT, which in this case is the
zero matrix as\ is the zero matrix. Thudl is the zero matrix, a contradiction. Hence there is a square
matrix which cannot be diagonalized.

Solution: The standard example is = > . Note the eigenvalues of this matrix are 0, 0 but there

#2: Let@ be an orthogonal matrix. Mugp? be orthogonal? What aboGt + @ + Q? Prove your
claims.

Solution: If (Q*)(Q*)T = (Q*)T(Q?) = I then@? is orthogonal. We show the first claim holds as the
second is similar. We have
(@)(Q*)" = QREQTRTRT = QR(QRMQTQRT = QRIQTQT =QQQRTQ".
We continue to argue like this, and find
@)(@)" = QQETQT = QIQT = QT =TI

While Q orthogonal implie€)? is orthogonal + Q + Q is never orthogonal. The simplest way to
see this is to note it equats), and now

(BQ)BQ)"T = 9Q" = 91,

and as this is naf the matrix3@Q cannot be orthogonal.

#3: ConsiderN x N real symmetric matrices such that each matrix element isost B. Find as
good as you can upper bound for the absolute values of thewglyes in terms oB and N.

Solution: ConsiderA7 = A¥. We may assume each entry of is at most 1 in absolute value,
and since we do not have the zero vector we may assume somentlenexactly 1; without loss of
generality let's assume it's the first component. This isilsinto some of the normalizations we've done
in linear programming (i.e., putting things into canoniftain). Sometimes it's convenient to normalize
the eigenvector to hadengthone. To figure out a bound fok| let’s look at each row oft 7. If we look

at the first row, fromA @ = A we get

a11v1+a12v2+---+a1N1}N = )\’UN = )\
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As eachla;;| < B and eachu;| < 1, we get
Al = Ja11v1 + ar2v2 + -+ + aiyuny| < NB.
Thus the eigenvalues are all at m@éB, and this narrows down where in the plane we must search.

With a lot more work, more can be proved. A great result is tleesBgorin circle theorem; see for
example
http://en.w Ki pedi a. org/w Ki/ Gershgorin_circle theorem
Another useful fact about eigenvalues of matrices (thigtones with either all positive entries, or at
the very least no negative ones) is the Perron-Frobenioseire
http://en.w Ki pedi a. or g/ w Ki / Perron%&e2%80%93Fr obeni us_t heor em

#4: A unitary matrixU is such thal7’U = UUH = I, whereH stands for the Hermitian of the
matrix (this means taking the complex conjugate of the fvass). In class we proved the eigenvalues
of real symmetric and complex Hermitian matrices are redsc@ver and prove as much as you can
about the eigenvalues of unitary matrices. What can you lsaytahem? What about the eigenvalues of
orthogonal matrices?

Solution: Let @ be an eigenvector of the unitary mattixwith eigenvalue\. ThenU @ = A%/, and we

have
UTNP = U)TUT) = OWHTOT) = WTHT = AP
We now computé|U 7' || another way:
WUY|)? = U)W = vHUUY = vHId = 9% = ||V
Thus
AP = (171

as||7|| # 0 we find|\| = 1. Thus the eigenvalues of unitary matrices have absolute\aie.

As orthogonal matrices are special cases of unitary matribeir eigenvalues must be one in absolute
value as well. The eigenvalues of real orthogonal matricesever, do not need to be real. Consider for

example a rotation by 90 degrees. There is no way this candesa@l eigenvector. Its eigenvectors and
eigenvalues are all complex. In matrix form, a rotatiordlnadians is

R(O) - <cos€ oSme)

sinf cosf

0 -1
R(n/2) = < 1 0 ) )
The sum of the eigenvalues is 0 and the product is 1. Thus welkeng ;1 + Ao = 0 andA; 2 = 1.

Using the first equation to eliminate;, gives—\? = 1, so\; = 4i (and)\s = Fi). Thus, while the
eigenvalues of real orthogonal matrices are one in absedlile, they can have non-zero imaginary parts.

Thus

1 2
2 1
of unit lengthof A. If v1 andv; are these eigenvectors, I@the the matrix where the first columnig
and the second columnis. Compute” AQ. #2: LetT,, 1 =T+ T 1+ T, oWithTy =0,7, =0
andT> = 1. Find the generating function for this sequence.

Homework due Monday, November 5: #1: Lét= ( ) Find the eigenvalues and eigenvectors


http://en.wikipedia.org/wiki/Gershgorin_circle_theorem
http://en.wikipedia.org/wiki/Perron%E2%80%93Frobenius_theorem
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7. HW #9: DUE NOVEMBER5, 2012

1 2
2 1
and eigenvectorsf unit lengthof A. If o7 andv} are these eigenvectors, @tbe the matrix where the
first column isv; and the second columnis. ComputeQ? AQ. #2: LetT, 1 =Ty +Tph1+ Tp_o
with T, = 0, 71 = 0 andT> = 1. Find the generating function for this sequence.

7.1. Assignment: Homework due Monday, November 5; #1: Lét= ( ) Find the eigenvalues

7.2. Solutions:

1 2
2 1
are these eigenvectors, I@tbe the matrix where the first column i§ and the second column is.
ComputeQ” AQ.

#1: LetA = ( ) Find the eigenvalues and eigenvectofainit lengthof A. If o7 andv3

Solution: To find the eigenvalues, one way is to uke(A — A\I) = 0. As
1—A 2
A= ( 2 1-2X )

det(A—XI) = (1 —\)?—4,
orl—\=+2s0\=3o0r—1. We now solvg A — \[) 7 = 0. Thus for\ = 3 we find

(7 2)00)-()

which impliesz = y. As we want the vector to have length 1 (its length-squared is y?), we can't
taker = y = 1 butinstead need?® + y?> = 222 = 1, so we take: = y = 1/+/2. The second eigenvalue,

N OO

soxz = —y. As we want the length to be one, we take- —y = 1/v/2.

Our matrix@ is thus
(V2 -y v2 Y 1 1 -1
o= (v e )= )

notice thatQ” Q = QQT = I, and standard matrix multiplication giveég” AQ = ( 3 _01 ) the

we have

0
diagonal matrix of eigenvalues.

Some comments are in order. If we were to switch the two eigetiovs, we would switch the two
diagonal entries. Also, there are faster ways to find theneglaes and eigenvectors. | call it the Boola-
Boola Theorem. If each row of a matrix sumsctthenc is an eigenvalue with corresponding eigenvector
all 1s. For our matrix, as each row sums to 3 then 3 is an ei@weith corresponding eigenvector
(1,2) or, if we want unit length(1/+/2, 1/1/2). As the sum of the eigenvalues is the trace (which is 2),
the other eigenvalue is -1. Further, the eigenvectors &dsddo distinct eigenvalues of a real symmetric
matrix are perpendicular, and thus the other eigenvectortise direction(—1, 1), or as a unit vector

(1/v2,1/V?2).
#2: LetTy11 =Ty + Th—1 + Th—2 With Ty = 0, 71 = 0 andT> = 1. Find the generating function for

this sequence.
Solution: We discussed generating functions when studying the FitmsiaThe proof is similar here.

Set . .
g(z) = ZTnxn = ZTnx"
n=0 n=2
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asTy = T1 = 0. We want to use the recurrence relation, so let’s pull ounthe? term:

g(x) = Tha?+ Z T,z"

n=3

o0

m=2
o

= 22 + Z (Tm +Th1+ Tm_2)$m+l

m=2

oo oo oo
= 24z E T,x™ + x> E Togz™ 4 23 E Tpox™ 2
m=2 m=2 m=2

oo (o9}
= 2% +xg(x) + 22 Z Tpa™ + 23 Z T,z"
n=1 n=0

= o’ +ag(w) +27g(x) + 27g(x).
Thus
(1—2—2%—a2%g(z) = 22,

or

$2

9(x) = 1l—az—22— a3

21
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