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Abstract

We present a generalization of Wigner’s semicircle law. We con-
sider a sequence of probability distributions (p1, p2, . . . ), each of which
has mean zero and finite higher moments. If we take an N × N real
symmetric matrix with entries independently chosen from pN , we can
analyze the distribution obtained by putting a δ-mass at every eigen-

value. If we normalize this distribution by
√

N
∫∞
−∞ x2pN (x) dx we

show that as N → ∞ for certain pN the distribution weakly converges
to a universal distribution. We give a formula for the moments of
the universal distribution in terms of the rate of growth of the k-th
moment of pN (as a function of N), as well as some implications of
the formula. As a corollary we obtain Wigner’s law: if all moments of
a distribution are finite, the distribution of eigenvalues is a semicircle.
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1 Introduction

In this paper we study the density of states of random real symmetric ma-
trices of very large dimension with i.i.d. entries from a mean-0 distribution.
Such problems arise in nuclear physics, for example in the descriptions of the
interactions of heavy nuclei (see [7], [2] for sources). Using the method of mo-
ments, Wigner showed that the expected distribution of eigenvalues of such
a matrix is a semicircle, provided that all moments of the probability distri-
bution from which the entries are selected exist (see [13], [14], [5]). Other
methods were used to show that, for δ > 0, the presence a finite (2 + δ)-th
moment is all that is necessary for convergence to the semicircle, and to gen-
eralize this to matrices where the entries were not necessarily independently
distributed (see [7]). In [11] and [12] Tracy and Widom showed that (after
rescaling) the largest eigenvalues of matrices in the GOE, GUE, and GSE all
converge to the same universal distribution; Soshnikov later extended this to
all real symmetric matrices with i.i.d. entries from symmetric distributions
with rapidly decaying tails (see [8]).

However, all of these papers assume reasonably nice distributions; they
all have finite second moments. These theories do not apply to some distri-
butions of entries with heavy tails, such as the Cauchy distribution. We are
interested in studying the density of states of matrices with entries chosen
from such distributions. In [10], Soshnikov and Fyodorov showed that the
largest eigenvalue of AtA, where A is an m × n matrix with entries inde-
pendently chosen from the Cauchy, does not follow the Tracy-Widom law,
but instead follows a Poisson law; Soshnikov later showed that this applies
to random symmetric matrices with entries chosen from distributions with
heavy tails which drop off approximately as 1/xα (see [9]).

We wish to study the density of eigenvalues in random real symmetric
matrices with entries i.i.d. from a distribution with heavy tails. In this
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paper we apply Wigner’s original method, the method of moments, to general
mean-0 probability distributions. We do this by computing moments of the
eigenvalue distribution of an N ×N real symmetric matrix, and then taking
the limit as N → ∞. We take a sequence of distributions (p1, p2, . . .), which
may be thought of as a sequence of approximations to a target distribution
p, and select the entries of the N × N matrix from pN . We assume that
each pi has mean 0 and all higher moments finite; however, the sequence can
converge to a distribution with infinite higher moments. For example, pN

could be a truncation of a distribution with infinite moments.

Definition 1. Let µN(k) be the k-th moment of pN . Let AN be an N × N
real symmetric matrix with entries chosen independently from pN . Let

Ck = lim
N→∞

µN(k)

Nk/2−1µN(2)k/2

if the limit exists.

If Ck exists and is finite for all k, then it is possible to calculate a formula
for the moments of the distribution of the eigenvalues of AN in the limit as
N → ∞. We shall prove

Theorem 1. Suppose the Ck exist and are finite. Then there exists a univer-

sal distribution that the distribution of eigenvalues of these matrices weakly

converges to as N → ∞. This distribution satisfies the following properties:

1. the distribution is symmetric;

2. if Ck = O(αk) for some constant α, then the distribution is uniquely

determined by its moments;

3. in the special case that Ck = 0 for all k > 2, the distribution is the

semicircle;

4. in all other cases the distribution has unbounded support.

Part 3 implies Wigner’s semicircle law, because if all moments are finite,
then Ck = 0 for k > 2.

We then apply this theory to two examples: the case where pi is a trun-
cation of a distribution of the form C/(1 + |x|m) and the case of adjacency
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matrices of approximately kN -regular graphs where nonzero entries are al-
lowed to be ±1. In the former case we find that if 1 < m < 3 there is a
truncation that results in a distribution that is not the semicircle; if m ≥ 3,
that is impossible. In the latter case we find that if kN → ∞ as N → ∞ we
obtain a semicircle; in other cases we obtain a distribution that is not the
semicircle.

2 A Calculation of Moments of an Eigenvalue

Distribution

Let AN be a real symmetric matrix with eigenvalues λ1(AN ), . . . , λN(AN ).
To each matrix we can associate a probability distribution µAN

by

µAN
(x) =

1

N

N
∑

i=1

δ

(

x − λi(AN )
√

NµN (2)

)

where δ is the Dirac delta function. Let EpN
[x] denote the expected value

of x with respect to the probability distribution pN . Let E[x]AN
denote the

expected value of x with respect to µAN
. Note that if we take the expected

value of x with respect to the probability distribution µAN
(the mean of µAN

)
and then average over all matrices AN , we will have the mean of the expected
distribution of the eigenvalues. Similarly, if we take the kth moment of x over
µAN

and then average over all matrices AN , we will get the kth moment of
the expected distribution of eigenvalues. We define

P (AN)dAN =
∏

i≤j

pN (aij)daij,

the probability distribution for the AN . We will denote the expected value
of x with respect to the probability function P (AN) by E[x].
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First note the following:

E[xk]AN
=

∫ ∞

−∞

xkµAN
(x)dx =

1

N

N
∑

i=1

(

λi(AN)
√

NµN(2)

)k

=
1

N
√

NµN(2)
k
Trace(Ak

N )

=
1

N
√

NµN(2)
k

N
∑

i1=1

· · ·
N
∑

ik=1

ai1i2ai2i3 · · ·aiki1 . (1)

Then

E[E[xk]AN
] =

∫ ∞

−∞

E[xk]AN
P (AN)dAN

=

∫ ∞

−∞

· · ·
∫ ∞

−∞

1

N
√

NµN(2)
k

N
∑

i1,...,ik=1

ai1i2 · · ·aiki1

∏

i≤j

pN (aij)daij

=
1

N
√

NµN(2)
k

N
∑

i1,...,ik=1

∫ ∞

−∞

· · ·
∫ ∞

−∞

ai1i2 · · ·aiki1

∏

i≤j

pN (aij)daij

=
N
∑

i1,...,ik=1

1

N
√

NµN (2)
k
EpN

[ai1i2 · · ·aiki1 ]. (2)

3 Calculation of Moments by Magnitude Anal-

ysis

All order computations will be done as N → ∞. In addition, since we only
care about the moments in this limit, we will always assume that N > k.

Definition 2. Fix an i1, . . . , ik in (1); this will fix a term in that sum. Let
the matrix Si1,...,ik have its ij-th entry (i ≤ j) equal to the number of times
that aij or aji appears in ai1i2ai2i3 · · ·aiki1 , and all other entries 0. Call this
matrix the associated matrix of the term. Define

E(Si1,...,ik) = EpN

[

∏

i≤j

a
sij

ij

]

.
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Two associated matrices will be called similar if the entries of one are a
permutation of the entries of the other.

Definition 3. Let TN,k be the set of matrices associated with terms in (1).
By construction, the map from terms in (1) to elements of TN,k is injective.
Notice that if Si1,...,ik is similar to Sj1,...,jk

then E(Si1,...,ik) = E(Sj1,...,jk
).

Let SN,k be the set of equivalence classes of TN,k (where two matrices are
equivalent if they are similar). Then we can define E([Si1,...,ik ]) = E(Si1,...,ik)
for any equivalence class [Si1,...,ik ].

For conciseness, we will sometimes refer to a term with associated matrix
in an equivalence class σ ∈ SN,k as a term in σ.

Note that we can rewrite (2) as

∑

σ∈SN,k

1

Nk/2+1µN(2)k/2
#{S ∈ TN,k : [S] = σ}E(σ). (3)

Notice that the set SN,k is independent of N , since an equivalence class
of matrices is uniquely defined by its nonzero entries, and those are only
dependent on k. Thus the number of terms in the above sum is independent
of N , and we can calculate the limit of this sum by calculating the limit of
each term as N → ∞ and then summing the limits.

Consider a σ ∈ SN,k such that the matrices in that equivalence class have
b nonzero entries, s1, . . . , sb. Note that because of the way that the indices
of the aij are arranged in the product, there can be at most b + 1 distinct
indices in each term in σ. Thus we see that there will be LσN b+1 + O(N b)
(for some constant Lσ) matrices with terms in σ. Note that

#{S ∈ T : [S] = σ}E(σ)

Nk/2+1µN(2)k/2
=

(LσN b+1 + O(N b))E(σ)

Nk/2+1µN(2)k/2

=
(LσN b+1 + O(N b))

N b+1

µN(s1)

N s1/2−1µN(2)s1/2
· · · µN(sb)

N sb/2−1µN(2)sb/2

since E(SN) = µN(s1) · · ·µN(sb) and s1 + · · ·+ sl = k.
Thus limN→∞ #{S ∈ T : [S] = σ}E(σ)/(Nk/2+1µN(2)k/2) = Lσ. In

addition, note that any term with fewer than b + 1 distinct indices i1, . . . , ik
contributes nothing to the sum, since there are at most O(N b) of these for
each equivalence class σ. Thus if we can compute how many terms there
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are in σ with b + 1 distinct indices, then we will have a formula for Lσ, and
therefore for the k-th moment of the expected distribution.

Proposition 4. Every equivalence class σ ∈ SN,k containing matrices with

at least one odd entry has Lσ = 0.

Proof. First we will construct a geometric representation of each of the terms
in the sum (2).

Definition 5. An Eulerian cycle is a sequence of vertices in a graph that
satisfies the following conditions:

(i) The length of the sequence is the number of edges in the graph.

(ii) The first vertex in the sequence is the same as the last one.

(iii) If two vertices i, j appear consecutively in the sequence then i and j
are connected by an edge.

(iv) Two vertices i, j appear consecutively in the sequence (in either order)
exactly n times if and only if there are exactly n edges connecting i to
j.

Start with a graph with k vertices, numbered 1 through k. Connect vertices
j, j + 1 for all j = 1, . . . , k − 1 and connect vertices k and 1. The Eulerian
cycle associated with this graph will be 1, 2, . . . , k, 1. We will construct a
bijection between terms in the sum and labeled graphs with an associated
Eulerian cycle. Fix a term B in the sum and do the following: if, in B, ia = ib
(a < b), add edges between ia and each of the neighbors of ib, and then delete
vertex ib and all edges connected to it (thus if ia, ib were consecutive we would
have a self-loop). Note that we started off with a connected graph with an
Eulerian cycle, and that this process preserves both the connectivity and
the Eulerian cycle. Call the (graph,Eulerian cycle) pair that results after no
more iterations of this process can be made the graph of B.

Now consider a labeled connected graph G with k edges and an Eulerian
cycle. Follow the Eulerian cycle around the graph, adding aij to the term for
every edge transversed from vertex i to vertex j. This is clearly the inverse
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Figure 1: Example: k = 8, Term = a12a21a14a45a54a41a12a21

i1 = 1 i2 = 2 i3 = 1 i4 = 4 i5 = 5 i6 = 4 i7 = 1 i8 = 2
Beginning Cycle: 1,2,3,4,5,6,7,8,1. Final Cycle: 1,2,1,4,5,4,1,2,1.

of the above transformation; thus we see that we have a bijection between
terms in the sum and the pairs of (graph, Eulerian cycle).

Now consider an equivalence class σ ∈ SN,k, which is defined by b nonzero
entries s1, . . . , sb. This means that every graph of a term in σ will have b
pairs of connected vertices. In addition, a term in σ will contribute to the
moment if and only if it has b + 1 distinct indices. Thus there will be b + 1
vertices in the graph of the term (in particular, note that there can’t be any
self-loops). For this to be true the graph must be a tree with some edges
doubled, tripled, etc. For this tree to have an Eulerian cycle, all edges must
have even multiplicity. Thus each of the si must have been even, and this
completes the proof of proposition 4.

Corollary 6. All odd moments of the distribution are 0.

Proof. Consider an equivalence class σ ∈ SN,k for k odd. This will have b

nonzero entries with
∑b

i=1 si = k. Thus one of the si must be odd, so Lσ = 0.
Since σ was arbitrary, we see that the moment will be 0.

4 The Moment Formula

Definition 7. Let Vk be the set of all (e1, . . . , el) such that

(i)
∑l

i=1 ei = k.

(ii) e1 ≥ e2 ≥ · · · ≥ el > 0.

8



Suppose {c0, . . . , cl} is a set of l +1 distinct colors, and define T ((e1, . . . , el))
to be the number of colored rooted trees with k + 1 vertices satisfying the
following conditions:

(i) There are exactly ei nodes of color ci. The root node is the only node
colored c0.

(ii) If nodes a and b are the same color then the distance from a to the root
is the same as the distance from b to the root.

(iii) If nodes a and b are colored equal colors then their parents are also
colored equal colors.

Theorem 2. The 2k-th moment of the distribution of normalized eigenvalues

is
∑

(e1,...,el)∈Vk

T ((e1, . . . , el))

l
∏

i=1

C2ei
. (4)

Proof. We know that any term associated with a matrix with an odd en-
try does not contribute to the sum. Thus we will only consider the terms
associated with matrices with only even entries.

Consider any term in (3). The order coefficient will be Lσ

∏b
i=1 Csi

. Thus
to prove the theorem all we need to do is calculate Lσ.

Consider the graph of a term of the 2k-th moment with b entries in the
associated matrix. Consider vertices i and j that are connected by n edges.
This represents that the variable aij appears n times in the corresponding

sum. Now let (b1, . . . , bl) be such that
∑l

i=1 bi = 2k, all bi are even, and
b1 ≥ · · · ≥ bl > 0. Consider all graphs of terms in (2) with l + 1 vertices
and b1 edges between two vertices, b2 between two others, etc. We construct
a bijection between these and rooted colored trees with k + 1 vertices. Fix
such a term B. Color each vertex a different color. We will construct a tree
corresponding to this Eulerian cycle using the following algorithm. Mark
node n, the beginning of the Eulerian cycle, as the current node. Create
a root node and color it the same color as n. Make a step in the Eulerian
cycle. If we have moved between nodes i and j (in either direction) an even
number of times, mark the parent of the current node current. If we have
moved between nodes i and j an odd number of times, add a rightmost child
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to the current node, color it the same color as vertex j, and mark it current.
Repeat the above for each step in the Eulerian cycle.

Clearly, this is injective. Note that bi/2 times we will create a node of
the same color. We will end up with a tree with k + 1 nodes, with b1/2 of
the colored one color, b2/2 of them colored another color, etc., so condition
(i) will be satisfied. Also, since the nodes of one color will all be created
by going from one vertex of the same color, condition (iii) will be satisfied.
Lastly, notice that because the graph of each term we are considering is a
tree (with some multiple edges) each node is a well-defined distance from the
root. This will be preserved by the algorithm (since we go up the tree when
we decrease the distance to the root and down the tree when we increase it)
so condition (ii) will be satisfied.

Now consider a tree satisfying conditions (i)-(iii). Execute the following
algorithm: if we have two nodes i and j of the same color, draw edges between
i and each of the neighbors of j. Then delete j and all of the edges from
it. Repeat until there are no more nodes of equal colors, and then double
all of the edges. This creates a graph with b1 edges between two vertices, b2

between two others, etc. In addition, if the original tree is transversed from
the root from left to right, going along each edge twice, this will create an
Eulerian cycle of the end graph. This is clearly the reverse of the original
algorithm. Thus it is a bijection, and there will be T ((b1/2, . . . , bl/2)) graphs
with coefficient

∏

Cbi
. Letting ei = bi/2 we obtain the desired formula.

5 Weak Convergence to the Distribution

We have shown that the moments of the distribution converge to the moments
given in the moment formula. However, we have not yet shown that for any
specific matrix the distribution of eigenvalues will be close to a distribution
with the given moments. To have a weak convergence, we need to show the
following:

Proposition 8. The variances of the moments tends to 0. In other words,

lim
N→∞

(

E[E[xk]2AN
] − E[E[xk]AN

]2
)

= 0.

Proof. When we square the sum (1) we multiply terms in pairs. For any
two terms this simply means that we add the exponents on the entries with
the same index; thus we simply add the two associated matrices. Consider
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a term A in the square, the product of terms A1 and A2 in (1). Suppose
Si is the matrix associated to Si (which has bi nonzero entries), and that
S = S1 + S2 has b nonzero entries s1, . . . , sb. Clearly, the largest number of
distinct indices in S will occur if and only if no entries in S1 share an index
with S2, and vice versa; then the number of distinct indices in the term is at
most b1+1+b2+1 = b+2. We can do an analysis analogous to that of section
3 to group the terms in the square of (1) by equivalence class of associated
matrix, and see that the only terms that contribute to the moment are those
with b + 2 distinct indices.

When we multiply two terms of (1) we overlap the graphs of the terms.
The number of indices will be the number of nodes in the graph. In addition,
notice that this graph need no longer be connected; it can have two compo-
nents. For an equivalence class σ of matrices with b nonzero terms in the
square of (1) we need to count the (graph, Eulerian cycle) pairs that have
b pairs of connected nodes and b + 2 distinct nodes; this is only possible if
we have two components to the graph. Thus we simply need to count the
number of ways of picking two disjoint (graph, Eulerian cycle) pairs. But
this is exactly the square of the moment formula, which are exactly the terms
canceled out by E[E[xk]AN

]2 in the desired equation. Thus we see that

E[E[xk]2AN
] − E[E[xk]AN

]2 = O

(

1

N

)

.

Letting N tend to infinity we obtain the desired result.

6 Implications of the Moment Formula: Proof

of Theorem 1

Proposition 9. The distribution of eigenvalues is symmetric.

Proof. This is immediate from corollary 6, as a distribution is symmetric if
and only if all of its odd moments are 0.

Proposition 10. If Ck = O(αk) for some constant α, then the distribution

of eigenvalues is uniquely determined by its moments.

Proof. Note that for each tree there are at most k! ways of coloring it, since
if we take e1 nodes of one color, e2 of another, etc. and then rearrange the
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colors among all of the nodes in all of the possible ways, the legal colorings
will be a subset of that. We know that the number of rooted trees with k +1
nodes is the k-th Catalan number (see [3] for more details). Since the k-th

Catalan number is 1
k+1

(

2k
k

)

, T ((e1, . . . , el)) < k!
k+1

(

2k
k

)

= (2k)!
(k+1)!

< 2kkk. In
addition, the number of sorted partitions of k is smaller than the number
of unsorted partitions of k, which equals

∑k
j=1

(

k−1
j−1

)

= 2k−1 < 2k (since

the number of ways of partitioning k into j positive partitions is
(

k−1
j−1

)

for

j = 1, . . . , k).
Then

kth moment =
∑

(e1,...,el)∈Vk

T ((e1, . . . , el))

l
∏

i=1

C2ei

= O



αk
∑

(e1,...,el)∈Vk

T ((e1, . . . , el))





= O((4kα)k),

where the last step used that
∑

2ei = k.
A probability density is uniquely determined by its moments {µ(k)} if all

the µ(k) are finite and if the power series
∑

k µ(k)rk/k! has positive radius
of convergence (see Theorem 30.1 of [1], for example). Plugging in the above
estimate for the k-th moment, we see that

∑

k µ(k)rk/k! is bounded above
by

∞
∑

k=1

(4kα)krk

k!
,

which has a positive radius of convergence r < 1/(4αe), so the distribution
will be determined by its moments.

Note that this agrees with Wigner’s law. For Wigner’s law, p1 = p2 = · · ·
(so µN(k) = µM(k) for all M, N). For k > 2

Ck = lim
N→∞

µN(k)

Nk/2−1µN(2)k/2
=

µN(k)

µN(2)k/2
lim

N→∞
N1−k/2 = 0.

Thus proposition 10 is applicable in the case when all of the distributions
are the same and have finite moments, and the distribution of eigenvalues is
determined by its moments.
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Proposition 11. If C2m = 0 for all m > 1 then the distribution is a semi-

circle.

Proof. If only C2 is nonzero then all of the coefficients of T (·) in (4) are 0
except for the one of T ((1, 1, . . . , 1)). Clearly, T ((1, 1, · · · , 1)) is the number
of rooted trees (since all of the colors are different and interchangeable). We
saw that this is the k-th Catalan number; these are the moments of the
distribution 1

2π

√
4 − x2, which under renormalization becomes the semicircle

(see [13]).

Proposition 12. If C2m > 0 for some m > 1 then the distribution of eigen-

values has unbounded support.

Proof. Suppose that C2m > 0 for some m > 1. We find a lower bound for the
moments of the distribution, and show that they grow faster than an expo-
nential. Since a bounded distribution implies at most exponential moment
growth, this will show that the support of the distribution is unbounded.

We will find a lower bound for all moments of the form k = 2m`, ` ∈ N.
Since all of the terms in (4) are nonnegative, we will only look at one partition,
(m, m, . . . , m). In addition, we will only look at one tree out of all of the
trees: the one where all nodes are the direct children of the root. This tree
can be colored with the requested colors in

1

`!

(

m`

m

)(

m` − m

m

)

· · ·
(

m

m

)

ways, since we need to choose which nodes are the same color, but it does
not matter which color is which. Thus the 2m`-th moment is larger than

(m`)!

(m!)``!
C`

2m >

(

C2m

m!

)`

(m` − 1)!!,

which grows faster than exponential. Thus the moments grow faster than
exponential, which implies that the distribution has unbounded support.
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7 Two Applications

7.1 The Truncated Distribution C
1+|x|m

We consider a distribution with infinite higher moments by truncating it at
increasingly large bounds. Consider a probability distribution of the form

A

1 + |x|m m > 1

(note that m = 2, A = 1
π

is the Cauchy distribution). For an increasing
function f : N → R+ we define a distribution pN by

pN(x) =

{

0 if |x| > f(N)
AN

1+|x|m
otherwise,

where AN =
(

∫ f(N)

−f(N)
dx

1+|x|m

)

. The moments of this distribution are

E[xn] =















0 if n is odd
Θ(1) if n even, n < m − 1
Θ(log f(N)) if n even, n = m − 1
Θ(f(N)n+1−m) if n even, n > m − 1

(5)

where a function f is Θ(g) if f = O(g) and g = O(f). We have three cases.
If m > 3 then the second moment of the distribution is

∫ f(N)

−f(N)

x2

1 + |x|m dx <

∫ ∞

−∞

x2

1 + |x|m dx �
∫ ∞

−∞

1

1 + |x|1+ε
dx,

which is bounded. Thus for C2k > 0 we would need µN(2k) = Θ(Nk−1), so

f(N)2k+1−m � Nk−1 =⇒ f(N) � N (k−1)/(2k+1−m).

However, since x−1
2x+1−m

is a decreasing function with lower bound 1/2 and

f(N) is independent of k, we see that f(N) = O(N 1/2+ε) for all ε > 0 for
C2k to exist for all k, and then C2k = 0.

Now suppose m = 3. From (5) we see that the second moment of the dis-
tribution grows as Θ(log f(N)) and the higher moments grow as Θ(f(N)n−2).
Thus in order for all C2k to be finite we need

µN(k)

Nk/2−1µN(2)k/2
=

f(N)2k−2

Nk−1 logk f(N)
= O(1),
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so
f(N) = O(N 1/2 logk/(2k−2) f(N))

for all k. However, since k/(2k − 2) is a decreasing function of k and f(N)
is independent of k we see that this implies

f(N) = O(N 1/2 log1/2+ε f(N))

for all ε > 0. Since f(N) = o(N 1/2 logk/(2k−2) f(N)) for all k, all C2k with k >
1 are 0. Thus the distribution will be a semicircle (see [6] for a computation
of the moments of the semicircle).

Now suppose 1 < m < 3. Then all even moments are Θ(f(N)n+1−m).
For C2k to be finite we need

f(N)2k+1−m

Nk−1f(N)k(3−m)
= O(1)

which means that f(N) = O(N 1/(m−1)). Note that if f(N) = o(N 1/(m−1))
then for all k > 1, C2k = 0 (so the distribution of moments will tend to a
semicircle), while if f(N) = Θ(N 1/(m−1)), C2k will be positive. In addition,
from a simple integration we see that C2k = 1/(2k+1−m). Thus the formula
for the moments when f = Θ(N 1/(m−1)) will be

∑

(e1,...,el)∈Vk

T ((e1, . . . , el))

l
∏

i=1

(2ei + 1 − m)−1.

In this case we see from propositions 10 and 12 that this distributions will
be uniquely determined by its moments and will have unbounded support.

7.2 Weighted Approximately kN-regular Graphs

We would like to apply our results to combinatorial constructions such as
large regular graphs. We know that the eigenvalue distributions of adjacency
matrices of such graphs follow McKay’s law (see [4]); it would be interest-
ing to obtain McKay’s law applying the methods used above. However, we
cannot do this because we are choosing the entries i.i.d.r.v. In addition, com-
binatorial objects such as undirected graphs do not have negative entries, so
we cannot assign a mean-0 probability to the entries of such a matrix.

We consider an ensemble similar to that of regular graphs. We take a
probability distribution that is expected to produce an N × N matrix with
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kN nonzero entries in each row and column. Each of these entries is ±1 with
equal probability, so that we have a mean-0 distribution. To do this, we
consider the following probability distribution:

Pr(aij = 1) = Pr(aij = −1) =
kN

2(N − 1)
.

if i 6= j. If i = j, aij = 0. (From the earlier calculations of moments it is
clear that in this case the formulas for the moments will still be valid.) Then
we know that

E[x`] =

{

kN

N−1
if ` is even

0 otherwise.

Then

C` = lim
N→∞

kN/(N − 1)

N `/2−1(kN/(N − 1))`/2
= lim

N→∞
k

1−`/2
N .

Thus if kN → ∞ as N → ∞, C` = 0 for ` > 2, so we have a semicircle
distribution. Otherwise, if limN→∞ kN = k, the support of the distribution
will be unbounded, so it will not be the semicircle. The odd moments of the
distribution will be 0, and the even moments will be given by

E[E[x2`]] =
∑

(e1,...,em)∈V`

T ((e1, . . . , em))km−`.

8 Acknowledgements

I would like to thank the American Institute of Mathematics for hosting the
REU during which this work was done, and Steven J. Miller for suggesting
the problem, discussing it with me, and editing multiple copies of this paper.
I also owe large parts of this work to Ilya Zakharevich for his suggestions
about generalizations and Gregory Price for giving me the idea of looking at
graphs. Special thanks go to Mark Adler who read this and told me to figure
out exactly what it was that I proved.

References

[1] P. Billingsley, Probability and Measure, 2nd ed., (John Wiley & Sons,
1986).

16



[2] E. Bogomolny, O. Bohigas, M.P. Pato. “Distribution of eigenvalues of
certain matrix ensembles.” Phys. Rev. 55, 6707-6718. 1996.

[3] J. Borwein and D. Bailey. Mathematics by Experiment: Plausible Rea-

soning in the 21st Century. Natick, MA: A. K. Peters, 2003.

[4] B. McKay. “The expected eigenvalue distribution of a large regular
graph.” J. Lin. Alg. Appl. 40, 203-216, (1981).

[5] M. L. Mehta, Random Matrices, 2nd ed., (Academic Press, 1991).

[6] S. J. Miller and R. Takloo-Bighash. An Invitation to Modern Number

Theory (Princeton University Press, to appear).

[7] L. A. Pastur. “On the Spectrum of Random Matrices.” Theoret. and

Math. Phys.,10, 67-74, (1972).

[8] A. Soshnikov. “Universailty at the edge of the spectrum in Wigner ran-
dom matrices.” Commun. Math. Phys., 207, 697-733, (1999).

[9] A. Soshnikov. “Poisson Statistics for the Largest Eigenvalues of Wigner
Random Matrices with Heavy Tails.” arXiv:math.PR/0405090.

[10] A. Soshnikov, Y. Fyodorov. “On the Largest Singular Values of Random
Matrices with Independent Cauchy Entries.” Elec. Commun. Probab.,
9, 82-91, (2004).

[11] C.A. Tracy, H. Widom. “Level-spacing distributions and the Airy ker-
nel.” Commun. Math. Phys., 159, 151-174, (1994).

[12] C.A. Tracy, H. Widom. “On orthogonal and symplectic random matrix
ensembles.” Commun. Math. Phys., 177, 724-754, (1996).

[13] E. Wigner. “Characteristic Vectors of Bordered Matrices with Infinite
Dimensions.” Ann. of Math., 62, 548-564.

[14] E. Wigner. “On the Distribution of the Roots of Certain Symmetric
Matrices.” Ann. of Math., 67, 325-327. 1957.

17


