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Abstract

In 1981, B. D. McKay proved some fundamental results on the limiting
distribution of eigenvalues of large random regular graphs [M]. Here we ex-
plore the analogous problem for a large random regular graph with random
weights on its edges. We also examine how the distribution of weights and
the distribution of eigenvalues are related, and put forward several conjec-
tures.
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1 Review of Graph Theory

A graph is a set of points (“vertices”) connected by lines (“edges”). For the pur-
poses of this paper, we will assume there are no multiple edges (ie given two
vertices, there is always at most one edge between them) and that there are no
loops (ie there is no edge from a vertex to itself). We will further assume that
there are no directed edges (ie an edge does not indicate a direction of travel).
Here are some typical graphs:

We now introduce some terminology we will need.
A graph is said to bed-regular if every vertex meets exactlyd edges. For example,
graph (b) above is 3-regular.
A pathis an orderedn-tuple of vertices< v1, v2, . . . , vn > s.t.∀i ∈ {1, . . . , n−1},
there is an edge betweenvi andvi+1.
A closed walkis a path< v1, v2, . . . , vn > s.t. v1 = vn.
A proper cycleis a closed walk< v1, v2, . . . , vn−1, v1 > s.t.∀i, j ∈ {1, . . . , n−1},
vi = vj ⇐⇒ i = j.
A cycleis any closed walk< v1, v2, . . . , vn > where∃1 ≤ i1 < i2 < · · · < ik ≤ n
s.t.< vi1 , vi2 , . . . , vik > is a proper cycle.
A tree is a graph containing no cycles. (see (c) above)

If G is a graph withN vertices, we sayG has sizeN , or more concisely
|G| = N .

Given a graphG of sizeN , we can construct an associatedN × N matrix
(theadjacency matrix) as follows. Label the vertices ofG as1, 2, . . . , N . For all
i, j ∈ {1, 2, . . . , N} define

aij =

{
0 if there is no edge betweeni andj

1 otherwise

Then the adjacency matrix is theN × N matrix whoseijth entry is aij. For
example, the adjacency matrix of (b) is
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
0 1 0 0 1 1
1 0 1 1 0 0
0 1 0 1 1 0
0 1 1 0 0 1
1 0 1 0 0 1
1 0 0 1 1 0


Note that for any graph, the adjacency matrix is real symmetric. Ford-regular
graphs, each row and column has preciselyd 1’s (and all the other entries are
0). Henceforth, if we refer to the eigenvalues of a graph, we really mean the
eigenvalues of the associated adjacency matrix.

1.1 Weighted Graphs

Take some graphG of sizeN ; call its adjacency matrixAG. Choose some prob-
ability distributionW(x) (theweight distribution). For all pairsi, j s.t. 1 ≤ i <
j ≤ N , draw a randomwij (the ijth weight) from our distributionW(x). We
define theweight vectorto be the collection of all the weights, in the dictionary
order, ie

−→w = (w12, w13, . . . , w1N , w23, . . . , w2N , . . . , w(N−1)N)

Note that−→w hasN(N−1)
2

entries.
For all i, j s.t.1 ≤ i, j ≤ N we now define

bij =


wijaij if i < j

wjiaji if i > j

0 if i = j

Let AG,−→w = (bij) be theN × N matrix whoseijth entry isbij. We can look at
AG,−→w as the adjacency matrix of the "weighted graph"(G,−→w ), ie the graphG
with weightwij attached to the edge fromi to j.

SupposeG is ad-regular graph of sizeN . SinceG hasNd
2

edges,−→w will have

at mostNd
2

nonzero entries. Thus, all the otherN(N−1)
2

− Nd
2

entries areforcedto
be0. This turns out to be a useful property for us. Thus, we will be dealing with
d-regular graphs from now on. For brevity, define

RN,d = {G : G is d-regular and|G| = N}.
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1.2 Moments of a Graph

We begin by recalling the standard definition of moments of a probability distrib-
utionp(x): we define thekth moment of the distribution to be

E[xk] =

∫
R

xkp(x)dx

For the case of a matrix, we have a discrete distribution of eigenvalues. Sup-
poseA is anN ×N matrix with N (not necessarily distinct) eigenvalues{λi,A}.
We define a probability “measure”

µA(x) =
1

N

N∑
i=1

δ(x− λi,A)

whereδ is the Dirac delta functional. Essentially, we are putting an equal weight
(of 1

N
) on each eigenvalue. Now from definition of thekth moment we have

EA[xk] =

∫
R

xkµA(x)dx

=

∫
R

xk · 1

N

N∑
i=1

δ(x− λi,A)dx

=
1

N

N∑
i=1

∫
R

xkδ(x− λi,A)dx

=
1

N

N∑
i=1

λk
i,A

=
1

N
Tr(Ak)

If the ijth entry of theN × N matrix A is aij, it can be easily proved by
induction that

Tr(Ak) =
N∑

i1=1

N∑
i2=1

· · ·
N∑

ik=1

ai1i2ai2i3 · · · aiki1

Thus we obtain the formula

E[xk] =
1

N

N∑
i1=1

N∑
i2=1

· · ·
N∑

ik=1

ai1i2ai2i3 · · · aiki1 (1)
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Suppose we take a weighted graph(G,−→w ), whereG ∈ RN,d and the entries
of −→w are drawn from the weight distributionW. Let its adjacency matrixAG,−→w
have entriesbij. Then we can use equation (1) to calculate the moments of the
distribution of eigenvalues of(G,−→w ). The first moment is trivial:

E[x] =
1

N

N∑
i=1

bii = 0,

since no edge goes from a vertex to itself (hencebii = 0,∀i). The second moment
is only slightly more involved:

EG,−→w [x2] =
1

N

N∑
i=1

N∑
j=1

bijbji =
1

N

∑
1≤i,j≤N

b2
ij

=
1

N

N∑
i=1

b2
ii + 2

(
1

N

∑
1≤i<j≤N

b2
ij

)

=
2

N

∑
1≤i<j≤N

w2
ij

where the subscripts onE indicate dependence. Denote themth moment ofW by
σm. Recall that the assumption thatG is d-regular forces all butNd

2
of the entries

of −→w to be0. Thus, averaging all possible−→w ’s yields

EG[x2] =

∫
R

 2

N

Nd
2∑

i=1

w2
i

W(x)dx

=
2

N

Nd
2∑

i=1

∫
R

w2
i W(x)dx

=
2

N

Nd
2∑

i=1

σ2

= dσ2

which is independent ofG (and evenN ). So in fact we can write

E[x2] = dσ2 (2)

Before proceeding to more moment calculations, we pause to develop the the-
ory a little further.
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2 Some Theory

2.1 McKay’s Paper

In this section we highlight a few results contained in McKay’s paper (keeping the
enumerations the same as those in [M], though slightly modifying his notation).

Lemma 2.1
GivenG ad-regular graph. Fix a vertexv0 in G, and suppose that for somer ∈ N
the subgraph ofG induced by all vertices at most a distance ofr/2 away fromv0

contains no cycles. Then there are exactlyθ(r) closed walks of lengthr starting
atv0, where

θ(r) =

d

r
2
−1∑

k=0

(
r

k

)
r − 2k

r
(d− 1)k if r is even

0 if r is odd

(3)

Lemma 2.3
Given a collection{Gi} of d-regular graphs such that:
(i) |Gi| → ∞ asi →∞; and
(ii) ∀k ≥ 3, Ck(Gi)

|Gi| → 0 asi →∞, whereCk(G) denotes the number ofk-cycles
in a graphG.
Further, define

F (G, x) =
#{λ : λ ≤ x and is an eigenvalue ofG}

|G|
Then∀r ≥ 0, ∫

xrdF (Gi, x) → θ(r) asi →∞ (4)

Theorem 1.1
Given a sequence ofd-regular graphs{Gi}, s.t. |Gi| → ∞ asi →∞. Define

F (x) =


0 if x ≤ −2

√
d− 1∫ x

−2
√

d−1

d
√

4(d− 1)− u2

2π(d2 − u2)
du if |x| < 2

√
d− 1

1 if x ≥ 2
√

d− 1

(5)
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Then Ck(Gi)
|Gi| → 0 ∀k ≥ 3 iff F (Gi, x) → F (x) ∀x.

Recall thatRN,d is the set of alld-regular graphs onN vertices.
Lemma 4.1
∀k ≥ 3, the average number ofk-cycles in the members ofRN,d is

Ck,N,d →
(d− 1)k

2k
asN →∞ (6)

Theorem 4.2
Let FN,d(x) be the average ofF (G, x) over allG ∈ RN,d. ThenFN,d(x) → F (x)
asN →∞, for everyx.

2.2 More Results

We now use the results from [M] to prove a few of our own. But first, a bit more
notation.
LetCG,−→w ,k =

∑′ bi1i2bi2i3 · · · biki1, where the sum is over all cycles< i1, i2, . . . , ik, i1 >.
Let TG,−→w ,k =

∑′ bi1i2bi2i3 · · · biki1, where the sum is over all closed walks
< i1, i2, . . . , ik, i1 > which are not cycles. Thus from equation (1) we have

EG,−→w [xk] =
1

N
CG,−→w ,k +

1

N
TG,−→w ,k (7)

since any closed walk< i1, i2, . . . , ik, i1 > is either a cycle or not.

Theorem 2.1.For any fixedk ≥ 3,

lim
N→∞

1

N
EN,d[CG,−→w ,k] = 0

where we useEN,d to signify that we average over allG ∈ RN,d and over all
possible−→w (our weight distributionW is assumed to be fixed).

Proof. Fix someG ∈ RN,d, and choose some weight vector−→w . All but Nd
2

of the entries of−→w must be0; label those weights which aren’t necessarily0,
{w1, w2, . . . , ws} (wheres = Nd

2
).
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Choose somek-cycle inG; it traverses some of these weighted edges, so its
contribution iswr1

1 wr2
2 · · ·wrs

s , whereri ≥ 0 and
∑

ri = k (ri represents the num-
ber of times total ourk-cycle has traversed the edge with weightwi). Averaging
over−→w , we have that the expected contribution of ak-cycle is thus

E[wr1
1 · · ·wrs

s ] = E[wr1
1 ] · · ·E[wrs

s ]

= σr1σr2 · · ·σrs

= σα1
1 σα2

2 · · ·σαs
s

where theαi’s satisfyαi ≥ 0,
∑

iαi = k. The latter condition implies that

αk+1 = αk+2 = · · · = αs = 0

So in fact,
E[wr1

1 · · ·wrs
s ] = σα1

1 · · ·σαk
k

where

αi ≥ 0,
k∑

i=1

iαi = k

Let M = max{σα1
1 · · ·σαk

k : αi ≥ 0,
∑k

i=1 iαi = k}. Note thatM depends
only {σi} andk; in particular, it does not depend onN . We highlight this fact
by writing M = M(W, k). DefineCG,k to be the total number ofk-cycles inG.
Then

1

N
EN,d[CG,−→w ,k] =

1

|RN,d|
∑

G∈RN,d

(
1

N
E−→w [CG,−→w ,k]

)

≤ 1

|RN,d|
∑

G∈RN,d

(
1

N
CG,kM(W, k)

)
=

M(W, k)

N
· 1

|RN,d|
∑

G∈RN,d

CG,k

=
M(W, k)

N
· Ck,N,d

which tends to0 asN tends to infinity, by Lemma 4.1 of McKay (see equation (6)
above), as well as by the fact thatM(W, k) does not depend onN .

Corollary 2.2.

lim
N→∞

EN,d[x
k] = lim

N→∞

1

N
EN,d[TG,−→w ,k] (8)
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Proof. This follows directly from Theorem 2.1 and equation (7).

Corollary 2.3. Wheneverk is odd,

lim
N→∞

EN,d[x
k] = 0 (9)

Proof. It is well-known that all closed walks of odd length are cycles. Thus for
oddk, TG,−→w ,k = 0; we conclude by Corollary 2.2.

3 Higher Moments

3.1 The Fourth Moment

Now we know (by corollary 2.3) that we need not bother with the odd moments.
The problem of finding even moments is simplified (since we only need to con-
siderd-regular graphs which are locally trees, by corollary 2.2). To gain intuition,
we begin by explicitly calculating the4th moment.

Choose some arbitrary vertexv of ad-regular graphG, and assume that locally
G is a tree (ie the subgraph induced by all those vertices ofG whose distance from
v is less than4, contains no cycles. Thus we may viewv is being at depth0, all
those vertices directly adjacent tov to be at depth1, all those vertices directly
adjacent to a vertex of depth1 to be at depth2, etc. We must count the number
of closed walks starting (and ending) atv, of length4. We begin by choosing an
edge fromv - this will be the first edge we will traverse. Clearly, we can traverse
it at most 4 times. If we traverse it exactly 4 times, we finish our walk atv, so
such a walk is possible. What if we traverse our first edge exactly 3 times? Then
we’re stuck: we have only one more move (since the total length of the walk is
4), and we’re 1 away fromv. To return tov in time, we would have to go back up
the same edge we just traversed 3 times. But this contradicts our assumption that
we begin by traversing this first edge exactly 3 times. So no legal path begins by
crossing some edge exactly 3 times.

What about twice? If we begin our walk by crossing our first edge exactly
twice, then we’re back atv, and have 2 more moves. We cannot go back along
that first edge - that would contradict that we begin by crossing it exactly twice -
but we can take any other of the remaining(d−1) edges extending fromv. In fact,
after choosing this second edge, we are forced to traverse it exactly twice. Finally,
what if we begin by crossing our first edge exactly once? We have three moves
left, and we are at depth 1 in a tree (locally). We cannot go back along the edge
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we just crossed, so we must continue getting deeper into the tree. Choose an edge
extending from the vertex where we are (other than the edge we just came down).
This will be our second edge. We can traverse it at most three times - but that
would leave us at depth 2, with no more moves. If we traverse it twice however,
we could then take our first edge back up tov, thus making a legal closed walk.
The reader may check that if we traverse the second edge exactly once, there is no
way to get back tov in time.

Thus, there are three different types of paths: one in which we cross the first
edge exactly 4 times; one in which we cross the first edge exactly twice, and then
a different edge exactly twice; and one in which we traverse the first edge exactly
once, a distinct second edge exactly twice, and the original edge once more. We
represent these possibilities more succinctly as (respectively):(4); (2, 2); and
(1, 2, 1). Now we count how many of each such path there can be. For paths of
the type(4), for the first edge we haved choices (sinceG ∈ RN,d). Once we
choose one of these edges, say it has weightw. So the total contribution isd · w4.
For a walk of type(2, 2), say the first edge has weightw1, and the second has
weight w2. We can choose the first ind ways, and the second ind − 1 ways.
So altogether the contribution isd(d − 1)w2

1w
2
2. Finally, the contribution from

paths of the type(1, 2, 1) is alsod(d − 1)w2
1w

2
2. Averaging overW yields a total

contribution of

dσ4 + d(d− 1)σ2σ2 + d(d− 1)σ2σ2 = dσ4 + 2d(d− 1)σ2
2

whereσm is themth moment ofW.
This is for one of theN verticesv. Thus by corollary 2.2, we obtain (after

cancelling theN ’s) that the4th moment of the limiting distribution of eigenvalues
of a large randomd-regular graph isdσ4 + 2d(d− 1)σ2

2.

3.2 Higher Moments

Using similar reasoning, we can find all possible path types of length 6. They are:
(6); (4, 2); (3, 2, 1); (2, 4); (2, 2, 2); (2, 1, 2, 1);
(1, 4, 1); (1, 2, 3); (1, 2, 2, 1); (1, 2, 1, 2); (1, 1, 2, 1, 1),
where(a1, a2, . . . , am) represents a closed walk where we start at our pointv,
traverse some edge fromv exactlya1 times, then traverse some edge from wher-
ever we ended up exactlya2 times, then traverse some edge from wherever we
are now exactlya3 times, etc. Call this collection of all possible path types of
length 6,L6. For each path type inL6, we figure out as above the number of
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ways of choosing edges etc. The only difference is that this time, the path type
(2, 2, 2) has two fundamentally different interpretations: one is where edgew1

is crossed twice, then edgew2 is crossed twice, then edgew1 is crossed twice
more (leading to a total contribution ofd(d − 1)w4

1w
2
2); the other is where edge

w1 is crossed twice, then edgew2 is crossed twice, then edgew3 is crossed
twice (leading to a contribution ofd(d − 1)(d − 2)w2

1w
2
2w

2
3). Other than this,

all the calculations are straightforward, and one finds that the sixth moment is
dσ6 + 6d(d− 1)σ4σ2 + 3d(d− 1)2σ3

2 + 2d(d− 1)(d− 2)σ3
2.

In the same fashion, one findsL8 (ie all path types of length 8) to be
(8); (6, 2); (5, 2, 1); (4, 4); (4, 2, 2); (4, 1, 2, 1); (3, 4, 1); (3, 2, 3); (3, 2, 2, 1); (3, 2, 1, 2);
(3, 1, 2, 1, 1); (2, 6); (2, 4, 2); (2, 3, 2, 1); (2, 2, 4); (2, 2, 2, 2); (2, 2, 1, 2, 1); (2, 1, 4, 1);
(2, 1, 2, 3); (2, 1, 2, 2, 1); (2, 1, 2, 1, 2); (2, 1, 1, 2, 1, 1); (1, 6, 1); (1, 4, 3); (1, 4, 2, 1);
(1, 4, 1, 2); (1, 3, 2, 1, 1); (1, 2, 5); (1, 2, 4, 1); (1, 2, 3, 2); (1, 2, 2, 3); (1, 2, 2, 2, 1);
(1, 2, 2, 1, 2); (1, 2, 1, 4); (1, 2, 1, 2, 2); (1, 2, 1, 2, 1, 1); (1, 2, 1, 1, 2, 1); (1, 1, 4, 1, 1);
(1, 1, 2, 3, 1); (1, 1, 2, 2, 1, 1); (1, 1, 2, 1, 3); (1, 1, 2, 1, 2, 1); (1, 1, 2, 1, 1, 2);
(1, 1, 1, 2, 1, 1, 1)
and the8th moment to be

dσ8 + 8d(d− 1)σ6σ2 + 6d(d− 1)σ2
4 + 16d(d− 1)2σ4σ

2
2 + 12d(d− 1)(d− 2)σ4σ

2
2 +

+ 4d(d− 1)3σ4
2 + 8d(d− 1)2(d− 2)σ4

2 + 2d(d− 1)(d− 2)(d− 3)σ4
2

(note: the author is not completely sure that all the coefficients are correct here...
although he is sure that there are no more path types inL8.)

One immediate observation is that givenk ∈ N∗, then the2kth moment is of
the form∑
(s1,s2,...,sj)∈Pk

∑
(r1,r2,...,r`)∈P(j−1)

ci · d(d− 1)r1(d− 2)r2 · · · (d− `)r`σ2s1σ2s2 · · ·σ2sj

(10)
where the outer sum runs over all partitionss1 > s2 > · · · > sj of k, the inner
sum runs over all partitionsr1 > r2 > · · · > r` of (j − 1), and theci’s are some
appropriate constants. In this study, we have yet to find a method of generating
these coefficients (beyond the trivial first coefficient, which is always 1).

What we have been able to generate, however, is the sequence of all path types.
Before we describe the method, we introduce some more notation. Define

χ2(n) =

{
0 if n ≡ 0 mod 2

1 if n ≡ 1 mod 2
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Next, given−→a ∈ (N∗)m,−→e ∈ {0, 1}m for somem ∈ N∗, define

Sk(
−→a ,−→e ) =

k∑
i=1

(−1)eiχ2(ai)

(whereai is theith entry of−→a , andei theith entry of−→e ).
Suppose we are looking atLN , whereN is even. If−→a = (a1, a2, . . . , am)

is a path type inLN , what can we say about−→a ? Clearly,
∑

ai = N . Also,
we start and end at a depth of 0. The depth does not change after anai that is
even, and the depth changes by 1 (though in which direction is less clear) after
anai which is odd. Moreover, because we are locally in a tree, ifai−1 is odd and
moving deeper, thenai must continue in that direction. Similarly, ifai−1 is even
and getting shallower, thenai must be towards the deeper part of the tree. Finally,
whenever we are at depth 0, we must move towards the deeper part of the tree on
the next step.

A more precise way of writing all this down is as follows:

Definition 3.1 (Precise Definition ofLN ).

−→a ∈ LN ⇐⇒ for somem ∈ N∗,−→a ∈ (N∗)m,
m∑

i=1

ai = N and

∃−→e ∈ {0, 1}m satisfying

(1) e1 = 0

(2) Sk(
−→a ,−→e ) = 0 =⇒ ek+1 = 0

(3) χ2(ak) = 1 andek = 0 =⇒ ek+1 = 0

(4) χ2(ak) = 0 andek = 1 =⇒ ek+1 = 0

(5) Sm(−→a ,−→e ) = 0

Conjecture 3.2(GeneratingLN ). Fix an evenN ∈ N∗. We generate the setLN

as follows:
(1) (N) ∈ LN

(2) (N − 2k, 2k) ∈ LN for all k ∈ {1, 2, . . . , bN
4
c}

(3) Suppose(a1, a2, . . . , an) ∈ LN and for somej, aj andaj+1 are even. Then
(a1, . . . , aj−1, aj+1, aj, aj+2, aj+3, . . . , an) ∈ LN .
(4) Suppose(a1, . . . , an) ∈ LN . If aj, aj+1, . . . , aj+h are all even for somej, h,
then(a1, . . . , aj−1, aj − k, aj+1, . . . , aj+i, k, aj+i+1, . . . , aj+h, . . . , an) ∈ LN , for
all k ∈ {1, 2, . . . , aj − 1} and for all i ∈ {1, 2, . . . , h}.
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ThenLn = LN .

Although the author has not proven this rigorously yet, the weaker statement
LN ⊆ LN seems quite reasonable.

Before moving on to other matters, we mention a nice way of checking our
moment calculations. Observe that McKay’s results can be viewed as being about
weighted graphs, where the weight is always 1. Thus if we setσm = 1 for all m,
our computedkth moment should collapse toθ(k) in [M] (see equation (3)).

4 Another Conjecture

We now consider a completely different question. How are the weight distribution
W(x) and the distribution of eigenvalues related? Or a narrower query: if we
assume that the moments of the distribution of eigenvalues behave like those of
some known distribution, what conditions are forced on the moments ofW(x)?
Recall that thekth moment of the semicircle is

2 · (k − 1)!!

(k + 2)!!

if k is even, and 0 ifk is odd. Since all the odd moments of our distribution are
0 as well (independently ofW(x)), it seems the semicircle is a natural choice in
examining this question.

Setting the second moment of the limiting distribution equal to that of the
semicircle, we have

dσ2 =
1

4
=⇒ σ2 =

1

4d

Setting the fourth moments equal yields (since we now knowσ2 has to be1
4d

) that

dσ4 + 2d(d− 1)σ2
2 =

1

8
=⇒ σ4 =

1

8d2

Similarly, we can subsequently find that

σ6 =
5

64d3

Note that the first three even moments of the semicircle are1
4
, 1

8
, 5

64
. The coinci-

dence is rather striking. Consequently, we state the following
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Conjecture 4.1. SupposeW(x) is a distribution whose moments satisfy

σk =

{
2 · (k−1)!!

(k+2)!!
· 1

dk/2 if k is even

0 if k is odd

Then the moments of the limiting distribution of the eigenvalues of larged-regular
graphs whose edges are weighted with random weights drawn fromW(x), are
those of the semicircle distribution.

In conclusion, there are many interesting directions research in these topics
could go. A good starting point would be to prove the unsolved assertions in this
study. Alternatively, to gain more intuition about the problem, one could write a
computer program to calculate moments using the methods outlined above. From
here, it becomes less clear where to go. It does not seem unreasonable that con-
jecture 4.1, together with the observation of equation (10), could give information
about the coefficientsci. Perhaps there is some connection between the word gen-
eration of valid path types, and word generation in some other interesting context.
It all remains to be seen.
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