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Abstract

Eigenvalues are the roots of the characteristic polynomials of ann×n matrix.
In this paper we will use4×4 real symmetric matrices to represent random graphs,
and we will study the eigenvalues of these matrices. We will show that if each
non-diagonal entry in a4× 4 matrix is chosen from a uniform distribution on the
interval [0, α], where0 ≤ α, then the eigenvalues of the matrix are rescaled by a
factorα. We will also show that if each non-diagonal entry in the matrix is chosen
from a uniform distribution on the interval[β, β + 1], where0 ≤ β, then roughly
3
4

of the eigenvalues will be concentrated around−β and roughly1
4

of them will
be concentrated around3β. An investigation into the application of eigenvalues
is beyond the scope of this extended essay. However, studying the distribution
of these eigenvalues is analogous to studying the roots of a general polynomial
with real coefficients. By studying how the distribution of the eigenvalues shifts
based on how the inputs in the matrix are altered, we can understand how the
roots of a polynomial shift if the coefficients of the polynomial are altered. Thus
we expand the problem of the distribution of eigenvalues to encompass the roots
of polynomials of the general form

p(x) = anx
n + an−1x

n−1 + . . . + a0.

In this paper we will quantify how much each coefficient can be shifted such that
the real roots of the polynomial do not move outside a small window.
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Chapter 1

Background

1.1 Random Graphs,d-Regular Graphs, and Their
Matrices

A graph is a collection of vertices (points) and edges (lines which connect the
vertices). In a random graph, the vertices are randomly connected to each other.
A d-regular graph is a type of random graph in which each vertex is randomly
connected tod other vertices. For example, in a3-regular graph, each vertex is
connected to3 other vertices.

Suppose we make a3-regular graph with4 vertices. The only way to construct
such a graph is to connect each vertex to every other vertex. Let’s label the vertices
asQ, R, S, andT . The graph will look like this:

Q

T

S

R
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We can represent any graph withn vertices with ann × n real symmetric
matrix (meaning that the entries in the matrix are real numbers, and the entries
above the diagonal are reflected below the diagonal). This matrix is called the
graph’s adjacency matrix. Each column and each row of the adjacency matrix
represents a vertex. A1 is placed in a position if the two vertices that the position
represents are connected; a0 is placed in that position if the two vertices are not
connected. The graphs we are investigating do not allow a vertex to be connected
to itself, so we place zeros in every position on the diagonal of the adjacency
matrix. In ad-regular graph, there ared 1s in each row andd 1s in each column,
because there ared connections to each vertex.

In our example of a 3-regular graph with 4 vertices, the graph’s adjacency
matrix will be a4 × 4 real symmetric matrix. The first column and the first row
represent the vertices connected to vertexQ, the second column and row represent
the vertices connected to vertexR, the third column and row represent the vertices
connected to vertexS, and the fourth column and row represent the vertices con-
nected to vertexT . In general, the matrix will look like this:

M =




q, q q, r q, s q, t
r, q r, r r, s r, t
s, q s, r s, s s, t
t, q t, r t, s t, t




We will represent our graph by a real symmetric matrix with0s on the diago-
nal and1s above and below the diagonal:

M =




0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0



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1.2 Weighted Matrices

Suppose our graph and matrix represents a network ofn computers. In this case,
it is more beneficial to consider the connection between a pair of vertices as a
number other than 1. For example, each entry may represent the speed of a con-
nection between the computers – a number greater or less than 1. Therefore, we
can choose each non-diagonal entry in the matrix as a weighted value from a uni-
form distribution on various intervals.

A uniform distribution on a given interval will yield each subinterval within
that interval with equal probability. For example, if we have a uniform distribution
on the interval[0, 1], the probability of observingx in a subinterval[a, b] equals
b − a for any subinterval within[0, 1]. Thus, choosing a number from[0.1, 0.2]
has the same probability as choosing from[0.48, 0.58].

Here, we will study the cases in which each such element of the matrix is cho-
sen from uniform distributions on the intervals[0, α], and[β, β + 1], whereα and
β are real numbers.

1.3 Eigenvalues

Eigenvalues can be useful in many sections of mathematics and physics. For ex-
ample, eigenvalues play an important part in the physics of rotating bodies; and
if we form a matrix from a random graph, the second eigenvalue reveals informa-
tion about the graph’s connectivity. However, for our purposes, eigenvalues are
the solutions to an interesting subset of polynomials.

By definition,λ is an eigenvalue if

A~v = λ~v, (1.1)

whereA is ann×n, or square, matrix and~v is a column vector withn components.
We call~v an eigenvector, which is a vector other than the zero vector. MatrixA
must be square because the output of the productA~v is a vector and also hasn
entries. The output vector is a multiple of~v, which means that matrixA is a
transformation that doesnot change the direction of~v; the matrix only changes
the length of the vector. Note that not every vector is an eigenvector. Each square
matrix has its own eigenvectors, depending on what the eigenvalues of the matrix
are.
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If we are given a square matrix, we can easily compute its eigenvalues by
generating the characteristic polynomial of the matrix. Referring to Equation 1.1,
we first collect like terms:

0 = A~v − λ~v

= (A− λI)~v.

We must multiplyλ by ann×n identity matrix,I, so thatA−λI forms ann×n
matrix. The determinant of this matrix is a degreen polynomial that is equal to
zero, because the matrix sends~v to zero. By solving forλ, we can find then roots
of this characteristic polynomial, which are the eigenvalues of matrixA.

Let M be a4× 4 real symmetric matrix formed from a3-regular graph:

M =




0 a b c
a 0 d e
b d 0 f
c e f 0


 .

To find the eigenvalues of matrixM , we must find and solve its characteristic
polynomial,P (λ). This, we have

P (λ) = det(A− λI)

=

∣∣∣∣∣∣∣∣

−λ a b c
a −λ d e
b d −λ f
c e f −λ

∣∣∣∣∣∣∣∣
= λ4 − λ2(a2 + b2 + c2 + d2 + e2 + f 2) (1.2)

−2λ(abd + ace + bcf + def)

+(c2d2 − 2bcde + b2e2 − 2acdf − 2abef + a2f 2).

The non-diagonal entries of the matrix,a, b, c, d, e, andf , comprise the coef-
ficients of the polynomialP (λ). Suppose we take the non-diagonal entries from
a uniform distribution on the interval[0, 1]. If we look at a sufficiently large num-
ber of matrices, what does the projection of the eigenvalues onto the real axis
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look like? Below is a histogram of the distribution. We will use this histogram1

to compare results for cases in whicha, b, c, d, e, andf are taken from uniform
distributions on different intervals.
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1The range over which the eigenvalues vary is divided into many bins of equal size, each of
which represents a subinterval in the range. The histogram depicts how many eigenvalues fall into
each bin.
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Chapter 2

Investigation 1: 4× 4 Matrices

We will begin by studying4 × 4 real symmetric matrices, such as that shown
below:

M =




0 a b c
a 0 d e
b d 0 f
c e f 0


 (2.1)

The4 eigenvalues of this matrix react in distinct ways when the non-diagonal
entriesa, b, c, d, e, andf are chosen from uniform distributions on the intervals
[0, α] and[β, β +1], where0 ≤ α and0 ≤ β. If the interval is rescaled by a factor
α, then the eigenvalues are rescaled by the same factor. If the interval is shifted to
[β, β + 1], then roughly3

4
of the eigenvalues will be concentrated around−β and

roughly 1
4

will be concentrated around3β.

2.1 Rescaled Intervals

We have already seen the distribution of the eigenvalues if the non-diagonal values
are taken from the interval[0, 1]. We will now examine what happens when the
interval is rescaled by a factorα, where0 ≤ α, so that the non-diagonal values
are chosen from the interval[0, α].

2.1.1 Experiments

Using Mathematica, we can average over a finite number of weighted graphs,
form their corresponding real symmetric4 × 4 matrices that are structured like
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matrix M , and observe how the projection of the matrices’ eigenvalues onto the
real axis is altered when the non-diagonal entries are taken from rescaled intervals.

Consider the cases in which we take each non-diagonal entry in matrixM from
a uniform distribution on the intervals[0, 2] and[0, 10]. Below are histograms of
these matrices.
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The two graphs differ only slightly in shape and have roughly the same number
of eigenvalues in each bin. However, the overall range of the eigenvalues changes,
as do the bin sizes. In the first histogram, the range of the eigenvalues is rescaled
by a factor of 2; in the second, by a factor of 10. The same results occur if the
interval from whicha, b, c, d, e, andf are chosen is rescaled by any real number
greater than or equal to zero.

2.1.2 Theory

Assume we rescale the interval of each non-diagonal entry in our4× 4 adjacency
matrix by a factorα, so that the entries are chosen from a uniform distribution on
[0, α]. Then the eigenvalues are rescaled by a factorα.

Recall that eachn × n matrix is associated with a characteristic polynomial
of degreen, similar to that in Equation 1.2. Then roots of the polynomial are the
eigenvalues of the matrix.

The polynomial for our4× 4 matrix is

P (λ) = λ4 − λ2(a2 + b2 + c2 + d2 + e2 + f 2)

−2λ(abd + ace + bcf + def)

+(c2d2 − 2bcde + b2e2 − 2acdf − 2abef + a2f 2).
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Note that this polynomial does not have a cubic term. The characteristic polyno-
mial for ann× n matrix is given by

det(A− λI) = λn − Tr(A)λn−1 + . . . ,

whereTr(A) is the trace of the matrix (the sum of all its diagonal elements). In
an adjacency matrix, each diagonal element is zero, soTr(M) = 0. Therefore
there is noλn−1 term in the polynomial.

For the sake of simplicity, we can rewrite the expression by replacing the co-
efficients such that

P (λ) = C0 + C1λ + C2λ
2 + λ4,

whereC0, C1, andC2 are polynomials of degree4, 3, and2 (respectively) in the
coefficientsa, b, c, d, e, andf . Now suppose that each of the non-diagonal values
in matrix M (a, b, c, d, e, and f ) is chosen from a uniform distribution on the
interval[0, α]. Then writinga asαa′, b asαb′, c asαc′ and so on, we see that

Ci(a, b, c, d, e, f) = α4−iCi(a
′, b′, c′, d′, e′, f ′).

We now have
P (λ) = C0α

4 + C1α
3λ + C2α

2λ2 + λ4.

We want to determine the eigenvalues of the matrix, so we must equateP (λ) to
zero. We can then manipulate the expression to find the roots:

0 = C0α
4 + C1α

3λ + C2α
2λ2 + λ4

0 =
C0α

4 + C1α
3λ + C2α

2λ2 + λ4

α4

= C0 + C1(
λ

α
) + C2(

λ

α
)2 + (

λ

α
)4.

The roots of this expression areλ
α
. The eigenvalues (λ) are therefore rescaled by a

factor,α. Thus, when each non-diagonal value of a4× 4 real symmetric matrix is
rescaled by a factorα, the eigenvalues are rescaled by the same factor. This result
can easily be reproduced for ann× n matrix.
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2.2 Shifted Intervals

Let us return to matrixM in line 2.1. Now we will choose non-diagonal entries
a, b, c, d, e, andf from a uniform distribution that is shifted from its original posi-
tion on the interval[0, 1] to a new position on the interval[β, β +1], where0 ≤ β.

2.2.1 Experiments

We again useMathematicato average over a finite number of weighted graphs,
form corresponding real symmetric4 × 4 matrices that are structured like matrix
M , and observe how the projection of the matrices’ eigenvalues onto the real
axis is altered when the non-diagonal entries are taken from shifted intervals. If
we shift the range of these entries (which also make up the coefficients of the
characteristic polynomial of the matrix) to the interval[7, 8] or [100, 101], we will
observe the projection of the eigenvalues onto the real axis separating into two
masses:
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Although it may look as if the sections of the histograms are converging to
certain values, a rescaled graph shows otherwise. In fact, the two sections are
nearly the same in size and shape as they were whena, b, c, d, e, andf were taken
from the interval[0, 1]. They have simply moved apart. Below are "zoomed-in"
views of the two sections of the histogram of eigenvalues generated from matrices
whose non-diagonal values are taken from a uniform distribution on the interval
[100, 101].
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We see that whena, b, c, d, e, and f are taken from the interval[100, 101],
one section of the eigenvalues’ distribution is shifted from approximately−1 to
approximately−100, and the other shifts from approximately3 to approximately
300. The same shifts in the distribution of the eigenvalues occurs ifa, b, c, d, e,
andf are taken fromβ plus some number chosen from a uniform distribution on
the interval[0, 1], asβ gets large.

2.2.2 Theory

Assume we shift the interval of each non-diagonal entry in our4 × 4 adjacency
matrix from [0, 1] to [β, β + 1]. Then the eigenvalues are shifted to−β and3β.

Recall the characteristic polynomial from line 1.2. Ifa, b, c, d, e, andf were
exactly equal toβ, we would have

P (λ) = λ4 − λ2(a2 + b2 + c2 + d2 + e2 + f 2)

−2λ(abd + ace + bcf + def)

+(c2d2 − 2bcde + b2e2 − 2acdf − 2abef + a2f 2)

= λ4 − 6β2λ2 − (4β3)2λ

+(β4 − 2β4 + β4 − 2β4 − 2β4 + β4)

= λ4 − 6β2λ2 − 8β3λ− 3β4.

Again, because we are solving for the eigenvalues, we can setP (λ) = 0 to get

0 = (
λ

β
)4 − 6(

λ

β
)2 − 8(

λ

β
)− 3.
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There are four solutions to this equation:

λ

β
= −1,−1,−1, 3.

The solutions to this polynomial make sense. If the non-diagonal values in our
matrix are chosen on the interval[β, β + 1], they do not vary much fromβ, and
the eigenvalues remain close to those corresponding to the eigenvalues found if
a, b, c, d, e, andf were exactly equal toβ. Therefore, we would expect roughly
3
4

of the eigenvalues to be concentrated around−β and roughly1
4

of them to be
concentrated around3β.

Furthermore, asβ gets very large, a random number chosen from a uniform
distribution on the interval[0, 1] becomes small relative toβ. Thus in the limit, if
a, b, c, d, e, andf are chosen fromβ + k, wherek is some random number chosen
from a uniform distribution on the interval[0, 1], the eigenvalues behave as if the
non-diagonal values were chosen from the interval[β, β + 1].
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Chapter 3

Investigation 2: n× n Matrices

If we have a4 × 4 matrix, it is relatively easy to observe how the eigenvalues
shift if the non-diagonal entries in the matrix are chosen from altered intervals.
However, it is difficult to do so for a larger matrix, such as a10 × 10 matrix. If
each non-diagonal entry is taken from a uniform distribution on an interval that
has been rescaled by a certain factor, then the eigenvalues will be rescaled by that
factor. But if we take each non-diagonal element from a uniform distribution on a
shifted interval, how much should we expect the eigenvalues to move?

The determinant of a large real matrix yields a large polynomial with real
coefficients. For ann× n matrix, it is of the form

p(x) = anx
n + an−1x

n−1 + . . . + a0.

Assume that at some real simple root,r, there are two points very close to the
root,d1 andd2, d1 < r < d2, with p(d1) < 0 andp(d2) > 0. Assume also that we
have a new polynomialq(x) such that

q(x) = (an + sn)xn + (an−1 + sn−1)x
n−1 + . . . + (a0 + s0),

wheresn, sn−1, sn−2, . . . , s0 are small amounts by which we shift each coefficient
of the original polynomialp(x).

Theorem 3.0.1.If r is a real simple root (its order is1) of p(x), then if we change
the coefficients by small amountssi,

|si| < |p(d1)|
(1 + |d1|n)(n + 1)
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and

|si| < |p(d2)|
(1 + |d2|n)(n + 1)

,

the new polynomial has a real root near r.

Proof. First considerd1. Expandingq(x), we have

q(x) = anxn + snx
n + an−1x

n−1 + sn−1x
n−1 + . . . + a0 + s0

= p(x) + snx
n + sn−1x

n−1 + . . . + s0. (3.1)

We wantq(d1) to remain negative, which will be true if

|p(d1)| > |sndn
1 + sn−1d

n−1
1 + . . . + s0|.

If we consider only the last term on the right hand side of the equation,s0, we
would have

|s0| < |p(d1)|.
If we consider only thes1d1 term, we would have

|s1| < |p(d1)|
|d1| .

In Equation 3.1 we want to ensure that each term in the sum is less than|p(d1)|,
so we divide each addition by the highest power ofd1. However, ifdn

1 ≤ 1, each
term will be as large as or greater than|p(d1)|; if we make the denominator of
eachsi greater than 1, then each term will be less than|p(d1)|. Therefore we add
1 to the denominator of each term. Also, Equation 3.1 hasn + 1 terms added to
|p(d1)|. To ensure that the sum of all thes terms is less than|p(d1)|, we divide
each term byn + 1. Thus,q(d1) remains negative, if eachsi satisfies

|si| < |p(d1)|
(1 + |d1|n)(n + 1)

. (3.2)

Now considerd2. We wantq(d2) > 0. So in Equation 3.1, we want thesi

terms to be less than|p(d2)| in absolute value. Using the same process we used to
find |si| above, we find thatq(d2) remains positive if

|si| < |p(d2)|
(1 + |d2|n)(n + 1)

. (3.3)
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Theorem 3.0.2.Assumep(x) has n real simple roots. Then if we change the
coefficients by small amountssi,

|si| < |p(d1)|
(1 + |d1|n)(n + 1)

and

|si| < |p(d2)|
(1 + |d2|n)(n + 1)

,

the new polynomial hasn real simple roots, where each root is near a previous
one.

Proof. Each root ofq(x) is associated with two values for|si|. If |si| is less than
the minimum of the2n values for|si| generated by Equations 3.2 and 3.3, then
q(d1) will remain negative andq(d2) will remain positive. In fact, ifd1 andd2 exist
such thatd1 = r −∆r andd2 = r + ∆r, where∆r is less than1

4
the difference

between two adjacent roots, then the roots ofq(x) will be less than∆r away from
the roots ofp(x), and there will not be more than one root in the interval[d1, d2].
Thus, shifting the coefficients of a polynomial by a small amount does not have a
large effect on the roots.

This result explains why choosing the non-diagonal entries in matrix M (a,
b, c, d, e, andf ) from β + k, wherek is a chosen from a uniform distribution
on the interval[0, 1], is effectively the same as choosing each non-diagonal entry
from a uniform distribution on the interval[β, β + 1]. Shifting the coefficients
of the characteristic polynomial fromβ to β plus some small amount does not
significantly change the distribution of the roots (eigenvalues), so the distribution
looks very close to the distribution where each non-diagonal element is chosen
from the interval[β, β + 1].
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Chapter 4

Conclusion

What began as an investigation of randomd-regular graphs and their matrices
has evolved into the much broader investigation of a certain class of polynomial.
We first observed how rescaling or shifting the entries in a4 × 4 real symmetric
matrix affected the eigenvalues of the matrix. It should be noted that our results
for rescaled intervals hold true for anyn × n matrix. However, our results for
shifted intervals are specific to4× 4 matrices.

Because the eigenvalues are the solution to a characteristic polynomial, we
found that our observations of the behavior of the eigenvalues under certain con-
ditions are analogous to the behavior of the roots of a polynomial under similar
conditions.

If we change the coefficients of a polynomial, it is possible that some real
roots will become complex, and that some complex roots will become real. For
example, if there was a double root, shifting the coefficients can yield either two
distinct real roots or two distinct complex roots. It can be proven that the complex
roots will be nearby the original double root, but the proof requires tools derived
from Complex Analysis.

However, by expanding our investigation to general polynomials, we can now
quantify how much each coefficient in the polynomial can safely be shifted, so
that the roots stay within a desired range. This is a handy tool, and can be used in
many situations involving similar polynomials.
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