
MATH 416: ADVANCED APPLIED LINEAR ALGEBRA: FALL 2012
COMMENTS ON HW PROBLEMS

STEVEN J. MILLER (SJM1@WILLIAMS.EDU): MATH 416, FALL 2012

ABSTRACT. A key part of any math course is doing the homework. This ranges from reading the material
in the book so that you can do the problems to thinking about the problem statement, how you might go
about solving it, and why some approaches work and others don’t. Another important part, which is often
forgotten, is how the problem fits into math. Is this a cookbook problem with made up numbers and functions
to test whether or not you’ve mastered the basic material, ordoes it have important applications throughout
math and industry? Below I’ll try and provide some comments to place the problems and their solutions in
context.

1. HW #2: DUE SEPTEMBER17, 2012

1.1. Assignment. First assignment: Section 2.2.3 of my notes: Exercises 2.3,2.4, 2.5. Final problem:
the diet problem with two products and two constraints led usto an infinite region, and then searching
for the cheapest diet led us to a vertex point. Modify the dietproblem by adding additional constraints so
that, in general, we have a region of finite volume, and again show that the optimal point is at a vertex.
Your constraints should be reasonable, and you should justify their inclusion.

1.2. Solutions. First assignment:

#1: Exercise 2.3: Find the optimal solution to the diet problem when the cost function isCost(x1, x2) =
x1 + x2.
Solution: Unfortunately I made a mistake in describing the Diet Problem in the notes. In the text I had
one unit of cereal contributing 30 units of iron and 5 units ofprotein; however, when I wrote the equations
in (1) I transposed things, and had one unit of cereal giving 30 units of iron and 15 units of protein. I’ll
thus solve the problem both ways.

Using the numbers in the book, we have the following system ofequations:

30x1 + 15x2 ≥ 60 (iron)

5x1 + 10x2 ≥ 70 (protein)

x1, x2 ≥ 0, (1.1)

and now we want to minimizeCost(x1, x2) = x1 + x2. It isn’t immediately clear what the optimal
solution is, as both products have the same cost per unit, butone delivers more iron and the other more
protein. We give a plot in Figure 1.

Here is the Mathematica code to generate the plot.
line1[x_] := If[-2 x + 4 > 0, -2 x + 4, 0]
Cost[x_, c_] := If[ -x + c > 0, -x + c, 0]
Plot[{line1[x], -.5 x + 7, Cost[x,10.0], Cost[x,10.1],

Cost[x,10.2], Cost[x,10.3], Cost[x,10.4], Cost[x,10.5]}, {x,0,14}]

The cost falls as we shift the cost lines down and to the left. Notice that whenever the protein constraint
is satisfied then the iron constraint holds as well, and is thus extraneous. (To see this, note the coefficients
from this equation are all larger than those of the one below,and the required amount is less!) The optimal
diet will be entirely steak (i.e., only the second product).Thusx1 = 0 andx2 = 7.

Date: November 5, 2012.
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FIGURE 1. Diet Problem 1: Plot of the first diet problem, with severalcost lines.
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FIGURE 2. Diet Problem 1: Plot of the second diet problem, with several cost lines.

We now consider the other diet problem:

30x1 + 5x2 ≥ 60 (iron)

15x1 + 10x2 ≥ 70 (protein)

x1, x2 ≥ 0, (1.2)

and now we want to minimizeCost(x1, x2) = x1 + x2. We give a plot in Figure 2.
The Mathematica code is

line2[x_] := If[-6 x + 12 > 0, -6 x + 12, 0]
Cost[x_, c_] := If[ -x + c > 0, -x + c, 0]
Plot[{line2[x], -1.5 x + 7, Cost[x, 10.0], Cost[x, 10.1],

Cost[x,10.2], Cost[x,10.3], Cost[x,10.4], Cost[x,10.5]}, {x,0,5}]

The cost is falling as the cost line moves down and to the left.We flow until we have none of the
second product, only buying the first product (thusx1 = 4 2

3 andx2 = 0).

#2: Exercise 2.4: There are three vertices on the boundary ofthe polygon (of feasible solutions); we
have seen two choices of cost functions that lead to two of thethree points being optimal solutions; find
a linear cost function which has the third vertex as an optimal solution.
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Solution: Based on the wording, we want the matrix formulation from thebook (not the equations in the
paragraphs in the text, but equation (1)):

30x1 + 5x2 ≥ 60 (iron)

15x1 + 10x2 ≥ 70 (protein)

x1, x2 ≥ 0. (1.3)

The two lines have slope -6 and -1.5; if we choose our cost function to have a slope between these two
values, then the intersection of those two lines will be the unique optimal point. We can do this if we take
a slope of -4, or equivalently if the cost function isCost(x1, x2) = 4x1+x2 (though we may replace the
4 with any number strictly between 1.5 and 6).

#3: Exercise 2.5: Generalize the diet problem to the case when there are three or four types of food,
and each food contains one of three items a person needs dailyto live (for example, calcium, iron, and
protein). The region of feasible solutions will now be a subset ofR3. Show that an optimal solution is
again a point on the boundary.
Solution: If each food can contain exactly one item, then the only way wecan have a solution is if each
food contains a different itemor we have more food choices than needed items. If we only have three
food items, each food must contain a different nutrient, andthen there is only one feasible diet: take the
appropriate amount of each food. If instead we have four types of food, we need two of the food types to
have the same nutrient, and the other two foods to have the remaining two nutrients. In this case, the only
interesting aspect of the problem concerns the nutrient represented by two different foods. We simply
take whichever food has a better price per unit of nutrient.

The problem is more interesting if the foods can contain all three items. In this case, if we havexj

units of foodj, and foodj deliversaij units of nutrienti then, assuming we needri units of nutrienti to
stay alive, our constraints are

a11x1 + a12x2 + a13x3 ≥ r1

a21x1 + a22x2 + a23x3 ≥ r2

a31x1 + a32x2 + a33x3 ≥ r3

x1, x2, x3 ≥ 0. (1.4)

The cost function isCost(x1, x2, x3) = c1x1 + c2x2 + c3x3.
The same logic as before shows that an optimal solution must be on a boundary; the difference is now

we need to use words like planes rather than lines. Instead ofa region in the upper right quadrant we
get a region in the positive octant. We now have planes of constant cost; we can decrease the cost by
moving towards the origin, and thus if we’re at an interior point we can lower the cost by shifting ‘down’.
Similarly, once we hit the boundary, we can continue to lowerthe cost by moving to a vertex (we might
not be lowering the cost if the slopes align, but in that case we at least keep the cost constant).

It’s a bit harder of course to visualize things in three-dimensions. We give a plot in Figure 3; the
constraints are

2x+ y + z ≥ 4

.6x+ 2y + z ≥ 4

3x+ 4y + z ≥ 6

x, y, z ≥ 0.

The Mathematica code is
plane1[x_, y_] := If[-2 x - y + 4 >= 0, -2 x - y + 4, 0];
plane2[x_, y_] := If[-.6 x - 2 y + 4 >= 0, -.6 x - 2 y + 4, 0];
plane3[x_, y_] := If[-3 x - 4 y + 6 >= 0, -3 x - 4 y + 6, 0];
Plot3D[{plane1[x,y], plane2[x,y], plane3[x,y]}, {x,0,2}, {y,0,2}]
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FIGURE 3. Diet Problem 3D: Plot of constraints in a 3-dimensional diet problem.
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FIGURE 4. Diet Problem 3: Plot of the third diet problem, now with maximum daily allowances.

#4: The diet problem with two products and two constraints led us to an infinite region, and then
searching for the cheapest diet led us to a vertex point. Modify the diet problem by adding additional
constraints so that, in general, we have a region of finite volume, and again show that the optimal point
is at a vertex. Your constraints should be reasonable, and you should justify their inclusion.
Solution: There are lots of ways to keep things finite. A ‘fun’ way is to prohibit you from eating too
much of any nutrient (in other words, too much of a good thingcankill you!). Right now we said we
need at least 60 units of iron and at least 70 units of protein;maybe we die if we eat more than 100 units
of iron or 140 units of protein. We give a plot in Figure 4.

The Mathematica code is

line3[x_, c_] := If[-6 x + c/5 > 0, -6 x + c/5, 0]
line4[x_, c_] := If[-1.5 x + c/10 > 0, -1.5 x + c/10, 0]
Plot[{line3[x, 60], line3[x, 100], line4[x, 70], line4[x, 140]},
{x, 0, 10}]

There is a very nice consequence to our restrictions. We now have a closed and bounded subset of the
plane. We know from real analysis that any continuous function on a closed and bounded set attains its
maximum and its minimum. Thus, thereis an optimal diet (i.e., a cheapest diet that will keep you alive).
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The problem is we don’t necessarily know how to find it. When westart studying the simplex method,
we’ll learn how to flow from a guess to a better guess. This is similar to some items you may have seen.
For example, in Lagrange Multipliers we know candidates fora local extremum off to the region with
constraint functiong satisfy∇f = λ∇g; if the two gradients are not aligned, we obtain informationon
which direction to flow. Of course, what’s best locally mightnot be best globally – it might be better
to take a small hit in the beginning to get to the global extremum; sadly this issue causes enormous
complications in the subject. Another situation where you might have seen this is in contraction map-
pings, which give an iterative procedure to find fixed points (a nice application of this is in differential
equations).
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2. HW #3: DUE SEPTEMBER24, 2012

2.1. Assignment. Section 2.3.1 of my notes: Exercise 2.7 (The notes might not have been clear: take as
the original problemATx ≤ b, x arbitrary, minimizecTx, and take the dual problem to beyTA ≥ cT ,
y arbitrary, minimizeyT (−b)). Problem #2: Formulate Sudoku as a linear programming problem (you
can do either 4x4 or 9x9 Sudoku). Problem #3: Medical Residencies: Imagine there are P people who
have just graduated from medical school and H hospitals. We are trying to match medical students
with hospitals. Each student ranks the hospitals and each hospital ranks the students. Formulate this
assignment problem as a linear programming problem; you mayneed to make some assumptions to
finish the modeling. There are a lot of ways to do this; what do you want to maximize? Does a feasible
solution always exist, and if so when? Does the existence of afeasible solution depend on the function
you want to optimize? Problem #4: Exercise 2.10 from the notes. Note this is theA′ from the text, and
thus thek columns ofA′ are linearly independent. #5: Exercise 2.11 from the notes.

2.2. Solutions. #1: Exercise 2.7 (note there is an omission in the notes; the dual problem should ask
you to minimize or maximize a given quantity; part of the homework assignment is to figure out exactly
what should be minimized or maximized, and if we want a maximum or a minimum).
Solution: We’ll consider the canonical problemA−→x ≤ −→

b , with −→x consisting of real numbers and with
objective function−→c T−→x to minimize. The dual problem is−→y TA ≥ −−→c T , and we wish to maximize the
function−→y T−→b . We may rewrite this as−AT−→y ≤ −−→c with objective function−→y T (−−→

b ) to minimize.

Thus our original problem has matrixA, constraint vector
−→
b and objective vector−→c , while the dual

problem has matrix−AT , constraint vector−−→c and objective vector−−→
b (and both are minimization

problems).
Thus taking the dual replaces the matrix with its negative transpose, and interchanges the constraint

and objective vectors (we still have a minimization problem, but in interchanging we must add a minus
sign). We thus have the map

Dual(A,
−→
b ,−→c ) = (−AT ,−−→c ,−−→

b ).

If we apply this map again, we find

Dual(A,−−→c ,−−→
b ) =

(

(AT )T ,
−→
b ,−→c

)

.

Since the transpose of the transpose ofA isA, we have returned to our initial problem.

#2: Formulate Sudoku as a linear programming problem (you can do either 4x4 or 9x9 Sudoku).
Solution: Let xijd be the binary variable which is 1 if the cell in rowi and columnj is d, and zero
otherwise. Letn be either 4 or 9. Then the constraints are

• For all j ∈ {1, . . . , n} and for alld ∈ {1, . . . , n}:
∑n

i=1 xijd = 1. This means each column has
each digit exactly once.

• For all i ∈ {1, . . . , n} and for alld ∈ {1, . . . , n}:
∑n

j=1 xijd = 1. This means each row has
each digit exactly once.

• Let F = {(1, 1), (1, 2), . . . , (√n,
√
n)}, and let(a, b) + F be the set of all pairs of the form

(a+x, b+y) for some(x, y) ∈ F . Then For alla, b ∈ {0, 1, . . . ,√n−1} and alld ∈ {1, . . . , n}
we have

∑

(i,j)∈(a,b)+F
xijd = 1. This means that in each

√
n×√

n box we have each digit.

We need an objective function. As all we care is for a feasiblesolution, we can take as our objective
function

∑

i

∑

j

∑

d xijd.
Finally, often Sudokus have certain cells given to us; in that case, we simply add these as constraints:

if S is the set of indices where we are given values, andvij is the given value, then for all(i, j) ∈ S we
havexijd = 1 if d− vij and 0 otherwise.

There are other ways to try and solve this. We could instead let xij ∈ {1, 2, 3, 4} and try to make
that work. I know one group tried the constraint that each column, each row and each of the four blocks
of four had to sum to 10, trying to use the only way to get 10 fromthese numbers is1 + 2 + 3 + 4.
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Unfortunately,2 + 3 + 2 + 3 also works, but leads to an invalid Sudoku:









2 3 2 3
3 2 3 2
2 3 2 3
3 2 3 2









.

#3: Medical Residencies: Imagine there are P people who havejust graduated from medical school and
H hospitals. We are trying to match medical students with hospitals. Each student ranks the hospitals and
each hospital ranks the students. Formulate this assignment problem as a linear programming problem;
you may need to make some assumptions to finish the modeling. There are a lot of ways to do this; what
do you want to maximize? Does a feasible solution always exist, and if so when? Does the existence of
a feasible solution depend on the function you want to optimize?
Solution: First, the existence of a feasible solution is independent on whether or not an optimal solution
exists. Letxph equal 1 if we assign studentp to hospitalh, and 0 otherwise. What are the constraints?

• No student can be assigned to more than one hospital: for allp ∈ {1, . . . , P}we have
∑H

h=1 xph ≤
1. We write less than or equal to and not equal to as perhaps somestudentswill not be assigned
to hospitals!.

• Perhaps each hospital has a certain number of students needed, saydi. Then for all h ∈
{1, . . . , H} we have

∑P
p=1 xph ≥ di. We might want equality here (no need to hire people

you don’t need, unless you want to keep them in the labor pool and have them gain experience
for later).

The difficulty is in choosing an objective function. What do we want to minimize? A simple possibility
is to have each student rank theH hospitals and each hospital rank each student, giving a 1 forfirst
choice, 2 for second and so on. We then want to minimize the total score. Lettingrph be the rank person
p attaches to working at hospitalH , andρph the rank hospitalh attaches to having personp, we need to
minimize

∑

p

∑

h(rph + ρph)xph.
There are other rankings we can use. Perhaps each person gets100 points and must assign them among

theH hospitals. Or perhaps each person writes down how happy theywould be working at each hospital,
with 100 high and 0 low. There are lots of tweaks like this thatwe can do that will keep the objective
function linear. Note something similar to thisis used in assigning doctors to residency programs.

#4: Exercise 2.10 from the notes. Prove that ifA′ hasM rows andk columns, withM ≥ k, then
A′TA′ is invertible. Note this is theA′ from the text, and thus thek columns ofA′ are linearly indepen-
dent.
Solution: If z is any vector withk components, thenzTA′TA′z = ||A′z||2, where||v|| denotes the length
of a vectorv. ImagineA′TA′ is not invertible. Then the columns of this matrix are dependent, and there
is some non-zero vectorv such thatA′TA′v is the zero vector. ThusvTA′TA′v = 0, or ||A′v||2 = 0.
The only way the length of the vectorA′v can be zero is ifA′v is zero. What does it mean forA′v to be
zero? Ifv is not the zero vector, it means the columns ofA′ are linearly dependent. As we know these
columns are linearly dependent, we must havev the zero vector. This contradicts our assumption thatv
is not the zero vector, completing the proof.

#5: Exercise 2.11 from the notes. For fixedM , find some lower bounds for the size of
∑M

k=1

(

N
k

)

. If
M = N = 1000 (which can easily happen for real world problems), how many basic feasible solutions
could there be? There are less than1090 sub-atomic objects in the universal (quarks, photons, et cetera).
Assume each such object is a supercomputer capable of checking 1020 basic solutions a second (this
is much faster than current technology!). How many years would be required to check all the basic
solutions?
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Solution: The binomial coefficients are increasing to the middle, thendecreasing. IfM ≤ N/2 a decent
bound for the sum is

(

N
M

)

; if N/2 ≤ M ≤ N a reasonable bound is
(

N
N/2

)

, though even better would be
1
2 (1 + 1)N .

A basic feasible solution is a feasible solution where the columns corresponding to the non-zero entries
are linearly independent. If we letc be the number of such columns, we find1 ≤ c ≤ 1000, and for
eachc the largest number of basic feasible solutions would be

(

1000
c

)

. We thus have
∑1000

c=1

(

1000
c

)

. By
the Binomial Theorem, this is21000 − 1 (we subtract 1 as we don’t havec = 0), which is approximately
1.07151 · 10301. Under our assumptions, we can check10110 possibilities a second, which means we
need about1.07151 · 10191 seconds. As there are about1.32016 · 108 seconds in a year, we would need
approximately8.11651 · 10182 years, far longer than the 15 billion or so years we believe the universe
has existed.

Preview: Week 4: Sept 24 to Sept 28, 2012:
HW: Due Monday, October 1: #1: Choose a tentative topic for your paper and class presentation, and a
tentative group (of between 2 and 4 people). Have one person from the group email me a few paragraphs
listing all group members, describing the project and stating what you want the class to get out of your
write-up and talk. If you are having trouble coming up with topics, let me know. #2: Consider the3 × 3
constraint matrixA where the first row is 1, 2, 3, the second row is 4, 5, 6 and the third row 7, 8, 9
(thus it’s the numbers 1 through32). Let the vector b equal(1, 1, 1)T . Find all basic feasible solutions to
Ax = b with x ≥ 0. #3: ProveMz = w has either 0, 1 or infinitely many solutions, and no other options
can happen. #4: Let’s revisit the chess problem from class. Consider ann× n chess board. We want to
put downn queens and maximize the number of pawns that can be safely placed on the board. Set this
up as a linear programming problem. #5: Do Exercise 2.14 frommy notes.

Extra credit: Modify #2 so that we have ann × n matrix with the entries going from 1 ton2, with
n ≥ 3. Let b = (1, 1, . . . , 1)T . Find all basic feasible solutions.
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3. HW #4: DUE OCTOBER 1, 2012

3.1. Assignment: HW: Due Monday, October 1: #1: Choose a tentative topic for your paper and class
presentation, and a tentative group (of between 2 and 4 people). Have one person from the group email
me a few paragraphs listing all group members, describing the project and stating what you want the
class to get out of your write-up and talk. If you are having trouble coming up with topics, let me know.
#2: Consider the3 × 3 constraint matrixA where the first row is 1, 2, 3, the second row is 4, 5, 6 and
the third row 7, 8, 9 (thus it’s the numbers 1 through32). Let the vector b equal(1, 1, 1)T . Find all basic
feasible solutions toAx = b with x ≥ 0. #3: ProveMz = w has either 0, 1 or infinitely many solutions,
and no other options can happen. #4: Let’s revisit the chess problem from class. Consider ann×n chess
board. We want to put downn queens and maximize the number of pawns that can be safely placed on
the board. Set this up as a linear programming problem. #5: DoExercise 2.14 from my notes.

Extra credit: Modify #2 so that we have ann × n matrix with the entries going from 1 ton2, with
n ≥ 3. Let b = (1, 1, . . . , 1)T . Find all basic feasible solutions.

3.2. Solutions: #1: Choose a tentative topic for your paper and class presentation, and a tentative group
(of between 2 and 4 people). Have one person from the group email me a few paragraphs listing all group
members, describing the project and stating what you want the class to get out of your write-up and talk.
If you are having trouble coming up with topics, let me know.

#2: Consider the3× 3 constraint matrixA where the first row is 1, 2, 3, the second row is 4, 5, 6 and
the third row 7, 8, 9 (thus it’s the numbers 1 through32). Let the vector b equal(1, 1, 1)T . Find all basic
feasible solutions toAx = b with x ≥ 0.
Solution: We give a one-line solution at the end; as a large part of homework is to learn the methods and
techniques, it is good to see the straightforward approach.

The matrixA is not invertible (then×n matrix with entries going from 1 ton2 is invertible only when
n ≤ 2); one way to see this is to note that the first plus third columns are twice the second. Note that any
pair of columns are linearly independent, and any column is linearly independent. Thus there are 6 sub-
matrices that generate basic feasible solutions, and each generates a unique candidate for a basic feasible
solution. IfA′ is the reduced matrix, then the candidate for the basic feasible solution is found by solving
A′x′ = b. We multiply byA′T on the left sinceA′TA′ is invertible. This givesA′TA′x′ = A′T b, or
x′ = (A′TA′)−1AT b. This gives us the non-zero entries of the candidate for the basic feasible solution;
we finish by adding the zero entries.

• Using the first column,(1, 4, 7), we get a non-zero element of2/11 and thus the candidate for
the basic feasible solution is(2/11, 0, 0).

• Using the second column,(2, 5, 8), we get a non-zero element of5/31 and thus the candidate
for the basic feasible solution is(0, 5/31, 0).

• Using the third column,(3, 6, 9), we get a non-zero element of1/7 and thus the candidate for
the basic feasible solution is(0, 0, 1/7).

• Using the first two columns we get non-zero elements(−1, 1), and thus the candidate for the
basic feasible solution is(−1, 1, 0).

• Using the first and third columns we get non-zero elements(−1/2, 1/2), and thus the candidate
for the basic feasible solution is(−1/2, 0, 1/2).

• Using the second and third columns we get non-zero elements(−1, 1), and thus the candidate
for the basic feasible solution is(0,−1, 1).

Note we can check to make sure these are feasible solutions. When we check, however, the first three
all fail to satisfyAx = b, though the last three do. What went wrong? The problem is that b is not a linear
combination of fewer than 2 columns ofA, and when we try to take just one column it breaks down. This
shouldn’t be surprising. In that caseA′TA is a1× 1 matrix andb is not in the column space ofA′. While
the last three solve the constraints, they are not basic feasible solutions as each has a negative entry. Thus,
there areno basic feasible solutions.
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One can do these calculations in a system such as Mathematica, though you have to be careful with
the syntax. Here’s the code for it.

A = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
Transpose[A];
b = Transpose[{{1, 1, 1}}];
A.b
Ap = Transpose[{{1, 4, 7}, {2, 5, 8}}];
Transpose[Ap] .Ap
Inverse[Transpose[Ap] .Ap]
Inverse[Transpose[Ap]. Ap]. (Transpose[Ap] . b)

Now, for the promised one-line solution.Imagine there is a basic feasible solution. Then we have
Ax = b with the entries ofx non-negative and each entry ofb is 1. Notice that the second row ofA
dominates the first row (each matrix element in the second rowis larger than the corresponding entry in
the first row), yet the constraints want the resulting dot products to be equal. In other words,x1 + 2x2 +
3x3 = 1 and4x1 + 5x2 + 6x3 = 1. This is impossible, as the second constraint can be writtenas

(x1 + 2x2 + 3x3) + 3(x1 + x2 + x3) = 1;

asx1 + 2x2 + 3x3 = 1 this implies3(x1 + x2 + x3) = 0, which implies eachxi = 0 (as they must be
non-negative for a feasible solution), clearly violating the weighted sum equalling 1.

#3: ProveMz = w has either 0, 1 or infinitely many solutions, and no other options can happen.
Solution: If Mz = w has exactly 0 or 1 solution we’re done. Assume that it has at least two solutions, say
Mz1 = w andMz2 = w with z1 6= z2; we have to show there are infinitely many solutions. Notice that
M(z1 − z2) = 0; thusz1 − z2 is a non-zero vector in the nullspace ofM . If we let zλ = z1 +λ(z1 − z2)
then we seeMzλ = w, and thus there are infinitely many solutions.

#4: Let’s revisit the chess problem from class. Consider ann×n chess board. We want to put downn
queens and maximize the number of pawns that can be safely placed on the board. Set this up as a linear
programming problem.
Solution: Let xij = 1 if we have a queen on the board in rowi and columnj, and zero otherwise. Our
first constraint is

n
∑

i=1

n
∑

j=1

xij = n.

This constraint says we place exactlyn queens on the board. In fact, this is the only ‘real’ constraint; the
other constraints come from helping to write the objective function.

For each point(i, j) on the chessboard, letAi,j denote the squares that a queen placed at(i, j) can at-
tack (plus the square(i, j)). For example, if(i, j) = (1, 1) thenA1,1 is the first row, the first column, and
the diagonal of all pairs(d, d). We’re going to introduce some new binary variablesyij . We should think
of these as being 1 if we can place a pawn safely at(i, j) and zero otherwise. Consider the constraints
for all pairs(i, j) such that there is a queen at (i, j) we have

∑

(i,j)∈Aij

yij = 0.

This means we cannot place a pawn in the kill zone caused by a queen at(i, j); the difficulty, though, is
we don’t know where the queens are. One solution is to multiply this constraint byxij on the left, so it
only comes into play if there is a queen at(i, j). In other words, consider

xij

∑

(i,j)∈Aij

yij = 0;
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X X X
X X X X

X X X
X X

TABLE 1. The 12 squares that attack (2,3) on a4× 4 board.

if xij = 0 (so no queen at(i, j)) then theyij ’s are free; if there is a queen there then eachyij = 0 (i.e.,
cannot place a pawn there). Unfortunately, this is not linear. If it were, we’d be done, and we’d try to
maximize the sum of theyij ’s, as that would give us the most pawns placeable; technically, we need a
minimization problem, so we minimize

−
n
∑

i,j=1

yij .

This would give us aquadratic programming problem; the constraints are quadratic in places, al-
though the objective function is still linear. It is possible to do this problem, however, with linear con-
straints.

Let Qij be the set of all pairs on then × n chessboard that can attack square(i, j) and the square
(i, j) as well. We’re using a script Q to emphasize that these are theplaces to put a queen to eliminate
the possibility of a pawn being safely placed at(i, j). For example, ifn = 4 then

Q2,3 = {(2, 1), (2, 2), (2, 3), (2, 4), (1, 3), (3, 3), (4, 3), (1, 2), (3, 4), (1, 4), (3, 2), (4, 1)}
(see Table 1 for a visualization).

Our objective function is the same as before:

−
n
∑

i,j=1

yij .

We want this to be as small as possible, which means we want thesum of theyij ’s to be as large as
possible. In other words, we want to have as many squares as possible not under attack by queens.

As we are placingn queens on the board, at mostn queens can make the square(i, j) unsafe for a
pawn. Consider the constraint: for all(i, j) ∈ {1, . . . , n}2 we have

2n(1− yij) ≥
∑

(i′,j′)∈Qij

xi′j′ .

What does this do?

• If there are no queens on the board attacking the square(i, j) then the right hand side is zero and
there is no effect onyij , as the left hand side is always non-negative. We thus have complete
freedom in choosingyij in this case. As we are trying to minimize the negative of the sum of
theyij ’s (or, equivalently, maximize the sum of theyij ’s), we the program will takeyij = 1 and
place a pawn safely there.

• What if there is at least one queen attacking the square(i, j)? Then the sum on the right hand
side is positive. Further,it is at most n as there are only n queens. If yij = 1 then the left hand
side is0, which is smaller thann and contradicts the inequality! Thus we cannot takeyij = 1,
and this case forcesyij to be zero. This is exactly what we want, as it now tells us we cannot
have a pawn safely placed at(i, j).

As we took a long path to the answer, it’s worth writing down the constraints cleanly:

• Parameters:Qij : all the pairs(i, j) on ann× n chessboard that can attacked a pawn located at
(i, j), including(i, j); equivalently, these are all the squares where a queen placed there would
attack a pawn at(i, j).
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• Variables:xij = 1 if a queen is at(i, j) and 0 otherwise;yij ∈ {0, 1} (constraints chosen later
will force yij to be 0 if the location of the queens prevents a pawn from beingplaced safely at
(i, j)).

• Constraint: Location of Queens:
∑n

i=1

∑n
j=1 xij = n. This forces exactlyn queens to be placed

on then× n board.
• Constraint: Location of Pawns:2n(1 − yij) ≥

∑

(i′,j′)∈Qij
xi′j′ . We may rewrite this in more

standard form as
2nyij +

∑

(i′,j′)∈Qij

xi′j′ ≤ 2n.

If a queen is placed and attacks(i, j) thenyij must be zero (as otherwise the left hand side
exceeds the right hand side). If no queen is placed that attacks square(i, j) thenyij is free.

• Objective function: Minimize−∑n
i=1

∑n
j=1 yij . This is the negative of the number of pawns

that may safely be placed on the board.

Note that our choice of objective function will make us setyij to 1 whenever possible. If we wanted
to truly makeyij indicate whether or not a pawnis safely placed at(i, j), all we need to do isforce
ourselves to place a pawn at(i, j) if possible. We can do this by adding the constraint: for all(i, j):

−nyij +
∑

(i,j)∈Qij

xij) ≤ 1/2.

Why does this work? If there are no queens placed that attack(i, j) thenyij is free. If, however, at least
one queen is there then we must haveyij = 1 as otherwise the inequality fails (note the sum is at most
n, so takingyij = 1 will ensure it is satisfied).

#5: Do Exercise 2.14 from my notes: Consider the following Linear Programming problem:xj ≥ 0,





1 4 5 8 1
2 2 3 8 0
3 2 1 6 0

















x1

x2

x3

x4

x5













=





311
389
989



 , (3.1)

and we want to minimize
5x1 + 8x2 + 9x3 + 2x4 + 11x5. (3.2)

Find (or prove one does not exist) an optimal solution.
Solution: There are several ways to go. We give a one-line solution fromthe TA at the end; as a large
part of homework is to learn the methods and techniques, it isgood to see the straightforward approach.

We have 5 columns, and a basic optimal solution (if it exists)must come from a basic feasible solution.
There are

(

5
3

)

= 10 ways to choose 3 columns from 5 to find a basic feasible solution, and the basic
feasible solution must have exactly 3 non-zero entries. We could look at all of these candidates and
see which is the optimal solution; we know an optimal solution must exist, as the objective function
is a positive linear combination of our variables. Thus the function is bounded, as eachxi satisfies
0 ≤ xi ≤ 989. Using standard results from analysis (a continuous function on a compact set attains its
maximum and minimum).

We need to find a basic feasible solution. If we try the first three columns ofA, we getA′x = b. AsA
is a3×3 matrix with linearly independent columns it is invertible,and we getx = A′−1b. Unfortunately
A′−1b has a negative entry, and thus cannot be a basic feasible solution. Remember our method only
generatescandidates for basic feasible solutions; it cannot ensure that theyare basic feasible.

Undaunted, we continue. We find that there are no basic feasible solutions – all of the candidates have
a negative entry, and thus there are no solutions. Here is code to generate the matrices:

B = {{1, 4, 5}, {2, 2, 3}, {3, 2, 1}};
B = {{1, 4, 8}, {2, 2, 8}, {3, 2, 6}};
B = {{1, 4, 1}, {2, 2, 0}, {3, 2, 0}};
B = {{1, 5, 8}, {2, 3, 8}, {3, 1, 6}};
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B = {{1, 5, 1}, {1, 3, 0}, {3, 1, 0}};
B = {{1, 8, 1}, {2, 8, 0}, {3, 6, 0}};
B = {{4, 5, 8}, {2, 3, 8}, {2, 1, 7}};
B = {{4, 5, 1}, {2, 3, 0}, {2, 1, 0}};
B = {{4, 8, 1}, {2, 8, 0}, {2, 6, 0}};
B = {{5, 8, 1}, {3, 8, 0}, {1, 6, 0}};

Here is code to check one of the cases:

B = {{4, 8, 1}, {2, 8, 0}, {2, 6, 0}};
Print["Our pruned matrix is ", MatrixForm[B]];
b = Transpose[{{311, 389, 989}}];
MatrixForm[b];
basicsoln = Inverse[B].b;
Print["Candidate for basic feasible is ", MatrixForm[basicsoln]];

We can try and solve this directly:

Clear[x1]; Clear[x2]; Clear[x3]; Clear[x4]; Clear[x5];
Solve[x1 + 4 x2 + 5 x3 + 8 x4 + x5 == 311 &&

2 x1 + 2 x2 + 3 x3 + 8 x4 == 389
&& 3 x1 + 2 x2 + x3 + 6 x4 == 989, {x1, x2, x3, x4, x5}]

The output isx1, x2 free and

{{x3 -> -(2789/5) + (6 x1)/5 + (2 x2)/5,
x4 -> 1289/5 - (7 x1)/10 - (2 x2)/5,
x5 -> 5188/5 - (7 x1)/5 - (14 x2)/5}}

If we plot the three lines that arise from forcingx3, x4 andx5 to be non-negative, we see that there is
no solution to these inequalities that has all five variablespositive. The Mathematica code is

Plot[{-x1 + 5188/14, (-7/4) x1 + 1289/2, -3 x1 + 2789/3}, {x1,0,400}]

and we give the plot in Figure 5.

Now, the one-line solution.These numbers were not randomly chosen (though I forgot wheninitially
looking at this problem). I wanted something without any feasible solutions. If(x1, x2, x3, x4, x5) ≥
(0, 0, 0, 0, 0) then there cannot be a solution toAx = b. To see this, note that the sum of the entries in
thej th column in the first and second rows exceeds the value in thej th column in the third row,but the
sum of the first two entries ofb is less than the third. There cannot be a solution. More mathematically,
adding the first two constraints gives

3x1 + 6x2 + 8x3 + 16x4 + x5 = 700,

while the third row is

3x1 + 2x2 + x3 + 6x4 = 989.

Subtracting yields

4x2 + 7x3 + 10x4 + x5 = −289,

which is impossible as all thexi are supposed to be non-negative.



14 STEVEN J. MILLER (SJM1@WILLIAMS.EDU): MATH 416, FALL 2012
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FIGURE 5. Plot of the three inequalities. The valid points arebelowthe first and third
lines (gold and blue) andabovethe middle (purple) line.

Remark: This (and the earlier problem with the3 × 3 matrix) indicate the value of really looking
at a problem and its algebra first before ploughing away. Often we can make our lives much easier by
studying the problem, looking at symmetries, finding something to exploit. Wecan plug away, but we
can save time. I consider Henry David Thoreau the patron saint of mathematics for his sage advice of
Simplify, simplify. (Of course, this should be simplified toSimplify, but I’ll grant him this as
he has a point to make.) Look for savings first before doing calculations; this is in line with the spirit of
duality and the savings available there.

Homework #5: Due Monday, October 8: #1: Submit to me (separate from the rest of your homework)
an outline for your paper topic and class presentation. Thisshould include a summary of what you want
to discuss, what you want the class to get out of your presentation / writeup, what sources you believe
you will use. #2: Write down linear constraints for the eventA or B or C must happen. #3: Find as
good of a functionf as you can such that you can find infinitely many pairs of integer x < y with the
run-time of the Euclidean algorithm at leastf(x). For example, what we did in class shows you can’t
takef(x) = 4 log2(x); can you takef(x) = c log2 x for somec < 1? #4: Consider ann × n × n
chesscube. Write down a linear programming problem to figureout how many hyperpawns can safely be
placed given thatn hyperqueens are placed in the chesscube. Note the hyperqueens can attack diagonally,
horizontally, vertically, and forward-backly.

Extra Credit: for a couple of values ofn, figure out the maximum number of pawns that can safely be
placed on ann× n chessboard given that there aren queens that must be placed. Is this sequence in the
OEIS (http://oeis.org/)?

http://oeis.org/
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4. HW #5: DUE OCTOBER 8, 2012

4.1. Assignment: Homework #5: Due Monday, October 8: #1: Submit to me (separate from the rest of
your homework) an outline for your paper topic and class presentation. This should include a summary of
what you want to discuss, what you want the class to get out of your presentation / writeup, what sources
you believe you will use. #2: Write down linear constraints for the eventA or B orC must happen. #3:
Find as good of a functionf as you can such that you can find infinitely many pairs of integer x < y
with the run-time of the Euclidean algorithm at leastf(x). For example, what we did in class shows you
can’t takef(x) = 4 log2(x); can you takef(x) = c log2 x for somec < 1? #4: Consider ann× n× n
chesscube. Write down a linear programming problem to figureout how many hyperpawns can safely be
placed given thatn hyperqueens are placed in the chesscube. Note the hyperqueens can attack diagonally,
horizontally, vertically, and forward-backly.

4.2. Solutions:

#2: Write down linear constraints for the eventA orB orC must happen.
Solution: We start with decision variablesxA, xB , xC wherexE = 1 if eventE happens and 0 if event
E does not occur. We have the inclusive or; thus our constraintis simplyxA + xB + xC ≥ 1. The only
way this constraint fails is ifxA = xB = xC = 0, in other words, if none of the events happen.

#3: Find as good of a functionf as you can such that you can find infinitely many pairs of integer
x < y with the run-time of the Euclidean algorithm at leastf(x). For example, what we did in class
shows you can’t takef(x) = 4 log2(x); can you takef(x) = c log2 x for somec < 1?
Solution: One way is to start at the ‘end’ of the Euclidean algorithm andwork backwards. If we end
with the pair (1, 2), then the smallest pair we can have the step before is (2, 3) (as applying the Euclidean
algorithm to that pair yields (1, 2)). Continuing to move back, we see the smallest pair leading to (2, 3) is
the pair (3, 5) (as5 = 1 · 3+ 2). Similarly, the smallest pair that goes to (3, 5) is (5, 8) (as8 = 1 · 5 + 3).
A pattern is emerging; we want thea’s in the Euclidean algorithm to be 1 each time, and this leadsthe
Fibonacci numbers as the remainders. It suggests we tryx = Fn andy = Fn+1 = Fn + Fn−1. Using
properties of the Fibonacci numbers (Fm+1 = Fm + Fm−1 andF2 = 2 andF1 = 1), we see it takes
n− 1 steps to get down to the pair (1, 2). To finish the problem, we need to know how bigx = Fn is (as
a function ofn). We use Binet’s formula, which says

Fn =
1√
5

(

1 +
√
5

2

)n

− 1√
5

(

1−
√
5

2

)n

≈ φn

√
5
,

whereφ = (1 +
√
5)/2 is the golden mean. See

http://en.wikipedia.org/wiki/Fibonacci_number#Relation_to_the_golden_ratio

for a proof.
All that’s left is to expressn − 1 as a function ofx = Fn. SinceFn ≈ φn/

√
5, we getFn

√
5 ≈ φn

or n ≈ log(Fn

√
5)/ log(φ); actually, since we want to express our answer in terms of logarithms base 2,

it’s better to use the base 2 logarithm and obtainn ≈ log2(Fn

√
5)/ log2(φ), and thus

f(Fn) = n− 1 ≈ log2(Fn

√
5)

log2(φ)
− 1 ≈ 1

log2(φ)
log2(Fn).

If we don’t use the base 2 logarithm, then later we need to use the change of base formulalogb u/ logb v =
logv u).

Thus, there are some inputs where the Euclidean algorithm will take on the order of the logarithm of
x steps to run. We see

f(Fn) ≈ 1

log2(φ)
log2(Fn) = logφ(2) log2(Fn)

http://en.wikipedia.org/wiki/Fibonacci_number#Relation_to_the_golden_ratio
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(where we used a log-law to rewrite the constant in a nice way). Therefore the answer to the posed
question is ‘yes’ in that we do get an answer of size logarithmof x, but ourc is not less than 1 as
c ≈ logφ(2) ≈ 1.44042. This is the worst case scenario for the Euclidean algorithm, as it takes the most
steps to get back to our initial pair.

Remark: it’s worth noting how important the change of base formula is. Though often forgotten, it’s one
of the most important of the log laws. The reason is that if we can compute logarithms in one base, we
can use this to get logarithms in any other. Thus, we only needone table! Ah, efficiency!

#4: Consider ann× n× n chesscube. Write down a linear programming problem to figureout how
many hyperpawns can safely be placed given thatn hyperqueens are placed in the chesscube. Note the
hyperqueens can attack diagonally, horizontally, vertically, and forward-backly.
Solution: We need to slightly generalize our arguments from the last assignment. Letxijk = 1 if we
place a queen at(i, j, k) and 0 otherwise, and letyijk = 1 if there is a pawn at(i, j, k) and 0 otherwise.
Let Qijk be the set of all locations that can attack(i, j, k).

Our first constraint is
n
∑

i=1

n
∑

j=1

n
∑

k=1

xijk = 1;

this ensures we place exactlyn queens on the board.
The second constraint is for the location of the pawns: for1 ≤ i, j, k ≤ n:

2n(1− yijk) ≥
∑

(i′,j′,k′)∈Qijk

xi′j′k′ .

If no queens attack(i, j, k) then the sum on the right is zero and there is no effect onyijk. If however
there is at least one queen attacking the location(i, j, k) then the only way the inequality is satisfied is
to haveyijk = 0 (note in this case the sum on the right is non-zero, and is at mostn as there are onlyn
queens on the board).

The objective function to minimize is−
∑n

i=1

∑n
j=1

∑n
k=1 yij . This is the negative of the number of

pawns that may safely be placed on the board. Note now that if wecanplace a pawn at(i, j, k) we will.

Homework #6: Due Monday, October 15: #1: Write an introduction to your problem / topic. Clearly
state what you are going to tackle. At the very least, enumerate what additional material you’ll need
to discuss your topic that has not been covered in class. If there are items you want me to lecture on,
let me know. Summarize some of the literature. Thismustbe in TeX. It should be at least 3 full pages
(this includes the bibliography, but not a title page!). This is meant to be the nucleus of your write-up.
Presentations will start as soon as people are ready. You have anywhere from 20 minutes to 50 minutes.
Take the time to do a good, thorough job. Your write-up shouldalso be complete. You may assume
your audience has the knowledge base of our class; anything that we haven’t covered must be explained
(though not necessarily proved).
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5. HW #6: DUE OCTOBER15, 2012

5.1. Assignment: Homework #6: Due Monday, October 15: #1: Write an introduction to your problem
/ topic. Clearly state what you are going to tackle. At the very least, enumerate what additional material
you’ll need to discuss your topic that has not been covered inclass. If there are items you want me to
lecture on, let me know. Summarize some of the literature. This mustbe in TeX. It should be at least 3
full pages (this includes the bibliography, but not a title page!). This is meant to be the nucleus of your
write-up. Presentations will start as soon as people are ready. You have anywhere from 20 minutes to
50 minutes. Take the time to do a good, thorough job. Your write-up should also be complete. You may
assume your audience has the knowledge base of our class; anything that we haven’t covered must be
explained (though not necessarily proved).



18 STEVEN J. MILLER (SJM1@WILLIAMS.EDU): MATH 416, FALL 2012

6. HW #8: DUE OCTOBER29, 2012

6.1. Assignment: Due Monday October 29: #1: Give an example of a square matrixA such that there is
no orthogonal matrixQ with QTAQ a diagonal matrix. #2: LetQ be an orthogonal matrix. MustQ3 be
orthogonal? What aboutQ+Q+Q? Prove your claims. #3: ConsiderN ×N real symmetric matrices
such that each matrix element is at mostB. Find as good as you can upper bound for the absolute values
of the eigenvalues in terms ofB andN . #4: A unitary matrixU is such thatUHU = UUH = I, where
H stands for the Hermitian of the matrix (this means taking thecomplex conjugate of the transpose). In
class we proved the eigenvalues of real symmetric and complex Hermitian matrices are real. Discover
and prove as much as you can about the eigenvalues of unitary matrices. What can you say about them?
What about the eigenvalues of orthogonal matrices?

6.2. Solutions:

#1: Give an example of a square matrixA such that there is no orthogonal matrixQ with QTAQ a
diagonal matrix.

Solution: The standard example isA =

(

0 1
0 0

)

. Note the eigenvalues of this matrix are 0, 0 but there

is only one eigenvector direction,−→e1 = (1, 0). If this matrix could be diagonalized then we would have

QTAQ = Λ =

(

0 0
0 0

)

,

as the two eigenvalues are zero. By multiplying we see this impliesA = QΛQT , which in this case is the
zero matrix asΛ is the zero matrix. ThusA is the zero matrix, a contradiction. Hence there is a square
matrix which cannot be diagonalized.

#2: LetQ be an orthogonal matrix. MustQ3 be orthogonal? What aboutQ + Q + Q? Prove your
claims.

Solution: If (Q3)(Q3)T = (Q3)T (Q3) = I thenQ3 is orthogonal. We show the first claim holds as the
second is similar. We have

(Q3)(Q3)T = QQQQTQTQT = QQ(QQT )QTQT = QQIQTQT = QQQTQT .

We continue to argue like this, and find

(Q3)(Q3)T = Q(QQT )QT = QIQT = QQT = I.

While Q orthogonal impliesQ3 is orthogonal,Q +Q +Q is never orthogonal. The simplest way to
see this is to note it equals3Q, and now

(3Q)(3Q)T = 9QQT = 9I,

and as this is notI the matrix3Q cannot be orthogonal.

#3: ConsiderN × N real symmetric matrices such that each matrix element is at mostB. Find as
good as you can upper bound for the absolute values of the eigenvalues in terms ofB andN .

Solution: ConsiderA−→v = λ−→v . We may assume each entry of−→v is at most 1 in absolute value,
and since we do not have the zero vector we may assume some element is exactly 1; without loss of
generality let’s assume it’s the first component. This is similar to some of the normalizations we’ve done
in linear programming (i.e., putting things into canonicalform). Sometimes it’s convenient to normalize
the eigenvector to havelengthone. To figure out a bound for|λ| let’s look at each row ofA−→v . If we look
at the first row, fromA−→v = λ−→v we get

a11v1 + a12v2 + · · ·+ a1NvN = λvN = λ.
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As each|aij | ≤ B and each|vk| ≤ 1, we get

|λ| = |a11v1 + a12v2 + · · ·+ a1NvN | ≤ NB.

Thus the eigenvalues are all at mostNB, and this narrows down where in the plane we must search.

With a lot more work, more can be proved. A great result is the Gershgorin circle theorem; see for
example

http://en.wikipedia.org/wiki/Gershgorin_circle_theorem

Another useful fact about eigenvalues of matrices (this time ones with either all positive entries, or at
the very least no negative ones) is the Perron-Frobenius theorem:

http://en.wikipedia.org/wiki/Perron%E2%80%93Frobenius_theorem

#4: A unitary matrixU is such thatUHU = UUH = I, whereH stands for the Hermitian of the
matrix (this means taking the complex conjugate of the transpose). In class we proved the eigenvalues
of real symmetric and complex Hermitian matrices are real. Discover and prove as much as you can
about the eigenvalues of unitary matrices. What can you say about them? What about the eigenvalues of
orthogonal matrices?

Solution: Let−→v be an eigenvector of the unitary matrixU with eigenvalueλ. ThenU−→v = λ−→v , and we
have

||U−→v ||2 = (U−→v )H(U−→v ) = (λ−→v )H(λ−→v ) = λλ−→v H−→v = |λ|2||−→v ||.
We now compute||U−→v || another way:

||U−→v ||2 = (U−→v )H(U−→v ) = −→v HUHU−→v = −→v HI−→v = −→v H−→v = ||−→v ||2.
Thus

|λ|2||−→v || = ||−→v ||;
as||−→v || 6= 0 we find|λ| = 1. Thus the eigenvalues of unitary matrices have absolute value one.

As orthogonal matrices are special cases of unitary matrices, their eigenvalues must be one in absolute
value as well. The eigenvalues of real orthogonal matrices,however, do not need to be real. Consider for
example a rotation by 90 degrees. There is no way this can havea real eigenvector. Its eigenvectors and
eigenvalues are all complex. In matrix form, a rotation byθ radians is

R(θ) =

(

cos θ 0 sin θ
sin θ cos θ

)

.

Thus

R(π/2) =

(

0 −1
1 0

)

.

The sum of the eigenvalues is 0 and the product is 1. Thus we’resolvingλ1 + λ2 = 0 andλ1λ2 = 1.
Using the first equation to eliminateλ2 gives−λ2

1 = 1, soλ1 = ±i (andλ2 = ∓i). Thus, while the
eigenvalues of real orthogonal matrices are one in absolutevalue, they can have non-zero imaginary parts.

Homework due Monday, November 5: #1: LetA =

(

1 2
2 1

)

. Find the eigenvalues and eigenvectors

of unit lengthof A. If −→v1 and−→v2 are these eigenvectors, letQ be the matrix where the first column is−→v1
and the second column is−→v2 . ComputeQTAQ. #2: LetTn+1 = Tn+Tn−1+Tn−2 with T0 = 0, T1 = 0
andT2 = 1. Find the generating function for this sequence.

http://en.wikipedia.org/wiki/Gershgorin_circle_theorem
http://en.wikipedia.org/wiki/Perron%E2%80%93Frobenius_theorem
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7. HW #9: DUE NOVEMBER 5, 2012

7.1. Assignment: Homework due Monday, November 5: #1: LetA =

(

1 2
2 1

)

. Find the eigenvalues

and eigenvectorsof unit lengthof A. If −→v1 and−→v2 are these eigenvectors, letQ be the matrix where the
first column is−→v1 and the second column is−→v2 . ComputeQTAQ. #2: LetTn+1 = Tn + Tn−1 + Tn−2

with T0 = 0, T1 = 0 andT2 = 1. Find the generating function for this sequence.

7.2. Solutions:

#1: LetA =

(

1 2
2 1

)

. Find the eigenvalues and eigenvectorsof unit lengthof A. If −→v1 and−→v2
are these eigenvectors, letQ be the matrix where the first column is−→v1 and the second column is−→v2 .
ComputeQTAQ.

Solution: To find the eigenvalues, one way is to usedet(A− λI) = 0. As

A =

(

1− λ 2
2 1− λ

)

,

we have
det(A− λI) = (1− λ)2 − 4,

or 1− λ = ±2 soλ = 3 or−1. We now solve(A− λI)−→v =
−→
0 . Thus forλ = 3 we find

(

−2 2
2 −2

)(

x
y

)

=

(

0
0

)

,

which impliesx = y. As we want the vector to have length 1 (its length-squared isx2 + y2), we can’t
takex = y = 1 but instead needx2+ y2 = 2x2 = 1, so we takex = y = 1/

√
2. The second eigenvalue,

λ = −1, gives us
(

2 2
2 2

)(

x
y

)

=

(

0
0

)

,

sox = −y. As we want the length to be one, we takex = −y = 1/
√
2.

Our matrixQ is thus

Q =

(

1/
√
2 −1/

√
2

1/
√
2 1/

√
2

)

=
1√
2

(

1 −1
1 1

)

;

notice thatQTQ = QQT = I, and standard matrix multiplication givesQTAQ =

(

3 0
0 −1

)

, the

diagonal matrix of eigenvalues.
Some comments are in order. If we were to switch the two eigenvectors, we would switch the two

diagonal entries. Also, there are faster ways to find the eigenvalues and eigenvectors. I call it the Boola-
Boola Theorem. If each row of a matrix sums toc thenc is an eigenvalue with corresponding eigenvector
all 1s. For our matrix, as each row sums to 3 then 3 is an eigenvalue with corresponding eigenvector
(1,1) or, if we want unit length,(1/

√
2, 1/

√
2). As the sum of the eigenvalues is the trace (which is 2),

the other eigenvalue is -1. Further, the eigenvectors associated to distinct eigenvalues of a real symmetric
matrix are perpendicular, and thus the other eigenvector isin the direction(−1, 1), or as a unit vector
(1/

√
2, 1/

√
2).

#2: LetTn+1 = Tn + Tn−1 + Tn−2 with T0 = 0, T1 = 0 andT2 = 1. Find the generating function for
this sequence.
Solution: We discussed generating functions when studying the Fibonaccis. The proof is similar here.
Set

g(x) =

∞
∑

n=0

Tnx
n =

∞
∑

n=2

Tnx
n
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asT0 = T1 = 0. We want to use the recurrence relation, so let’s pull out then = 2 term:

g(x) = T2x
2 +

∞
∑

n=3

Tnx
n

= x2 +

∞
∑

m=2

Tm+1x
m+1

= x2 +

∞
∑

m=2

(Tm + Tm−1 + Tm−2)x
m+1

= x2 + x

∞
∑

m=2

Tmxm + x2
∞
∑

m=2

Tm−1x
m−1 + x3

∞
∑

m=2

Tm−2x
m−2

= x2 + xg(x) + x2
∞
∑

n=1

Tnx
n + x3

∞
∑

n=0

Tnx
n

= x2 + xg(x) + x2g(x) + x3g(x).

Thus
(1− x− x2 − x3)g(x) = x2,

or

g(x) =
x2

1− x− x2 − x3
.
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