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Abstract

Our goal is to describe the distributions of the zeros of Z ′(U, z),
where Z(U, z) is the characteristic polynomial of a random unitary
matrix U .
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1 Introduction

In this paper we will investigate the distribution of the complex roots of

Z ′(U, z) =
d

dz
det(U − zI) =

d

dz

N
∏

i=1

(z − zi)

where U is a random N×N unitary matrix in the Circular Unitary Ensemble
(CUE) and Z(U, z) is its characteristic polynomial. One of the reasons for
our study is that the distribution of the roots of Z ′(U, z) inside the unit circle
is a model of the distribution of the roots of ζ ′(s) on the right of the crit-
ical line Re(z) = 1/2, where ζ(s) =

∑∞
n=1 1/ns is the Riemann Zeta function.

U is an unitary matrix if and only if UU ∗ = I, where U∗ is U ’s complex
conjugate matrix and I is the identity matrix. All the eigenvalues of U lie on
the unit circle. The characteristic polynomial Z(U, z) of U is the polynomial
whose roots are the eigenvalues of U .

The Unitary Group is the group of all N×N matrices. A random unitary
matrix is a matrix chosen from the Unitary Group with the unique measure
that is rotation invariant, called Haar measure. (For a more detailed preview
of Random Matrix Theory and the Riemann Zeta function, the reader should
refer to, for example, [1]).
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Figure 1: Zeros of Z(U, z) and Z ′(U, z) of a 20 × 20 and a 60 × 60 random
unitary matrix.

Figure 1 is the plot of the roots of the characteristic polynomial Z(U, z)
of a unitary matrix U , and the plot of the roots of Z ′(U, z). The roots of
Z(U, z), or the eigenvalues of U , lie on the unit circle. Figure 1 shows that
all the roots of Z ′(U, z) lie inside the unit circle. This fact can be easily
explained by a classical theorem by Gauss, which says that all the roots
of the derivative of a polynomial lie in the convex hull of the roots of the
polynomial. Since all the roots z1, z2, . . . , zN of Z(U, z) lie on the unit circle,
all the roots of Z ′(U, z) lie inside the circle.

Throughout this paper, unless otherwise defined, z1, . . . , zN will be roots
of Z(U, z) (and also the eigenvalues of U); z′

1, . . . , z
′
N−1 will be the roots of

Z ′(U, z); z′ will be a generic root of Z ′(U, z).
In section 2, we are going to study some properties of the coefficients of

Z(U, z), which will help us in section 3 to investigate a connection among the
distribution of the roots of Z ′(U, z), the eigenvalues of U and the coefficients
of Z(U, z). A relationship between the distribution of (z′)s and the eigenval-
ues of U will be further investigated in section 4. In section 5, we are going
to directly study the distribution of (z′)s and see an interesting behavior of
it. Finally, in section 6, we are going to look at the big picture of various
types of distribution of the eigenvalues of a unitary matrix on the unit circle,
other than the distribution in random unitary matrices.
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2 Coefficients of Z(U, z)

When studying any polynomial, it is important to look at its coefficients. For
the characteristic polynomial of an unitary matrix, there is an interesting fact
about its coefficients.

Property 2.1. Let Z(U, z) = zN + a1z
N−1 + · · · + aN , then

aN−k = (−1)N det(U) ak. (2.1)

(For convenience, we will always choose the first coefficient a0 in Z(U, z) to
be 1.)

Corollary 2.2.
|aN−k| = |ak|, ∀k = 0, . . . , N (2.2)

(Note that this result applies to any polynomial P (z) all whose roots lie on
the unit circle.)

Proof.

Z(U, z) = zN + a1z
N−1 + · · ·+ aN−1z + aN

= (z − z1)(z − z2) · · · (z − zN ).

Denote M = {1, 2, . . . , N}.
Expanding the product and equating the coefficients yields:

aN = (−1)N
N
∏

i=1

zi = (−1)N det(U)
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And for all k = 1, 2, . . . , N − 1:

aN−k = (−1)N−k
∑

B⊂M
|B|=N−k

∏

i∈B

zi

= (−1)N−k(z1z2 · · · zN )
∑

B⊂M
|B|=N−k

∏

i∈Bc

1

zi

= (−1)N−k det(U)
∑

B⊂M
|B|=N−k

∏

i∈Bc

1

zi

= (−1)N−k det(U)
∑

A⊂M
|A|=k

∏

i∈A

1

zi

= (−1)N−k det(U)
∑

A⊂M
|A|=k

∏

i∈A

zi

|z2
i |

= (−1)N−k det(U)
∑

A⊂M
|A|=k

∏

i∈A

zi

= (−1)N−k det(U)
∑

A⊂M
|A|=k

∏

i∈A

zi

= (−1)N−k det(U)(−1)kak

= (−1)N det(U)ak.

By applying the absolute value function to all the manipulations above, one
will have a proof for |aN−k| = |ak|, where a0, a1, . . . , aN are the coefficients
of any polynomial all whose zeros are on the unit circle.

This palindromic symmetry among |ak|s will help us prove a property of
the roots of Z ′(U, z) in the coming section.

3 Connections between ajs, z′js and zjs

There is certainly a relationship between the distribution of the roots of
Z(U, z) and the values of ais. (When we change the root(s) of a polynomial,
its coefficients must change as well.) On the other hand, there is a strong
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relationship between the distribution of the roots of Z(U, z) and the distri-
bution of the roots of Z ′(U, z) (Using Dyson’s electrostatic model, one can
think of the roots of Z(U, z) as N unit charges on the unit circle, then there
is an electric field at any point inside the circle. Then z′ is a root of Z ′(U, z)
if and only if the electric field vanishes at z′, i.e.:

E(z′) =

N
∑

j=1

1

z′ − e−iθj
= 0.

(For more details on Dyson’s electrostatic model, see, for example, [3].))
Thus, we expect a bridged connection between the distribution of the roots
of Z ′(U, z) and the values of ais. We describe the relationship among ais, zs
and (z′)s below.

Proposition 3.1. The three following statements are equivalent:
(1) All the roots of Z ′(U, z) have absolute value 0.
(2) The roots of Z(U, z) are equally distributed on the unit circle.
(3) a1 = a2 = · · · = aN−1 = 0, in other words, Z(U, z) = zN + aN , where
|aN | = 1.

Proof. Denote the roots of Z(U, z) by eiθ1 , . . . , eiθN , where 0 ≤ θ1 ≤ θ2 ≤
· · · ≤ θN ≤ 2π. Without loss of generality, assume θ1 = 0 (if θ1 6= 0 we can
“rotate” all the roots of Z(U, z) on the unit circle an angle of −θ1.)

The fact that (1) ⇔ (3) is easy and can be omitted.
Proof of (2) ⇔ (3):

Suppose (2) is true, i.e. θi = 2(i−1)π
N

, for all i = 1, . . . , N . Consider
polynomial Q(z) = zN + (−1)Nei(θ1+···+θN ) = zN + (−1)Nei(N−1)π . Then it is
trivial Q(z) and Z(U, z) have the same zeros eiθ1, . . . , eiθN . They also have
the same coefficient for zN . Therefore they are identical. So (3) is true, as
desired.

Now suppose (3) is true. Let θ be a real number such that 0 ≤ θ < 2π

and θ = log((−1)N aN )
iN

. Then Z(U, z) = zN + (−1)NeiNθ. One can check that
eikθ is a root of Z for any k = 0, 1, . . . , N − 1. So e0, eiθ, . . . , e(N−1)θ are all
the N roots of Z, in other words, (2) is true.

Proposition 3.2. (Expansion of proposition 3.1)
The two following statements are equivalent:
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(i) All the roots of Z ′(U, z) are bounded by a circle centered at the origin with
a small radius r < 1.
(ii) |a1|, |a2|, . . . , |aN−1| < ε, where ε = rN/2

(

N
[N/2]

)

.

Proof. (Brief ) Suppose all the roots of Z ′(U, z) are inside a circle of radius
r < 1 centered at the origin, i.e.: |z′

1|, |z′2|, ..., |z′N−1| < r < 1. Then one can
prove |ai| ≤ ε for i = 1, · · · , N − 1, where ε is defined as follow:

ε = rN/2

(

N

[N/2]

)

. (3.1)

Conversely, now suppose |ai| ≤ ε for i = 1, · · · , N − 1 where ε is some
positive number, then it can be proven that |z′| < r for all zero z′ of P ′,
where r is defined as follow:

r = (
(N − 1)ε

2
)

1
N−1 (3.2)

(For a detailed proof, see Appendix A1.)

Let us analyze formulae (3.1) and (3.2).
In (3.1), by using Sterling’s formula (N ! ≈ NNe−N

√
2πN), ε can be

approximated as follow:

ε = rN/2

(

N

[N/2]

)

≈ 2
√

N

π
(2
√

r)N , (3.3)

as N → ∞. If r does not exceed 1/4, (2
√

r) will be less than 1, and therefore
ε will be small.

In (3.2), when N is large, (n−1
2

)1/(n−1) is roughly 1, thus r is roughly
ε1/(n−1). More rigorously, limn→∞ r = 1, no matter how small ε is. One
might think that r is not a good upper bound for |z′|, since even when all the
coefficients of Z(U, z) have very small absolute values, r is no where near 0. In
fact, however, it is no contradiction. Z0(z) = (x−eiπ/10)(1+x+x2+· · ·+x49)
is a numerical example. The absolute values of the coefficients of Z0(z)
are small, and all its roots are equally distributed except for the first root
z1 = eiπ/10. (See figure below.)
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Figure 2a: |aj|s of Z0 Figure 2b: Roots of Z0(z) and Z ′
0(z)

On the other hand, from properties 3.1 and 3.2, it is natural to conjecture
that (i) “All the roots of Z ′(U, z) are bounded by a circle centered at the
origin with radius r < 1” and (ii) “|a1|, · · · , |aN−1| < ε” in property 3.2
are equivalent to a new statement: (iii) “the roots of Z(U, z) are on average
nearly equally distributed.”

To make (iii) rigorous, we need a function to measure how equally dis-
tributed the roots of Z(U, z) are. A candidate for such a function is:

δ(θ) =
N
∏

j=2

(θj − θ1 −
(j − 1)2π

n
)2 (3.4)

where 0 ≤ θ1 < θ2 < · · · < θN < 2π are again the eigenphases of U . If we
rotate the coordinate axes so that θ1 = 0, then δ(θ) has a simpler form:

δ(θ) =

N
∏

j=2

(θj −
(j − 1)2π

n
)2 (3.5)

So the roots of Z(U, z) are on average more equally distributed on the unit
circle when δ(θ) is smaller. Then we can qualitatively state our conjecture:

Conjecture 3.3. The following three statements are equivalent:
(i) All the roots of Z ′(U, z) are bounded by a circle centered at the origin with
a small radius r < 1.
(ii) |a1|, |a2|, . . . , |an−1| < ε, where ε is a small upper bound.
(iii) δ(θ) < ε′, where ε′ is a small upper bound.
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We already know two formulas relating the magnitudes of r in (i) and ε
in (ii) by (3.1) and (3.2). However, we have not compared the magnitude of
the average value of the roots of Z ′(U, z) in (i) and δ(θ). This is important in
predicting the distribution of the roots of Z ′(U, z), but it seems to be a hard
task. We will deal with some special cases of the task in the next section.

4 Equality in Distribution of zs

As mentioned in section 3.1, if the roots of Z(U, z) are equally distributed
on the unit circle, then all the roots of Z ′(U, z) will be at the origin. We are
going to investigate the behavior of the roots of Z ′(U, z) when the roots of
Z(U, z) are a little bit off equal distribution.

State 1: z1, z2, . . . , zN are equally distributed: zj = ei
(j−1)2π

N , for all
j = 1, 2, . . . , N . Then z′1 = · · · = z′N−1 = 0.

State 2: z1 is perturbed by an angle of ∆(θ): z1 = ei∆(θ) (before, z1 =
ei0). Surprisingly, the roots of Z ′(U, z) explode away from the origin and
form nearly a circle. (It seems like having all the z ′

js at the origin is a very
weak “equilibrium”)

State 3: z1 is perturbed a little bit more in the same direction (counter-
clockwise). z′1, z

′
2, . . . , z

′
N−1 slowed down and move sluggishly after the explo-

sion.
State 4: z1 is even more perturbed until it coincides with z2. Then

Z(U, z) = (z−z2)
2(z−z3) · · · (z−zN ). Therefore z2 is also a root of Z ′(U, z).

(See figure 3 for state 1 to 4 when N = 20.)
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Figure 3: State 1 to 4

If we keep perturbing z′1 counter-clockwise until it comes back to its origi-
nal location at State 1, z′

js will travel a long the edge of a “(N-1)-petal flower”
as in figure 4. By the same reason used in State 4, it is explained that the
“petals” touch the circle at the locations of z2, z3, . . . , zN . (See figure below.)
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Figure 4: Traces of z′0, . . . , z
′
N−1 as z1 is perturbed continuously by

∆(θ) = 0.5 rad

In figure 4, the center is empty because of the explosion near the origin.
The inability of the snapshots at intervals of 0.5 rad (or even 0.01) implies
the z′js explode away from the origin very fast.

The most interesting fact is that z′
js always seem to form a circle whose

center is a little bit away from the origin (see figure 3). After some calcula-
tions, it turns out that if z1 is perturbed by an angle of ∆(θ1), then the radius

r of that “circle” is of order
(

∆(θ1)
N

)1/(N−1)

. (In terms of the function δ(θ)

that measures the equality in distribution of z′
js mentioned in the previous

section, r is of order
(

δ(θ)
N

)1/(N−1)

).So when N is large, dr
dθ1

|θ1=0 is very large,

which means that r changes very fast when z1 = eiθ1 is perturbed from its
original location at z1 = 1. This explains the “explosion”.

The distributions of the eigenvalues of U in the states we just looked at
are very special. When U is a unitary matrix randomly chosen from the
Circular Unitary Ensemble, its eigenvalues are very rarely so nearly equally
distributed (i.e. δ(θ) is usually not very small). However, the “explosion”
is an interesting observation and it indicates a general fact that the roots of
Z ′(U, z) are usually not very close to the origin. As we saw in figure 1, the
majority of z′js are in the proximity of the unit circle when N is big. We are
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going to investigate the distribution of z′
js further in section 5.

5 Distribution of z′ and The Local Maximum

Conjecture

As explained in the introduction, all the roots of Z ′(U, z) lie inside the convex
hull of the eigenvalues of Z(U, z), and therefore lie inside the unit circle. One
can see that when N is large, the majority of roots of Z ′(U, z) concentrates
in a small region in proximity of the unit circle. Besides, as N increases,
(z′)s are more likely to be near the unit circle. (See figure 1.) These two
observations can be explained by a fact, which will soon be heuristically
proved, that the distance between the majority of (z ′)s and the unit circle is
of size 1/N . Therefore as N grows, we see more (z ′)s near the unit circle.

There is a stronger but less obvious fact saying that the majority of roots
of Z ′(U, z) lie in an annulus in the proximity of the unit circle.

It is hard to observe this fact by looking at the image of many (z ′)s plotted
together. When N is small, the annulus, if exists, is still not yet fully formed;
only the inner circle can be seen. (See figure 6a and 6b.) When N is large,
the majority of (z′)s has a distance of size 1/N from the unit circle, which is
very small. It is hard to see the details of their behavior from a picture like
6a or 6b when all the points are so close to the unit circle.
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Figure 6a and 6b: Roots of Z ′(U, z) of 4000 5× 5 and 10× 10 matrices.

There is a way to avoid the problem of sizes of N by rescaling the distance
from z′ to the unit circle. The distance 1−|z′| can be rescaled by N , because
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as said above, 1−|z′| is of size 1/N , so N(1−|z′|) is of size 1. In short, N(1−
|z′|) is independent of N . Below are histograms of the rescaled distances
N(1−|z′|) in the same 4000 5×5 and 4000 10×10 random unitary matrices
used in figure 6a and 6b. Figure 7a and 7b are histograms of N(1 − |z ′|) in
50 × 50 and 300 × 300 random unitary matrices. On the horizontal axes, x
stands for the rescaled distance.
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Figure 7a and 7b: Histogram of N(1 − |z′|) from 4000 5 × 5 and
10 × 10 matrices.
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Figure 8: Histogram of N(1 − |z′|) from 2000 50 × 50 matrices and
from 100 300 × 300 matrices.

The above histograms are composed of many thin bins, the area of each
represents the fraction of all the (z′)s such that the N(1−|z′|) lie in the same
interval as the base of the bin. Therefore the area of each bin is like PDF(t)dt,
where PDF(t) is the Probability Density Function of N(1 − |z ′|). Therefore
the histogram is a representation of the probability density function as long
as the sample size (the number of generated (z′)s) is large.
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As seen in figure 7 and 8, when x is near 0, the PDF is small (so there
are few (z′)s very close to the unit circle) but increases rapidly like

√
x times

some constant. There are two peaks/local maxima in the PDF of the rescaled
distance; the first is at roughly 1 and the second is at roughly 2.2 in figure
7a, 2.5 in 7b, 2.8 in 8a and 2.9 in 8b. (For small N , the first peak at x ≈ 1
is not fully formed yet. For example, in figure 7a only the second peak is
visible. It corresponds to the thick region of (z′)s near the circle centered at
the origin, with radius 1 − 1/5, in figure 6a.)

The region between the two peaks contains most the area under the PDF
curve, and therefore corresponds to an annulus, in which the majority of (z ′)s
lie. The two peaks correspond to the inner and outer circles. The radii of
these circle are 1 − x/N , where x is the location of the corresponding peak
in the histogram, which is very small compared to N . Therefore, 1 minus
any of the two radii is roughly of order 1/N . (We do not know for sure if 1
minus one of the radii is exactly of order 1/N . In fact, the location x2 of the
second peak is shifting to the right at a very slow speed with respect to the
change in N . x2 can be a function of N , like log(log(N)), which grows very
slowly, and can be substituted by 1 in our approximation.)

The PDF decreases rapidly as x exceeds the location x2 of the second
peak. The decrease tells us there are few (z′)s at distance longer than 1−x2/N
from the unit circle.

Property 5.1. For large N , the majority of the roots of Z ′(U, z) lies in an
annulus, whose inner and outer circles are of distance of order approximately
1/N away from the unit circle.

The existence of such an annulus says that there are few (z ′)s with very
small or large rescaled distance from (z′)s to the unit circle. One explanation
for this behavior of (z′)s stems from the following observation: If the rescaled
spacing1 between two consecutive roots zj and zj+1 of Z(U, z) (or any poly-
nomial with roots on the unit circle) is small, then there is usually a root
of Z ′(U, z) near the midpoint (zj + zj+1)/2. In figure 5, it appears that the
distance from the midpoint has a monotonic relationship with the neighbor
spacing. The distance is longer when the spacing is larger, and the distance
is smaller when the spacing is smaller.

1The rescale constant for the (nearest) neighbor spacing is N
2π . After being rescaled,

the average spacing is 1, independent of N
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Figure 5: Roots of Z(U, z) and Z ′(U, z) of a 60 × 60 unitary matrix.

The neighbor spacings of eigenphases in random unitary matrices are
usually neither very small nor very big. (The distribution of the neighbor
spacings between the eigenphases/eigenvalues will be studied in section 6.
See Figure 9 for an illustration of the probability density function in this dis-
tribution.) Assuming the monotonic relationship between a neighbor spacing
and the corresponding distance from the midpoint, then the distances from
a z′ to the midpoint nearest to it is neither too small nor too big.

Let d be the distance from a z′ to the unit circle, t be the distance from
z′ to its nearest midpoint (eiθj+1 + eiθj )/2), and ε be the distance from the
midpoint to the unit circle. Then d ≈ t + ε. By simple geometry, one can
see ε is roughly (θj+1 − θj)

2/8, which is of size 1/N 2. On the other hand, for
(z′)s near the unit circle and for large N , t is of size 1/N (see Appendix A2
for a heuristic proof). Thus, d ≈ t. This also explains why d is of size 1/N ,
as stated in the beginning of this section.

Since t is neither too small nor too large and d ≈ t, d is also neither too
small nor too large. In other words, there are very few (z ′)s extremely close
to the unit circle, and also very few too far away from the unit circle. Thus,
(z′)s must be concentrated in an annulus near the unit circle.

The interesting thing is that the maximum concentration is at the inner
and the outer circles, not at somewhere inside the annulus. The existence of
the two peaks (two local maxima) instead of a single peak in the PDF of the
rescaled distance is surprising.

As N increases continuously, the second peak (the one farther to the right)
gradually gets shorter and sluggishly shifts to the right. These changes can be
seen in figure 7 and 8. We guess this peak will vanish eventually as N → ∞,
leaving the graph of the PDF a nice curve with only one peak.

However, up until the time this paper was written, no one has known the
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truth about the behaviors of the distribution of the rescaled distance. Even
though there have been good approximations of the PDF of the rescaled
distance x when x → 0 and x → ∞,2 but there is no such approximation
when x is neither too small nor too big. The only thing we know for sure is
the existence of at least one local maximum, since the PDF increases as x is
small and then decreases as x → ∞ and the PDF is continuous all along the
real line. We conjecture that there is only one peak in the asymptotic case
and at least two peaks in the finite case.

Conjecture 5.2. (The Local Maximum Conjecture)
For a finite N > 10, there are two major local maxima of the PDF of the
rescaled distance N(1 − |z′|).
The leftmost maximum is at x ≈ 1. The rightmost maximum gets shorter and
shifts to the right as N increases; it will vanish when N → ∞. Accordingly,
there exists only one local maximum at x ≈ 1 when N → ∞.

6 Various Distributions of the Neighbor Spac-

ings

The distribution of (z′)s is strictly connected to the distribution of the eigen-
values on the unit circle, since given N roots of Z(U, z), the locations of
N − 1 roots of Z ′(U, z) are defined3. In the previous section, we already
used the fact that - any pair of consecutive eigenvalues of U do not like to
be too close or too far from each other - to heuristically explain why there
are very few (z′)s too close or too far from the unit circle. In this section,
we are going to further investigate the connection between the distribution
of eigenvalues/eigenphases and the distribution of z ′.

The PDF in the distribution of the rescaled neighbor spacings between the
eigenphases of unitary matrices (which is N

2π
|θj+1 − θj|) behaves like t2e−t2 .

In our random unitary matrix case, the PDF f(t) is well approximated by:

ρ(t) =
32t2

π2
e−

4t2

π . (6.1)

2An approximation of the PDF of the rescaled distance for small x is 24

18π x1/2 −
320

450π x3/2 + 896

4410π x5/2 + O(x3). On the other hand, the PDF when x → ∞ is 1 − 1/x
(see [3]).

3Dyson electrostatic model gives a good sense of these locations as where the electric
field inside the unit circle vanishes.
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In [2], Mehta has introduced a power series of f(t):

p2(0, t) =
π2t2

3
− 2π4t4

45
+

π6t6

315
− π6t7

4050
− 2π8t8

14175
+ . . . .4 (6.2)

The following figures illustrate f and the two approximations:
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Figure 9: Histogram of rescaled gaps in 200 100 × 100 random unitary
matrices and graph of (a) ρ(t), (b) p2(0, t)

The shape of the PDF of the neighbor spacing like a Bell curve tells us
that consecutive eigenvalues of a random unitary matrix do not like to be
too close or too far from each other.

In contrast, if we choose N random points on the unit circle with uniform
distribution, the PDF of the rescaled neighbor spacings between the points
is like e−x. The distribution of the neighbor spacing in this case is called the
Poisson distribution.

In this case, the neighbor spacings are likely to be small. Therefore, if
the eigenvalues of U were distributed like in N random points on the unit
circle, (z′)s would very much be likely to be near the unit circle.

4p2(k, t) refers to the PDF of the rescaled difference between an eigenphase and the
(k + 1)-st nearest eigenvalue of those that are larger than it. The subscript 2 refers to the
GUE.
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Figure 10a: Histogram of rescaled neighbor spacing in Poisson distribution
(N = 100, 200 polynomials) is well approximated by e−x
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Figure 10b: Histogram of the rescaled distances from (z ′)s to the unit circle
in Poisson distribution (N = 70).
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Figure 10c: Cumulative Distribution Function of the rescaled distances
from (z′)s to the unit circle (N = 70, 2000 polynomials) and approximation

of
∫ x

0
g(t)dt using (6.3).

So the peak-behavior does not happen here. We would like to find a
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different distribution of the eigenvalues so that the distribution of the rescaled
distances from (z′)s to the unit circle is similar to that in the random unitary
matrix case. If we can find such a distribution, then we can conclude that
the peak-behavior is not peculiar only to random unitary matrices.

Elaborately, we want some distribution of the neighbor spacings between
N points on the unit circle, such that if we construct a polynomial taking
those N points as its roots, then the PDF of the rescaled distance from the
roots (z′)s of the derivative of that polynomial to the unit circle satisfies has
one or two local maxima like those in the random unitary matrix case.

Since the PDF of the rescaled distance in random unitary matrices starts
as

√
x, we want g(x), the PDF of the rescaled distance in the new distribu-

tion, to do so.
Let f(x) be the PDF of the rescaled neighbor spacing in the new distri-

bution. There is a connection between f(x) and g(x) when x is small:

g(x) ≈
f
(

2
√

t
π

)

4
√

x
π

. (6.3)

(For details, see Appendix A3)
Therefore we want f(x) ≈ cx2 for small x, where c is some constant. After

various calculations and experiments, the following distribution was found:
Split the circle into N equal arcs. In each arc, choose a point by ran-

domly choosing its eigenphase in the corresponding interval with ’semicircle’
distribution. One way to do this is to choose θj = (2j−1)π

N
+ π

N
w, where w is

randomly chosen from the interval (−1, 1) with the probability density func-
tion of 2

π

√
1 − x2. 5 Then the PDF of the neighbor spacings between these

N points on the unit circle behaves like x2 times some constant for small x.
To generate the following histogram, N = 100 points were randomly chosen
in the arcs for 300 times.

5For a computer program that generates random numbers from an interval with a given
probability distribution, the reader can refer to the link provided in Appendix A4.
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N = 100.
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Figure 11a: Figure 11b:
Histogram of rescaled neighbor spacings Histogram of N(1 − |z ′|) from 225
from 300 runs in ’semicircle’ distribution. runs in ’semicircle’ distribution.

(i.e. 30, 000 spacings) (i.e. roughly 22, 275 (z ′)s)

As expected, the PDF of the rescaled distance from z ′ to the unit circle
behaves like

√
x as x is small. Interestingly enough, the rescaled distance

distribution in this case is pretty similar to the distribution in the random
unitary matrix case. The histogram in figure 11b illustrates the distribution
of the rescaled distance N(1 − |z′|) from 225 runs with N = 100.

There do not appear to be two peaks in figure 11b, but it appears that
when N → ∞, there will be one peak that is similar to the peak in the PDF
of the rescaled distance when N → ∞ in the random unitary matrix case.

Stimulated by the previous distribution, a better distribution was found:
Like before, split the circle into N equal arcs. In each arc, choose a point

by randomly choosing its eigenphase in the corresponding interval with ’two
semicircle’ distribution. One way to do this is to choose θj = (2j−1)π

N
+ π

N
w,

where w is randomly chosen from the interval (−1, 1) with the probability
density function φ(t):

φ(t) =

{

2
π

√

1 − (2x + 1)2 if t ≤ 0
2
π

√

1 − (2x − 1)2 if t > 0
(6.4)

Again the PDF of the neighbor spacings between these N points on the
unit circle behaves like x2 times some constant for small x, but the constant
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is larger this time than the constant in the ’semicircle’ case. Following are
some histograms for N = 100

N = 100.
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Figure 12a: Figure 12b:
Histogram of 60, 000 random points in Histogram of rescaled neighbor spacing

(−1, 1) with ’two semicirce’ distribution from 600 runs in ’two semicircle’
distribution (i.e. 60, 000 spacings).
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Figure 12c: Histogram of N(1 − |z′|) from 300 runs in ’two semicircle’
distribution (i.e. roughly 29, 700 (z′)s).

As seen in figure 12c, there appear to be two local maxima in the PDF
of the rescaled distance in our ’two semicircle’ distribution, although the
local maxima are at different locations from those in the random unitary
matrix case. So the ’two peak behavior’ in the finite case and the ’one peak
behavior’ in the asymptotic case of the probability density function of the
rescaled distance N(1 − |z′|) is likely to be not peculiar only to random
unitary matrices.

We conclude this section by two open questions:
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Question 6.1. Is the Local Maximum Conjecture true? If it is, why is it
true?

Question 6.2. What are the types of distribution of the roots of a polynomial,
so that the roots of the derivative of the polynomial satisfy the Local Maximum
Conjecture?

7 Conclusion

In section 3 and 4, we have seen the connection among the distribution of
the roots of Z ′(U, z), function δ(θ) that measure how equally distributed
the eigenvalues of U are, and the magnitude of the coefficients of Z(U, z).
In section 5, we have seen the roots of Z ′(U, z) concentrated in an annulus
inside the unit circle. We have also conjectured the local maximum behavior
of the probability density function of the rescaled distance from z ′ to the
unit circle, for finite as well as infinite N . In section 6, we have guessed the
local maximum behavior does not only appear in random unitary matrices
with a Gaussian distribution of the neighbor spacings between the matrices’
eigenvalues.

As discussed in the introduction, the distribution of z′ – the roots of
Z ′(U, z) – inside the unit circle is a model of the distribution of the roots of
ζ ′(s) on the right of the critical line Re(s) = 1/2. Therefore, we also expect
that the roots of ζ ′(s) concentrate in an annulus on the right of the critical
line. Besides, the PDF of the rescaled distance from the roots of ζ ′(s) to the
critical line should also have two local maxima if we go up to a finite height
above the x-axes, and one local maximum for infinite height. If the Local
Maximum Conjecture for random unitary matrices is proven, its equivalent
version for ζ ′(s) will also be proven, and vice versa.

8 Appendix

A1. Proof of Proposition 3.2
Proof. Suppose all the roots of Z ′(U, z) are inside a circle of radius r < 1
centered at the origin, i.e.: |z′

1|, |z′2|, ..., |z′N−1| < r < 1. We have:

P (z) = zN + a1z
N−1 + · · · + aN−1z + aN

⇒ P ′(z) = NzN−1 + (N − 1)a1z
N−2 + · · ·+ aN−1
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Expanding and equating coefficients yields:

∑

|A|=k

∏

i∈A

z′i = (−1)k N − k

N
ak∀k = 1, 2, . . . , n

⇒

∣

∣

∣

∣

∣

∣

∑

|A|=k

∏

i∈A

z′i

∣

∣

∣

∣

∣

∣

=
N − k

N
|ak|. (8.1)

(8.2)

The sum on the left hand side of (1.2) contains
(

N−1
k

)

terms; the modulus
value of each term is less than rk. Therefore:

|ak| ≤
(

N − 1

k

)

rk N

N − k

=

(

N

k

)

rk (8.3)

For k ≥ N/2, both
(

N
k

)

and rk are decreasing, so the maximum occur at
k = [N/2], where [N/2] is the largest integer not exceeding N/2. In other
words:

|ak| ≤
(

N

[N/2]

)

rN/2

for k = N − 1, N − 2, · · · , [N/2].
By the palindromic symmetry of |aN−1|, · · · , |a1|, we conclude that

|ak| ≤
(

N

[N/2]

)

rN/2 (8.4)

for k = 1, 2, · · · , n − 1.
In conclusion, if |z′i| ≤ r for i = 1, · · · , N − 1 then |ai| ≤ ε for i =

1, · · · , N − 1, where:

ε = rN/2

(

N

[N/2]

)

. (8.5)

Conversely, now suppose |ai| ≤ ε for i = 1, · · · , N − 1 and ε is some
positive number. We need to prove that |z′| ≤ r for all (z′)s, where r is some
positive number smaller than 1.
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Let z′ be any zero of P ′. Then:

P ′(z′) = Nz′(N−1) + (N − 1)aN−1z
′(N−2) + · · · + 2a2z

′ + a1 = 0

⇒ |Nz′(N−1)| = |(N − 1)aN−1z
N−1 + · · · + a1|.

Since all the zeros of P ′ lie in inside the unit circle, |z′| < 1. So the right
hand side of the previous equality is less than (N−1)|aN−1|+(N−2)|aN−2|+
· · ·+ 1|a1|. In other words:

|Nz′(N−1)| < (N − 1)|aN−1| + (N − 2)|aN−2| + · · ·+ |a1|

≤ N(N − 1)

2
ε

⇒ |z′| < (
(N − 1)ε

2
)

1
N−1 .

So if we choose

r = (
(N − 1)ε

2
)

1
N−1 (8.6)

then |z′| < r for all zero z′ of P ′.

A2. Approximating t
In section 5, we denoted t the distance from a z′ to its nearest midpoint

(eiθj+1 + eiθj )/2. We are going to sketch a proof for the fact that for z ′ near
the unit circle and for large N , t is of size 1/N .

Proof. Without lost of generality, we can assume the nearest midpoint to z ′

is (eiθ2 +eiθ1)/2. Also, we can assume eiθ1 and eiθ2 are symmetric through the
real axes (since we can rotate the coordinate system.) Then (eiθ2+eiθ1)/2 = a,
where a is a real number.

Let w = z′ − a, then |w| = t.

Let φ(z) = Z′(U,z)
Z(U,z)

=
∑N

j=1
1

z−eθj
, where zj = eθj s are the roots of Z(U, z).

φ(z) has the following Taylor series:

φ(z) = φ(a) + φ′(a)(z − a) + φ′′(a)(z − a)2 + φ(3)(a)(z − a)3 + · · ·
= φ(a) + φ′(a)w + φ′′(a)w2 + φ(3)(a)w3 + · · · .

So if z′ is a root of Z ′(U, z) then φ(z′) = 0

⇒ w = − φ(a)

φ′(a)
+

φ′′(a)w2 + φ(3)(a)w3 + · · ·
φ′(a)

(8.7)
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On the other hand, for very large N :

φ(a) =
N

∑

j=1

1

a − eθj

=
1

a − eiθ1
+

1

a − eiθ2
+

N
∑

j=3

1

a − eiθj

=

N
∑

j=3

1

a − eiθj

≈ N

∫ iθ1+2π

iθ2

1

a − eiθ
dθ

=
N

2π

π − 2θ1

a

Therefore:

φ(a) ≈ N

2π

π − 2θ1

a
≈ N

2

(The approximation signs (’≈’) can be replaced by the equal signs (’=’) as
N → ∞.)

So φ(a) is of order 1/N .
Without much more difficulty, one can similarly show that φ(k)(a) is of

order 1/Nk.
For a given w, suppose w is of order N−r, then the right hand-side of

equation (8.7) is of order N 1−2r. Thus, −r = 1 − 2r. Therefore, r = −1 for
any given w. In conclusion, t = |w| is of order 1/N .

A3. f (t) and g(t)
We are going to prove equation (6.3) by assuming the following conjecture:

Conjecture 8.1. (Mezzadri) Let x be the rescaled distance from a root of
Z ′(U, z) to the unit circle. For small x, as N → ∞, the distance of the roots
of Z ′(U, z) from the unit circle is distributed like the square of the spacing
between phases of consecutive eigenvalues of unitary matrices in the Circular
Unitary Ensemble (appropriately rescaled).

The conjecture can be rephrased as: After being appropriately rescaled,
the PDF of 1 − |z′| is similar to the PDF of G2, where G is a variable
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representing a gap. A concrete form of this statement is:

PDF of
N

π2/4
(1 − |z′|) ≈ PDF of (

N

2π
G)2. (8.8)

(In [3], Mezzadri used N−1 to rescale 1−|z′| instead of N , but the difference
between the two is infinitesimal as N → ∞.)
Question:

Let X be any variable and let its PDF be f(t). Suppose g(t) is the PDF
of X2. What is g in terms of f?
Answer:

According to the definition of PDF:

P[a < X2 < b] =

∫ b

a

g(t)dt.

Therefore:

∫ b

a

g(t)dt = P
[√

a < X <
√

b
]

=

∫

√
b

√
a

f(t)dt

=

∫ b

a

f
(√

w
)

d
√

w

=

∫ b

a

f
(√

t
)

2
√

t
dt.

Accordingly:

g(t) =
f

(√
t
)

2
√

t
. (8.9)

As a remind, f(t) represents the PDF of N
2π

G and g(t) represents the PDF
of N(1 − |z′|). From (8.8) and (8.9) it suffices that:

PDF of
N

π2/4
(1 − |z′|) ≈ f

(√
t
)

2
√

t
. (8.10)
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Therefore:

P
[

1 − |z′| <
x

N

]

= P

[

N

π2/4
(1 − |z′|) <

x

π2/4

]

=

∫ 4x/π2

0

PDF of

(

N

π2/4
(1 − |z′|)

)

dt

≈
∫ 4x/π2

0

f
(√

t
)

2
√

t
dt

=

∫ x

0

f
(

2
√

w
π

)

4
√

w
π

dw.

⇒ g(t) ≈
f
(

2
√

t
π

)

4
√

t
π

. (Q.E.D.)

A4. Mathematica Programs
Major Mathematica programs used for this paper are available at

http://www.eg.bucknell.edu/~tphan/AIM/Mathematica/

An electric copy of this paper is also available at
http://www.eg.bucknell.edu/~tphan/AIM/ZeroDistr.pdf
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