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Abstract

In 1981, B. D. McKay proved some fundamental results on the limiting
distribution of eigenvalues of large random regular graphs [M]. Here we ex-
plore the analogous problem for a large random regular graph with random
weights on its edges. We also examine how the distribution of weights and
the distribution of eigenvalues are related, and put forward several conjec-
tures.

*E-mail: Igoldmak@princeton.edu



1 Review of Graph Theory

A graph is a set of points (“vertices”) connected by lines (“edges”). For the pur-
poses of this paper, we will assume there are no multiple edges (ie given two
vertices, there is always at most one edge between them) and that there are no
loops (ie there is no edge from a vertex to itself). We will further assume that
there are no directed edges (ie an edge does not indicate a direction of travel).
Here are some typical graphs:

We now introduce some terminology we will need.

A graph is said to bé-regularif every vertex meets exactlyedges. For example,
graph (b) above is 3-regular.

A pathis an orderea-tuple of vertices< vy, vo, ..., v, >sS.t.Vi € {1,...,n—1},
there is an edge betweepanduv; ;.

A closed walkis a path< vy, v, ..., v, > S.t.v; = v,.

A proper cyclés a closed walkc vy, v, ..., v,_1,v7 >S.t.Vi,j € {1,...,n—1},
V; =V = 1= j

A cycleis any closed walk: vy, v, ..., v, >Wheredl <i; <is <---<ip <n
S.t. < w;,,v,,...,v;, > IS apropercycle.

A treeis a graph containing no cycles. (see (c) above)

If G is a graph with/V vertices, we say> has sizeN, or more concisely
|G| = N.

Given a graphG of size N, we can construct an associat®dx N matrix
(theadjacency matrixas follows. Label the vertices ¢f as1,2,..., N. For all
i,7€{1,2,..., N} define

0 ifthere is no edge betweerand
“ =1 otherwise

Then the adjacency matrix is th€ x N matrix whoseij"" entry isa,;. For
example, the adjacency matrix of (b) is



01 0011
101 100
010110
01 1001
101001
100110

Note that for any graph, the adjacency matrix is real symmetric. dHegular
graphs, each row and column has precisely/s (and all the other entries are
0). Henceforth, if we refer to the eigenvalues of a graph, we really mean the
eigenvalues of the associated adjacency matrix.

1.1 Weighted Graphs

Take some graplr of size V; call its adjacency matrixl;. Choose some prob-
ability distributionW(z) (theweight distribution. For all pairsi,j s.t. 1 < i <
j < N, draw a randomw;; (the ;" weigh from our distributionW(z). We
define theweight vectorto be the collection of all the weights, in the dictionary
order, ie

_>

w = (w12,w13, <o, WIN, W23, - - ., W2N, - - - 7w(N71)N)

Note thatw hasw entries.

Foralli,js.t.1 <1i,7 < N we now define

Wi Qi if i < j
bij = § WjiQj; if 7 > j
0 if i —

Let A;w = (b;;) be theN x N matrix whosei;j™ entry isb;;. We can look at
Ag = as the adjacency matrix of the "weighted gragt’, w), ie the graphG
with weightw;; attached to the edge fronto ;.

Suppose& is ad-regular graph of sizé&/. SinceG has%l edges;w will have

at most%l nonzero entries. Thus, all the othf&?l) — %1 entries ardorcedto
be0. This turns out to be a useful property for us. Thus, we will be dealing with
d-regular graphs from now on. For brevity, define

Ry g4 ={G : Gisd-regular andG| = N}.



1.2 Moments of a Graph

We begin by recalling the standard definition of moments of a probability distrib-
utionp(x): we define thek’” moment of the distribution to be

E[z*] = /kap(x)dx

For the case of a matrix, we have a discrete distribution of eigenvalues. Sup-
poseA is anN x N matrix with N' (not necessarily distinct) eigenvalugs; 4 }.
We define a probability “measure”

pale) = - 30 5(x — Aia)

=1

where) is the Dirac delta functional. Essentially, we are putting an equal weight
(of %) on each eigenvalue. Now from definition of th& moment we have

Eulzf] = /xk,uA(x)dx
R
| X
= xk-—Z(S(:c—)\iA)dx
/R N
| X
= — 2F6(x — N\ 4)dx
v [ st =

1 N
- NzAﬁA
=1

= %TT(AIC)

If the 4" entry of theN x N matrix A is a;;, it can be easily proved by
induction that

N

N N
TT<Ak) = Z Z e Z Qiyig igig * * * Aiyiy

i1=14i9=1 ir=1
Thus we obtain the formula
N

L NN
E[z*] = N Z Z e Z iy ig Qigis * * * Wiy (1)

i1=lio=1  ix=1
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Suppose we take a weighted grajgh w), whereG € Ry, and the entries
of w are drawn from the weight distributioW. Let its adjacency matrixl =
have entried;;. Then we can use equation (1) to calculate the moments of the
distribution of eigenvalues df=, w). The first moment is trivial:

| N
== by = 0,
v

since no edge goes from a vertex to itself (hehge- 0, V7). The second moment
is only slightly more involved:

N N 1
Egwzlz?] = NZZ i = N >
i=1 j=1 1<4,j<N
N
= — ) b;+2 b?
vy 5 )
2 2
= N wz’j

1<i<j<N

where the subscripts diindicate dependence. Denote th& moment ofW by
om. Recall that the assumption th@tis d-regular forces all busQ—d of the entries
of w to be0. Thus, averaging all possibig’s yields

%
2
Bole’] = [ | 52w
=1
Nd
2 & 9
= — w; W (x)dx
NZ/ (@)
Nd
2 2
SN

= dO'Q
which is independent ai (and evenV). So in fact we can write
E[z?] = doy (2)

Before proceeding to more moment calculations, we pause to develop the the-
ory a little further.



2 Some Theory

2.1 McKay’'s Paper

In this section we highlight a few results contained in McKay's paper (keeping the
enumerations the same as those in [M], though slightly modifying his notation).

Lemma 2.1
GivenG ad-regular graph. Fix a vertex in G, and suppose that for some= N
the subgraph ofr induced by all vertices at most a distance-¢? away fromu,
contains no cycles. Then there are exaétly) closed walks of length starting
atv,, where

i r\r—2k e
o(r) = d;<k) ——(d—1)" ifriseven 3)

0 if  is odd

Lemma 2.3

Given a collection G, } of d-regular graphs such that:

(i) |Gi| — oo asi — oo; and

(i) Vk > 3, CTC(;G‘) — 0 asi — oo, whereCy(G) denotes the number étcycles
in a graphG.

Further, define

_ #{X: A< zandis an eigenvalue ¢}

F(G,z
(G, x) el
ThenVr > 0,
/:L”"dF(Gi, x) — 6(r) asi — oo 4)
Theorem 1.1
Given a sequence dfregular graphgG,}, s.t.|G;| — oo asi — oo. Define
0 if 2 < —-2+/d—1

F(z) = / dv4(d;1);“2du if || < 2v/d—1 (5)
—oyaT 2m(d? —u?)

1 if 2 >2vd—1



ThenS 5l — 0k > 3iff F(G,x) — F(x) Va.

Recall thatRy 4 is the set of alli-regular graphs otV vertices.
Lemma 4.1
Vk > 3, the average number éfcycles in the members dty 4 is

d—1)*
ok

Ck,N,d — asN — o (6)

Theorem 4.2
Let Fiy 4(z) be the average af (G, z) over allG € Ry 4. ThenFy 4(x) — F(x)
asN — oo, for everyz.

2.2 More Results

We now use the results from [M] to prove a few of our own. But first, a bit more
notation.

LetComr = . birigbisis - - - birir, Where the sum s over all cyclesiy, i, . . . , iy, i1 >.
LetTo wr = S bi iy Dy -+ bi,i,,» where the sum is over all closed walks
<'iy,1s,...,1x, 11 > Which are not cycles. Thus from equation (1) we have
1 1
k
Eqw[z"] = NCG,E’,k: + NTG,E’,I@ (7)
since any closed walk i, i»,...,1,1; > IS either a cycle or not.

Theorem 2.1. For any fixedk > 3,

) 1
]\}l_l}’éo NEN,d[CG,E’,k] =0
where we uséfy ; to signify that we average over alf € Ry, and over all
possiblew (our weight distributioriW is assumed to be fixed).

Proof. Fix someG € Ryq4, and choose some weight vectar. All but %l
of the entries ofw/ must be0; label those weights which aren't necessafily
{wi,ws,...,ws} (Wheres = 22).



Choose someé-cycle inG; it traverses some of these weighted edges, so its
contribution iswi*wsy? - - - wls, wherer; > 0 and _ r; = k (r; represents the num-
ber of times total ouk-cycle has traversed the edge with weigh}. Averaging
over w, we have that the expected contribution df-aycle is thus

Elwi - wg] = Efwy']---Elwg]
— 0-7”1 0-7”2 “ e O—’f‘s
— 0.?10.32 - O-(sls

where they;’s satisfy«; > 0, > ia; = k. The latter condition implies that
Qpy1 = Qg =+ =y =0

So in fact,

Efw]' - w}] = of" - o

where .
a; Z 0, ZZO&Z =k
=1

Let M = max{o® ---0™ : a; > 0,3F iy = k}. Note thatM depends
only {o;} andk; in particular, it does not depend avi. We highlight this fact
by writing M = M (W, k). DefineC¢ 4 to be the total number df-cycles inG.
Then

1 1 1
—EnalComil = = E —E=[Ch—
N N,d[ G,w,k] |RN,d| (N w[ G,w,k])

GGRN’d

1 1
< Bl > (NCG,kM(Wak))

GERN’d

MW, k) 1
_ ) C
N | Bl 2 Cau

GERN@
M(W, k)
= —xN Ci,Nd
which tends td) as NV tends to infinity, by Lemma 4.1 of McKay (see equation (6)
above), as well as by the fact that(W, k) does not depend oN'. O
Corollary 2.2.
]\}i_{noo Enalz"] = ]\}l_fgo NEN,d 16w k] 8)



Proof. This follows directly from Theorem 2.1 and equation (7). O

Corollary 2.3. Whenevek is odd,

A}Lmoo Eng [fk] =0 9)
Proof. It is well-known that all closed walks of odd length are cycles. Thus for
oddk, T¢; w . = 0; we conclude by Corollary 2.2. ]

3 Higher Moments

3.1 The Fourth Moment

Now we know (by corollary 2.3) that we need not bother with the odd moments.
The problem of finding even moments is simplified (since we only need to con-
siderd-regular graphs which are locally trees, by corollary 2.2). To gain intuition,
we begin by explicitly calculating th€"” moment.

Choose some arbitrary vertexf ad-regular grapltz, and assume that locally
G is atree (ie the subgraph induced by all those verticéswhose distance from
v is less thant, contains no cycles. Thus we may views being at deptld, all
those vertices directly adjacent toto be at depthl, all those vertices directly
adjacent to a vertex of depthto be at deptl2, etc. We must count the number
of closed walks starting (and ending):atof length4. We begin by choosing an
edge fromw - this will be the first edge we will traverse. Clearly, we can traverse
it at most 4 times. If we traverse it exactly 4 times, we finish our walk, ato
such a walk is possible. What if we traverse our first edge exactly 3 times? Then
we're stuck: we have only one more move (since the total length of the walk is
4), and we’re 1 away from. To return tov in time, we would have to go back up
the same edge we just traversed 3 times. But this contradicts our assumption that
we begin by traversing this first edge exactly 3 times. So no legal path begins by
crossing some edge exactly 3 times.

What about twice? If we begin our walk by crossing our first edge exactly
twice, then we're back at, and have 2 more moves. We cannot go back along
that first edge - that would contradict that we begin by crossing it exactly twice -
but we can take any other of the remain{ag- 1) edges extending from In fact,
after choosing this second edge, we are forced to traverse it exactly twice. Finally,
what if we begin by crossing our first edge exactly once? We have three moves
left, and we are at depth 1 in a tree (locally). We cannot go back along the edge
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we just crossed, so we must continue getting deeper into the tree. Choose an edge
extending from the vertex where we are (other than the edge we just came down).
This will be our second edge. We can traverse it at most three times - but that
would leave us at depth 2, with no more moves. If we traverse it twice however,
we could then take our first edge back upstahus making a legal closed walk.

The reader may check that if we traverse the second edge exactly once, there is no
way to get back ta in time.

Thus, there are three different types of paths: one in which we cross the first
edge exactly 4 times; one in which we cross the first edge exactly twice, and then
a different edge exactly twice; and one in which we traverse the first edge exactly
once, a distinct second edge exactly twice, and the original edge once more. We
represent these possibilities more succinctly as (respectivély): (2,2); and
(1,2,1). Now we count how many of each such path there can be. For paths of
the type(4), for the first edge we havé choices (sinc&r € Ry, ). Once we
choose one of these edges, say it has weigl8o the total contribution ig - w*.

For a walk of type(2,2), say the first edge has weight, and the second has
weight w,. We can choose the first ith ways, and the second h— 1 ways.
So altogether the contribution i&d — 1)w?w3. Finally, the contribution from
paths of the typé1,2,1) is alsod(d — 1)w?w3. Averaging oveiW yields a total
contribution of

doy + d(d — 1)o905 + d(d — 1)og05 = doy + 2d(d — 1)0o3

whereo,, is them! moment ofV.

This is for one of theV verticesv. Thus by corollary 2.2, we obtain (after
cancelling theV’s) that the4’* moment of the limiting distribution of eigenvalues
of a large randona-regular graph iglo, + 2d(d — 1)o3.

3.2 Higher Moments

Using similar reasoning, we can find all possible path types of length 6. They are:
(6);(4,2);(3,2,1);(2,4);(2,2,2);(2,1,2,1);

(1,4,1);(1,2,3);(1,2,2,1);(1,2,1,2); (1,1,2,1, 1),

where (a1, ao, ..., a,,) represents a closed walk where we start at our paint
traverse some edge fromexactlya, times, then traverse some edge from wher-
ever we ended up exacthy times, then traverse some edge from wherever we
are now exactlyus times, etc. Call this collection of all possible path types of
length 6,L¢. For each path type ifg, we figure out as above the number of
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ways of choosing edges etc. The only difference is that this time, the path type
(2,2,2) has two fundamentally different interpretations: one is where edge
is crossed twice, then edge, is crossed twice, then edge is crossed twice
more (leading to a total contribution afd — 1)w{w3); the other is where edge
wy IS crossed twice, then edge, is crossed twice, then edge; is crossed
twice (leading to a contribution of(d — 1)(d — 2)w}w3w2). Other than this,
all the calculations are straightforward, and one finds that the sixth moment is
dog + 6d(d — 1)o409 + 3d(d — 1)%03 + 2d(d — 1)(d — 2)75.

In the same fashion, one finds (ie all path types of length 8) to be

(8):(6,2): (5,2,1); (4,4); (4,2,2); (4,1,2,1):(3,4,1); (3,2,3); (3,2,2,1); (3,2,1,2);
(3,1,2,1,1),(2 6);(2,4,2):(2,3,2,1):(2,2,4);(2,2,2,2); (2,2, 1,2, 1),(2,1,4,1),
(2,1,2,3);(2,1,2,2,1);(2,1,2,1,2);(2,1,1,2,1,1);(1,6,1),(1,4, 3);(1,4,2,1);
(1,4,1,2);(1,3,2,1,1); (1,2,5): (1,2,4,1); (1,2,3,2); (1,2,2,3); (1,2,2,2,1);
(1,2,2,1,2); (1,2,1,4); (1,2,1,2,2): (1,2,1,2,1,1): (1,2,1,1,2,1); (1,1,4,1,1);
(1,1,2,3,1):(1,1,2,2,1,1);(1,1,2,1,3); (1,1,2,1,2,1): (1,1,2,1,1,2);
(1,1,1,2,1,1,1)

and thes** moment to be

dog + 8d(d —1)osoy + 6d(d — 1)o? + 16d(d — 1)*0402 +12d(d — 1)(d — 2)0402 +
+ 4d(d — 1)%05 4+ 8d(d — 1)*(d — 2)o5 + 2d(d — 1)(d — 2)(d — 3)o}

(note: the author is not completely sure that all the coefficients are correct here...
although he is sure that there are no more path typ€s.in

One immediate observation is that givere N*, then the2k** moment is of
the form

> > ¢ d(d—1)"(d —2)"2 - (d — £) 0o, Tag, -+~ Oa,

(51,852,585 ) EPg (r1,r2,.,me) EP(j—1)
(10)
where the outer sum runs over all partitions> s, > --- > s; of k, the inner
sum runs over all partitions, > ry > --- > r, of (j — 1), and thec;’s are some
appropriate constants. In this study, we have yet to find a method of generating
these coefficients (beyond the trivial first coefficient, which is always 1).
What we have been able to generate, however, is the sequence of all path types.

Before we describe the method, we introduce some more notation. Define

(n) 0 ifn=0 mod?2
n)=
X2 1 fn=1 mod?2
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Next, givena € (N*)™ ¢ € {0,1}™ for somem € N*, define

k

SU(@. ) = (1) xala)

i=1

(whereq, is theit” entry of @, ande; thei™* entry of ¢).

Suppose we are looking @y, whereN is even. If @ = (ay,as,...,an)
is a path type inCy, what can we say about ? Clearly,> a; = N. Also,
we start and end at a depth of 0. The depth does not change afieittzet is
even, and the depth changes by 1 (though in which direction is less clear) after
ana; which is odd. Moreover, because we are locally in a tree, if is odd and
moving deeper, then; must continue in that direction. Similarly, if_; is even
and getting shallower, ther) must be towards the deeper part of the tree. Finally,
whenever we are at depth 0, we must move towards the deeper part of the tree on
the next step.

A more precise way of writing all this down is as follows:

Definition 3.1 (Precise Definition oL ).

m
@ eLly <= forsomene N, @ € (N)" ) q =N and
=1

3¢ € {0,1}™ satisfying

2
(1) e =0
(2) Si(d,€)=0=e1=0
(3)  xelax) =lande, =0= €441 =0
(4)  xo(ax) =0andey =1 = €;1 =0
(5) Sp(a,€)=

Conjecture 3.2(GeneratingCy). Fix an evenV € N*. We generate the séty
as follows:

(1) (N) € Ly

(2) (N — 2k,2k) € Ly forall k € {1,2,..., [§]}

(3) Suppos€ay, as, ... ,a,) € Ly and for somej, a; anda;, are even. Then

(ah s o1, Qg 1, Ay Qg2 A543, - - 7an> S LN
(4) Suppos€ay, . ..,a,) € Ly. If aj,aj41,...,a;4, are all even for somg, h,
then(al, cey A1, Q5 — k, Qjg1s ey Qjtis k, Ajtitly vy Qjthy--- ,Cln) € Ly, for

all ke {1,2,...,a; —1}andforalli € {1,2,... h}.

12



ThenL,, = Ly.

Although the author has not proven this rigorously yet, the weaker statement
Ly C Ly seems quite reasonable.

Before moving on to other matters, we mention a nice way of checking our
moment calculations. Observe that McKay'’s results can be viewed as being about
weighted graphs, where the weight is always 1. Thus if werget 1 for all m,
our computed:*® moment should collapse tfk) in [M] (see equation (3)).

4  Another Conjecture

We now consider a completely different question. How are the weight distribution
W(z) and the distribution of eigenvalues related? Or a narrower query: if we
assume that the moments of the distribution of eigenvalues behave like those of
some known distribution, what conditions are forced on the momentg(af)?
Recall that the:** moment of the semicircle is

(k— 1!

(k + 2)!

if k£ is even, and O i% is odd. Since all the odd moments of our distribution are
0 as well (independently dfV(x)), it seems the semicircle is a natural choice in
examining this question.

Setting the second moment of the limiting distribution equal to that of the

semicircle, we have

; 1 1
09 = — = 09 = —
27y 27 4d

Setting the fourth moments equal yields (since we now kagWwas to bQ}d) that

1 1
doy +2d(d = 1)o3 = S = 01 =

Similarly, we can subsequently find that

5
0 = —=
6™ 6443

Note that the first three even moments of the semicirclelate?;. The coinci-
dence is rather striking. Consequently, we state the following
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Conjecture 4.1. SupposéV (z) is a distribution whose moments satisfy

. 2 4y 7= ifkiseven
0 if £ is odd

Then the moments of the limiting distribution of the eigenvalues of targgular

graphs whose edges are weighted with random weights drawnWgm), are

those of the semicircle distribution.

In conclusion, there are many interesting directions research in these topics
could go. A good starting point would be to prove the unsolved assertions in this
study. Alternatively, to gain more intuition about the problem, one could write a
computer program to calculate moments using the methods outlined above. From
here, it becomes less clear where to go. It does not seem unreasonable that con-
jecture 4.1, together with the observation of equation (10), could give information
about the coefficients. Perhaps there is some connection between the word gen-
eration of valid path types, and word generation in some other interesting context.
It all remains to be seen.
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