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Abstract. Consider the ensemble of real symmetric Toeplitz matrices, each
independent entry chosen from a fixed probability distribution p of mean 0,
variance 1, and finite higher moments. The limiting spectral measure (the
density of normalized eigenvalues) converges weakly to a new universal dis-
tribution with unbounded support, independent of p. This distribution’s mo-
ments are almost those of the Gaussian’s, and the deficit may be interpreted
in terms of obstructions to Diophantine equations; the unbounded support
follows from a nice application of the Central Limit Theorem. With a little
more work, we obtain almost sure convergence. An investigation of spacings
between adjacent normalized eigenvalues looks Poissonian, and not GOE. A
related ensemble (real symmetric palindromic Toeplitz matrices) appears to
have no Diophantine obstructions, and the limiting spectral measure’s first
nine moments can be shown to agree with those of the Gaussian; this will be
considered in greater detail in a future paper.

1. Introduction

One of the central problems in Random Matrix Theory is as follows: consider
some ensemble of matrices A with probabilities p(A). As N → ∞, what can one
say about the density of normalized eigenvalues? For real symmetric matrices,
where the entries are i.i.d.r.v. from suitably restricted probability distributions,
the limiting distribution is the semi-circle (see [Wig, Meh]). Note this ensemble
has N(N+1)

2 independent parameters (aij , i ≤ j). For matrix ensembles with fewer
degrees of freedom, different limiting distributions arise (for example, McKay [McK]
proved d-regular graphs are given by Kesten’s Measure). By examining ensembles
with fewer than N2 degrees of freedom, one has the exciting potential of seeing
new, universal distributions. In this paper we study ensembles of real symmetric
Toeplitz matrices.

Definition 1.1. A Toeplitz matrix is A is of the form

A =




b0 b1 b2 · · · bN−1

b−1 b0 b1 · · · bN−2

b−2 b−1 b0 · · · bN−3

...
...

...
. . .

...
b1−N b2−N b3−N · · · b0




, aij = bj−i. (1)
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We investigate real symmetric Toeplitz matrices whose independent entries are
chosen according to some distribution p with mean 0, variance 1, and finite higher
moments. The probability distribution of a given matrix is

∏N−1
i=0 p(bi).

From Trace(A2) =
∑

i λ2
i (A) and the Central Limit Theorem, we see that the

eigenvalues of A are of order
√

N . This suggests the appropriate scale for normal-
izing the eigenvalues. As the main diagonal is constant, all b0 does is shift each
eigenvalue by b0. Therefore, we only consider the case where the main diagonal
vanishes.

To each N × N Toeplitz matrix A we attach a spacing measure by placing a
point mass of size 1

N at each normalized eigenvalue λi(A):

µA,N (x)dx =
1
N

N∑

i=1

δ

(
x− λi(A)√

N

)
dx. (2)

The kth moment of µA,N (x) is

Mk(A,N) =
1

N
k
2 +1

N∑

i=1

λk
i (A). (3)

Definition 1.2. Let Mk(N) be the average of Mk(A,N) over the ensemble, with
each A weighted by its distribution. If p is continuous, we weight A by

∏N−1
k=1 p(bk)dbk.

Let Mk = limN→∞Mk(N).

We show that Mk(N) converges to the moments of a new universal distribution,
independent of p. This distribution is denoted the limiting spectral measure (the
density of normalized eigenvalues). The new distribution looks Gaussian, and nu-
merical simulations and heuristics seemed to support such a conjecture. A more
detailed analysis, however, reveals that while Mk agrees with the Gaussian moments
for odd k and k = 0, 2, the other even moments are less than the Gaussian’s.

We now sketch the proof. By the Eigenvalue Trace Lemma,
N∑

i=1

λk
i (A) = Trace(Ak) =

∑

1≤i1,...,ik≤N

ai1,i2ai2,i3 · · · aik,i1 . (4)

As our Toeplitz matrices are constant along diagonals, depending only on |im− in|,
we have

Mk(N) = E[Mk(A,N)] =
1

N
k
2 +1

∑

1≤i1,...,ik≤N

E(b|i1−i2|b|i2−i3| · · · b|ik−i1|), (5)

where by E(· · · ) we mean averaging over the Toeplitz ensemble with each matrix A
weighted by its probability of occurring, and the bj are i.i.d.r.v. drawn from p(x).

We show that as N →∞, the above sums vanish for k odd, and converge inde-
pendent of p for k even to numbers Mk bounded by the moments of the Gaussian.
By showing E[|Mk(A,N)−Mk(N)|m] is small for m = 2 (m = 4), we obtain weak
(almost sure) convergence.

Remark 1.3. This problem was first posed by Bai [Bai], where he also asked simi-
lar questions about Hankel and Markov matrices. The methods of this paper should
be applicable to at least the Hankel case as well. Bose-Chatterjee-Gangopadhyay
[BCG] and Bryc-Dembo-Jiang [BDJ] have independently observed that the limit-
ing distribution is not Gaussian. Using a more probabilistic formulation, [BDJ]
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have calculated the moments using uniform variables and interpreting results as
volumes of solids related to Eulerian numbers. We have independently found the
same numbers, but through Diophantine analysis. The novelty of our approach is
that we can interpret the deviations from the Gaussian in terms of obstructions to
Diophantine equations, and obtain significantly sharper estimates on the growth of
the moments. Further, this framework seems ideally suited for investigating related
Toeplitz ensembles (see §7).

2. Determination of the Moments

2.1. k = 0, 2 and k odd.

Theorem 2.1. Assume p has mean zero, variance one and finite higher moments.
Then M0 = 1, M2 = 1 and M2m+1 = 0.

Proof. For all N , M0(A,N) = M0(N) = 1. For k = 2, we have

M2(N) =
1

N2

∑

1≤i1,i2≤N

E(b|i1−i2|b|i2−i1|) =
1

N2

∑

1≤i1,i2≤N

E(b2
|i1−i2|). (6)

As we have drawn the bs from a variance one distribution, the expected value above
is 1 if i1 6= i2 and 0 otherwise. Thus M2(N) = N2−N

N2 = 1 − 1
N , so M2 = 1. Note

there are two degrees of freedom. We can choose b|i1−i2| to be on any diagonal. Once
we have specified the diagonal, we can then choose i1 freely, which now determines
i2.

For k odd, we must have at least one bj occurring to an odd power. If one occurs
to the first power, as the expected value of a product of independent variables is
the product of the expected values, these terms contribute zero. Thus the only
contribution to an odd moment come when each bj in the expansion occurs at least
twice, and at least one occurs three times. Hence, if k = 2m + 1, we see we have at
most m + 1 degrees of freedom, this coming from the case b3

j1
b2
j2
· · · b2

jm
. There are

m different factors of b, and then we can choose any one subscript. Once we have
specified a subscript and which diagonals we are on, the remaining subscripts are
determined. As all moments are finite, we find

M2m+1(N) ¿m
1

N
2m+1

2 +1
Nm+1 ¿m

1√
N

. (7)

As N →∞ we see M2m+1(N) → 0, completing the proof. ¤

2.2. Bounds for the Even Moments.

Theorem 2.2. Assume p has mean zero, variance one and finite higher moments.
Then

M2m(N) ≤ (2m− 1)!! + Om

(
1
N

)
. (8)

Proof. We proceed in stages in calculating M2m(N). First we bound M2m(N) by
2m · (2m − 1)!! + Om

(
1
N

)
, where (2m − 1)!! is the 2mth moment of the Gaussian.

We then show that the factor of 2m can be removed. Later in Theorem 3.1 we
show a strict inequality holds. While it is possible to give a more concise proof, the
arguments below are useful in bounding the size of the moments and in studying
generalized Toeplitz ensembles (see §7 and [MS]).
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By (5),

M2m(N) =
1

Nm+1

∑

1≤i1,··· ,i2m≤N

E(b|i1−i2|b|i2−i3| · · · b|i2m−i1|). (9)

If any bj occurs to the first power, its expected value is zero and there is no con-
tribution. Thus the bjs must be matched at least in pairs. If any bj occurs to the
third or higher power, there are less than m + 1 degrees of freedom, and there will
be no contribution in the limit. In the main term the bjs are therefore matched in
pairs, say b|im−im+1| = b|in−in+1|. Let xm = |im − im+1| = |in − in+1|. There are
two possibilities:

im − im+1 = in − in+1 or im − im+1 = −(in − in+1). (10)

Let x1, . . . , xm be the values of the |ij − ij+1|s, and let ε1, . . . , εm be the choices of
sign in (10). Define x̃1 = i1 − i2, x̃2 = i2 − i3, . . . , x̃2m = i2m − i1. Note for each j
exactly one x̃m is ηjxj and exactly one x̃m is εjηjxj , where ηj = ±1. We have

i2 = i1 − x̃1

i3 = i1 − x̃1 − x̃2

...
i1 = i1 − x̃1 − · · · − x̃2m. (11)

By the final relation for i1, we find

x̃1 + · · ·+ x̃2m =
m∑

j=1

(1 + εj)ηjxj = 0. (12)

If any εj = 1, then the xj are not linearly independent, and we have fewer than m+1
degrees of freedom; these terms contribute Om

(
1
N

)
in the limit. Therefore the only

valid assignment is to have all εj = −1. There are now 2m possible choices (from
the ηj), and m + 1 degrees of freedom. Hence M2m(N) ≤ 2m ·Nm+1 + Om

(
1
N

)
as

the bjs are matched in pairs and the second moment of p is 1; the error term is from
the matchings that aren’t all pairs. We eliminate 2m by changing our viewpoint.

We have m+1 degrees of freedom. We match our differences in m pairs. Choose
i1 and i2. We now look at the freedom to choose the remaining indices ij . Once
i1 and i2 are specified, we have i1 − i2, and a later difference must be the negative
of that. If i2 − i3 is matched with i1 − i2, then i3 is uniquely determined (because
it must give the opposite of the earlier difference). If not, i3 is a new variable and
there are N choices for i3. Now we look at i4. If i3 − i4 is matched with an earlier
difference, then the sign of its difference is known, and i4 is uniquely determined;
if this difference belongs to a new pair not previously encountered, then i4 is a new
variable and free. Proceeding in this way, we note that if we encounter in such that
in−1 − in is paired with a previous difference, the sign of its difference is specified
and in is uniquely determined; otherwise, if this is a difference of a new pair, in is a
free variable with at most N choices. Thus we see there are at most Nm+1 choices
(note that it is possible that not all choices work, as for example the final difference
i2m − i1 is determined before we get there because of earlier choices). ¤

Remark 2.3. Having m+1 degrees of freedom does not imply each term contributes
fully – we will see there are Diophantine obstructions which bound the moments
away from the Gaussian’s. However, each matching contributes at most 1, and
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there are (2m − 1)!! matchings. It is often convenient to switch viewpoints from
having m + 1 indices to having the m positive subscript differences and one index
(say id) as our degrees of freedom; note once we specify the positive differences and
any index, which difference in a pair is positive and which is negative is determined.

2.3. The Fourth Moment. The fourth moment calculation highlights the Dio-
phantine obstructions encountered, which bound the moments away from the Gauss-
ian (whose fourth moment is 3). Let p4 be the fourth moment of p.

Theorem 2.4 (Fourth Moment).

M4(N) =
8
3

+ O

(
1
N

)
. (13)

Proof. By (5),

M4(N) =
1

N3

∑

1≤i1,i2,i3,i4≤N

E(b|i1−i2|b|i2−i3|b|i3−i4|b|i4−i1|) (14)

Let xj = |ij − ij+1|. If any bxj
occurs to the first power, its expected value is

zero. Thus either the xj are matched in pairs (with different values), or all four are
equal (in which case they are still matched in pairs). From Theorem 2.2, the signs
εj are all negative in the pairings. There are three possible matchings, and each
matching contributes at most 1; if each matching contributed 1 then the fourth
moment would be 3, the same as the Gaussian’s. By symmetry (simply relabel),
we see the contribution from x1 = x2, x3 = x4 is the same as the contribution
from x1 = x4, x2 = x3. The reason is both of these cases are adjacent pairings;
the neighbors of x1 are x2 and x4, and in each case everything is matched with a
neighbor.

If x1 = x2, x3 = x4, by Theorem 2.2 we have

i1 − i2 = −(i2 − i3) and i3 − i4 = −(i4 − i1). (15)

Thus i1 = i3 and i2 and i4 are arbitrary. Using these three variables as our in-
dependent degrees of freedom, we see there are N3 such quadruples. Almost all
of these will have x1 6= x3 and contribute E(b2

x1
b2
x3

) = 1. Given i1 and i2, N − 1
choices of i4 yield x1 6= x3, and one choice yields the two equal. Letting p4 denote
the fourth moment of p, we see this case contributes

1
N3

(
N2(N − 1) · 1 + N2 · p4

)
= 1− 1

N
+

p4

N
= 1 + O

(
1
N

)
. (16)

The third possibility is for x1 = x3 and x2 = x4. Non-adjacent pairing leads to
Diophantine obstructions, which decrease the contribution to the moment. Again
by Theorem 2.2 we have

i1 − i2 = −(i3 − i4) and i2 − i3 = −(i4 − i1). (17)

This yields
i1 = i2 + i4 − i3, i1, i2, i3, i4 ∈ {1, . . . , N}. (18)

The fact that each ij ∈ {1, . . . , N} is what leads to the Diophantine obstructions.
When x1 = x2 and x3 = x4, we saw we had three independent variables, and
N3 + O(N2) choices that were mutually consistent. Now it is possible for choices
of i2, i3 and i4 to lead to impossible values for i1. For example, if i2, i4 ≥ 2N

3 and
i3 < N

3 , we see i1 > N . Thus, there are at most (1− 1
27 )N3 valid choices; we have
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lost a positive percent of triples. This is enough to show the Gaussian moment is
strictly greater; later in Theorem 3.1 we will see that if there is one moment less
than the Gaussian, all larger even moments are also smaller.

Note the number of tuples with x1 = x2 = x3 = x4 is O(N2), and these con-
tribute O

(
1
N

)
. As this is a lower order term, in the arguments below we may

assume the two pairs do not have the same difference. The proof is completed by
the following lemma, which shows the case when x1 = x3 and x2 = x4 contributes
2
3 in the limit to the fourth moment; this refines our upper bound of 26

27 . ¤

Lemma 2.5. Let IN = {1, . . . , N}. Then #{x, y, z ∈ IN : 1 ≤ x + y − z ≤ N} =
2
3N3 + 1

3N .

Proof. Say x + y = S ∈ {2, . . . , 2N}. For 2 ≤ S ≤ N , there are S − 1 choices of z
such that 1 ≤ x + y − z ≤ N , and for S ≥ N + 1, there are 2N − S + 1 choices.
Similarly, the number of x, y ∈ IN with x + y = S is S − 1 if S ≤ N + 1 and
2N − S + 1 otherwise. The number of triples is therefore

N∑

S=2

(S − 1)2 +
2N∑

S=N+1

(2N − S + 1)2 =
2
3
N3 +

1
3
N. (19)

¤

2.4. Sixth and Eight Moments. Any even moment can be explicitly determined
by brute-force calculation, though deriving exact formulas as k →∞ requires han-
dling involved combinatorics. To calculate the 2kth moment, we consider 2k points
on the unit circle, and see how many different shapes we get when we match in
pairs. Direct computation gave M6(N) = 11 (compared to the Gaussian’s 15), and
M8(N) = 64 4

15 (compared to the Gaussian’s 105). For the sixth moment, there are
five non-isomorphic configurations:

These occur 2, 6, 3, 3 and 1 time, contributing 1, 2
3 , 1, 1

2 , and 1
2 (respectively);

these correspond to the 15 = (6−1)!! pairings. For the eighth moment, the smallest
contribution is 1

4 , coming from the matching x1 = x3, x2 = x4, x5 = x7, x6 = x8. It
seems the more crossings (in some sense), the greater the Diophantine obstructions
and the smaller the contribution.

To show the Mk converge to a new limiting distribution, we first must show the
Mk are finite. The following proof was suggested to us by David Farmer.

Theorem 2.6. If p has mean zero and variance one then for all k, Mk = limN→∞Mk(N)
exists and is finite.
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Proof. From the arguments in Theorems 2.2 and 2.4, it suffices to investigate the
case of even moments; moreover, the main term is when the bjs are matched in
pairs with all signs εj = −1. There are (2k − 1)!! matchings. For any matching
M, we have a system of linear equations with i1, . . . , i2k ∈ {1, . . . , N} and k + 1
degrees of freedom. Let z` = i`

N ∈ { 1
N , . . . , 1}. The linear equations now determine

a nice region in the (k + 1)-dimensional unit cube. As N → ∞ we obtain to
first order the volume of this region, which is finite. Unfolding back to the i`, we
obtain M2k(M)Nk+1 + Ok

(
Nk

)
, where M2k(M) is the volume associated to this

matching. Summing over all matchings gives M2kNk+1 + Ok

(
Nk

)
. ¤

The above proof it is similar to the proof in [BDJ]. Arguing along these lines,
they interpret the Mk in terms of volumes of Euler solids. We prefer to view the
problem in terms of Diophantine obstructions, which is very useful for determining
growth rates (see for instance Theorem 3.2).

In §3 and §4 we obtain upper and lower bounds for the moments. Then in §5
and §6 we prove weak and almost sure convergence.

3. Upper Bounds of High Moments

3.1. Weak Upper Bound of High Moments.

Theorem 3.1. For 2k ≥ 4, limN→∞M2k(N) < (2k − 1)!!.

Proof. We first show that if a matching contributes less than 1 for some moment,
it lifts to matchings for higher moments that also contribute less than 1. Say we
have such a matching on b|i1−i2| · · · b|i2k0−i1| giving less than 1. We extend this to
a pairing on 2k > 2k0 as follows. We now have

b|i1−i2| · · · b|i2k0−1−i2k0 |b|i2k0−i2k0+1|b|i2k0+1−i2k0+2| · · · b|i2k−1−i2k|b|i2k−i1|. (20)

In groups of two, pair adjacent neighbors from b|i2k0+1−i2k0+2| to b|i2k−1−i2k|. This
implies i2k0 = i2k0+2 = · · · = i2k. Looking at the first 2k0 − 1 and the last factor
gives

b|i1−i2| · · · b|i2k0−1−i2k0 |b|i2k−ii| = b|i1−i2| · · · b|i2k0−1−i2k0 |b|i2k0−i1|. (21)

Now pair these as in the matching which gave less than 1, and we see this matching
contributes less than 1 as well. By Theorem 2.4 we know there exists a matching
from the fourth moment which contributes 2

3 < 1, which completes the proof. ¤

3.2. Strong Upper Bound of High Moments. In general, the further away one
moment is from the Gaussian, the more one can say about higher moments. While
we do not have exact asymptotics, we can show

Theorem 3.2. limk→∞ M2k

(2k−1)!! = 0.

Proof. We show that for any positive integer c and k sufficiently large, as N →∞
then M2k(N) ≤ ( 2

3 )c(2k− 1)!! + Oc

(
(2k−1)!!

k

)
. There are (2k− 1)!! matchings, and

each matching contributes at most Nk+1 (or 1 after division by Nk+1; we use both
phrasings). We have shown (see Remark 2.3) that we may take as independent
variables the k values of the subscripts of the b|j|s (x1, . . . , xk) and any index (say
id). The goal is to show that almost all of the matchings, for k large, have at least
c Diophantine obstructions of the type encountered in the fourth moment. If there
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were no obstructions, these terms would contribute N3; the obstructions reduce the
contribution to 2

3N3.
We strategically replace our set of independent variables id, x1, . . . , xk with new

variables which exhibit the obstructions. We give full details for c = 1 (one ob-
struction), and sketch how to add more. For notational convenience, instead of
referring to i1, i2, . . . , i2k, we use i, j, k, . . . and p, q, r, . . . . Thus, in the eigenvalue
trace expansion we have terms like ai1i2 = b|i1−i2|; we refer to this term by i1i2 or
by ij.

Say we pair b|i−j| with b|q−r|. Let x1 = i− j = −(q−r). If we knew i = j +r−q
with j, r and q independent free variables, then our earlier results show there are
only 2

3N3 + O(N2), not N3 + O(N2), solutions. Unfortunately, j, r and q need not
be independent; however, for almost all of the (2k − 1)!! matchings, they will be.
We give a good bound on the number of matchings where j, r and q may be taken
as independent when c = 1; a similar argument works for general c.

Create a buffer zone around ij and qr of two vertices on each side, and assume
that neither buffer zone intersects. Given ij, there are (2k − 1) − 8 = 2k − Oc(1)
possible choices to place qr. Now connect the neighbors of ij and qr such that
nothing is connected within one vertex of another. There will be (2k − Oc(1)) ·
(2k − Oc(1)) · (2k − Oc(1)) · (2k − Oc(1)) such matchings. Note that, as we start
placing some of these connections, some vertices become unavailable. For example,
say there is exactly one vertex between the buffer of ij and the buffer of qr. This
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vertex is not available for use, for if we were to place another vertex there, the
indices it gives would not be independent. The same would be true if there were
just two vertices between the two buffers, and so on. In each case, however, we
only lose Oc(1) vertices. As all these matchings are separated, we may label their
differences by x2, x3, x4 and x5, independent free variables.

The reason for the buffer zones is that the separation allows us to replace some
of the independent variables x` with j, r and q. Note that each index appears in
exactly two vertices on the circle, and they are adjacent. Thus, these are the only
occurrences of i, j, q and r, and we may replace x5 as a free parameter with q as
a free parameter, x4 with r, and x1 with j. We now have the desired situation:
i = j + r − q, with all three on the right independent free parameters.

There are (2k − 11)!! ways to pair the remaining vertices. For those pairs that
have j, q, r independent, the contribution is at most 2

3N3 ·Nk+1−3; for the others,
we bound the contribution by Nk+1. Hence

M2k(N) ≤ 1
Nk+1

[
(2k)5(2k − 11)!!

2
3
Nk+1 + Oc(k4) · (2k − 11)!! ·Nk+1

]

≤ 2
3
(2k − 1)!! + Oc

(
(2k − 1)!!

k

)
. (22)

Therefore,
M2k(N)
(2k − 1)!!

≤ 2
3

+ Oc

(
1
k

)
. (23)

There are two ways to handle the general case with c Diophantine obstructions.
One may start with enormous buffer zones around the initial pairs. As the con-
struction progresses, we open up more and more portions of the parts of the buffer
zones not immediately near the vertices. This keeps all but Oc(1) vertices available
for use. Alternatively, along the lines of the first construction, we can just note
that by the end of stage c, Oc(1) vertices were unusable. The correction term is
smaller than the main term by a factor of 1

k . ¤

4. Lower Bound of High Moments

4.1. Preliminaries. We know the moments of the limiting spectral measure are
bounded by those of the Gaussian, (2k− 1)!!; the limiting value of the 2kth root of
the Gaussian (by Stirling’s Formula) is k

e . By obtaining a sufficiently large lower
bound for the even moments, we show the limiting spectral measure has unbounded
support. If it had bounded support, say [−B, B], then the 2kth moment M2k is at
most B2k, and limk→∞ 2k

√
M2k < ∞. We prove

Theorem 4.1. For any ε > 0, for k sufficiently large
2k
√

M2k ≥ k
1
2−ε. (24)

Thus the support of the limiting spectral measure is unbounded.

The construction is as follows: in studying the 2kth moment, we are led to sums
of the form

1
Nk+1

E

[
N∑

i1=1

· · ·
N∑

i2k=1

ai1,i2ai2,i3 · · · ai2k,i1

]
=

1
Nk+1

E

[
N∑

i1=1

· · ·
N∑

i2k=1

b|i1−i2|b|i2−i3| · · · b|i2k−i1|

]
.

(25)
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If any b|in−in+1| occurs only once, as it is drawn from a mean zero distribution,
there is no contribution to the expected value. Thus the 2k numbers (the bs) are
matched in at least pairs, and to obtain a lower bound it suffices to consider the
case where the differences are matched in k pairs. Let these positive differences (of
|in − in+1|) be x1, . . . , xk.

In Theorem 2.2 we showed the matchings must occur with negative signs. Thus,
if |in − in+1| = |iy − iy+1|, then (in − in+1) = −(iy − iy+1). We let x̃j = ij − ij+1.
Thus, for any xj , there is a unique j1 such that x̃j1 = xj and a unique j2 such that
x̃j2 = −xj . We call the first set of differences positive, and the other set negative;
we often denote these by x̃p and x̃n, and note that we have k of each.

We have k + 1 degrees of freedom. We may take these as the k differences xk,
and then any index, say i1. We have the relations (see (11))

i2 = i1 − x̃1

i3 = i1 − x̃1 − x̃2

...
i2k = i1 − x̃1 − · · · − x̃2k. (26)

Once we specify i1 and the differences x̃1 through x̃2k, all the indices are deter-
mined. If everything is matched in pairs and each ij ∈ {1, . . . , N}, then we have
a valid configuration, which will contribute +1 to the 2kth moment. The reason it
contributes +1 is because, as everything is matched in pairs, we have the expected
value of the second moment of p(x), k times.

We need to show the number of valid configurations is sufficiently large. The
problem is that, in (26), we need each index ij ∈ {1, . . . , N}; however, it is possible
that a running sum i1 − x̃1 − · · · − x̃m is not in this range for some m. Using the
Central Limit Theorem, we show that we can keep all these running sums in the
desired range sufficiently often.

4.2. Construction. Let α ∈ ( 1
2 , 1); we need α > 1

2 in order to apply the Central
Limit Theorem later. Let IA = {1, . . . , A}, where A = N

kα . Choose each difference
xj from IA; there are Ak ways to do this. In the end, we want to study k-tuples such
that no value is chosen twice. Note such tuples are lower order, namely there are at
most

(
k
2

)
Ak−1 such tuples. This is O(Nk−1). As i1 takes on at most N values (not

all values will in general lead to valid configurations), we see tuples with repeated
values occur at most O(Nk) times; as we divide by Nk+1, these terms will not
contribute for fixed k as N →∞. Thus, with probability one (as N →∞), we may
assume the k values xj are distinct.

Let us consider k distinct positive numbers (the xjs) drawn from IA, giving rise
to k positive differences x̃ps and k negative differences x̃ns. Let us make half of
the numbers x̃1, . . . , x̃k positive (arising from the x̃ps), and half of these numbers
negative (arising from the x̃ns). Call this the first block (of differences).

Then, in the differences x̃k+1, . . . , x̃2k (the second block), we have the remaining
differences. Note every positive (negative) difference in x̃1, . . . , x̃k is paired with a
negative (positive) difference in x̃k+1, . . . , x̃2k. Note we have not specified the order
of the differences, just how many positive (negative) are in the first block / second
block.

Note two different k-tuples of differences xj cannot give rise to the same config-
uration (if we assume the differences are distinct). This trivially follows from the
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fact that the differences specify which diagonal of the Toeplitz matrix the aimim+1s
are on; if we have different tuples, there is at least one diagonal with an entry on
one but not on the other.

Let us assume we have chosen the order of the differences in the first block,
x̃1, . . . , x̃k. We look at a subset of possible ways to match these with differences in
the second block. In the second block, there are k

2 positive (negative) differences
x̃p (x̃n). There are (k

2 )! ways to choose the relative order of the positive (negative)
differences. Note we are not giving a complete ordering of the differences in the
second block. There are k! > (k

2 )!2 ways to completely order. We are merely speci-
fying the relative order among the positive (negative) elements, and not specifying
how the positive and negative differences are interspersed.

Thus the number of matchings, each of which contribute 1, obtainable by this
method is at most

N · (Ak −O(Ak−1)) · (k/2)!2, (27)

where N is from the possible values for i1, Ak−O(Ak−1) is the number of k-tuples
of distinct differences xj ∈ IA, and (k/2)!2 is the number of relative arrangements of
the positive and negative differences in the second block (each of which is matched
with an opposite difference in the first block).

Not all of the above will yield a +1 contribution to the 2kth moment. Remember,
each index im must be in {1, . . . , N}. We now show that for a large number of the
above configurations, we do have all indices appropriately restricted. We call such
a configuration valid.

4.3. Number of Valid Configurations. Most of the time, the sum of the positive
differences x̃p in the first block will be close to the negative of the sum of the negative
differences x̃n in the first block.

Explicitly, we may regard the x̃ps (x̃ns) as independent random variables taken
from the uniform distribution on IA (−IA) with mean approximately 1

2A (− 1
2A)

and standard deviation approximately 1
2
√

3
A. By the Central Limit Theorem, for k

large the sum of the k
2 positive (negative) x̃ps (x̃ns) in the first block converges to

a normal distribution with mean approximately kA
4 (−kA

4 ) and standard deviation

approximately
√

k
2 · A

2
√

3
.

For N and k sufficiently large, the probability that the sum of the positive
differences in the first block is in [kA

4 −
√

kA
2
√

6
, kA

4 +
√

kA
2
√

6
] is at least 1

2 (and a similar
statement for the negatives). By the Central Limit Theorem, at least 1

4Ak of the Ak

tuples will have the sum of the positive (negative) differences lying in this interval
(in the negative of this interval). We call such choices good.

Remember, in the arguments leading up to (27), we only specified two items.
First, the absolute values of the k differences (all distinct); second, that half the
positive differences are in the first block, and the relative orderings of the positive
(negative) differences in the second block is given.

We therefore have freedom to choose how to intersperse the positives and neg-
atives in the first and second blocks. Consider a good choice of xks. We place
these differences in the first block of length k as follows. Choose the first positive
difference from our good list, and make the first difference positive. Keep assigning
(in order) the positive differences from our good list until the running sum of the
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differences assigned to the first block exceeds A. Then assign the negative differ-
ences from our good list until the running sum of differences in the first block is less
than −A. We then assign positive differences again until the running sum exceeds
A, and so on. If we run out of differences of one sign, we then assign the remaining
differences. Note we assigned half of the positive (negative) differences to the first
block.

Throughout the process, the largest the running sum can be in absolute value is
max(2A, 2 ·

√
kA

2
√

6
). This is because the k

2 positive (negative) differences yield sums
whose negatives are very close to each other, and each added difference can change
the running sum by at most ±A.

We now assign the differences in the second block. We have already chosen the
positive and negative differences. There are (k

2 )! orderings of the positive (negative)
differences. Fix a choice for the relative ordering. We intersperse these in a similar
manner as in the first block. We put down the differences, again making sure the
running sum never exceeds in absolute value max(2A, 2 ·

√
kA

2
√

6
).

Let i1 = 0. From (26), we now see that each index is at most 2max(2A, 2 ·√
kA

2
√

6
). Therefore, each index is in

[
− 2√

6
N

kα− 1
2
, 2√

6
N

kα− 1
2

]
. If we shift i1 so that

i1 ∈
[

7
8

N

kα− 1
2
, N

kα− 1
2

]
, as α > 1

2 for k large all indices will now be in {1, . . . , N}.
Thus, this is a valid assignment of indices. We now count the number of valid
assignments. We see this is at least

(
1
8

N

kα− 1
2

)
·
(

1
4
Ak −

(
k

2

)
Ak−1

)
· (k/2)!2. (28)

To calculate the contribution to the 2kth moment from this matching, we divide
by Nk+1. If any of the differences are the same, there is a slight complication;
however, as N is large relative to k, we may remove the small number of cases (at
most

(
k
2

)
Ak) when we have repeat differences among the x̃ps and x̃ns. We divide

by Nk+1, and by Stirling’s Formula the main term is

1
Nk+1

1
32

Nk+1

k(k+1)α− 1
2

(
e

k
2 log k

2− k
2
√

2π(k/2)
)2

=
πk

3
2−α

32e(1+log 2)k
· e(1−α)k log k. (29)

The 2kth root is asymptotic to e(1−α) log k

e1+log 2 > O(k1−α), proving the support is un-
bounded.

5. Weak Convergence

By Theorem 2.6, we know the moments Mk exist and are finite. To prove we
have weak convergence to the limiting spectral measure we need to show that the
variances tend to 0. We must show

lim
N→∞

(
E[Mm(A,N)2]− E[Mm(A, N)]2

)
= 0. (30)
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By (5) we have

E[Mm(A,N)2] =
1

Nm+2

∑

1≤i1,...,im≤N

∑

1≤j1,...,jm≤N

E[b|i1−i2| · · · b|im−i1|b|j1−j2| · · · b|jm−j1|]

E[Mm(A,N)]2 =
1

Nm+2

∑

1≤i1,...,im≤N

E[b|i1−i2| · · · b|im−i1|]
∑

1≤j1,...,jm≤N

E[b|j1−j2| · · · b|jm−j1|].

(31)

There are two possibilities: if the absolute values of the differences from the
is are completely disjoint from those of the js, then these contribute equally to
E[Mm(A,N)2] and E[Mm(A,N)]2. We are left with estimating the difference for
the crossover cases, when the value of an iα − iα+1 = ±(jβ − jβ+1). We assume
m = 2k; a similar proof works for odd m. Note Nm+2 = N2k+2, so there are 2k +2
degrees of freedom. The following two lemmas imply the variance tends to 0.

Lemma 5.1. The contribution from crossovers in E[M2k(A,N)]2 is Ok( 1
N ).

Proof. For E[M2k(A,N)], the expected value vanishes if anything is unpaired.
Thus, in E[M2k(A,N)]2, in the is and js everything is at least paired, and there
is at least one common value from a crossover. The maximum number of such
possibilities occurs when everything is paired on each side, and just one set of
pairs crosses over; for this crossover there are 2 ways to choose sign. In this case,
there are k + 1 degrees of freedom in the is, and k + 1 − 1 degrees of freedom in
the js (we lost one degree of freedom from the crossover). Thus, these terms give
Ok(N2k+1). Considering now matchings on each side with triple or higher pairings,
more crossovers, and the two possible assignments of sign to the crossovers, we find
that is and js with a crossover contribute Ok( 1

N ) to E[Mm(A,N)]2. ¤

Lemma 5.2. The contribution from crossovers in E[Mm(A,N)2] is Ok( 1
N ).

Proof. If neither the i differences nor the j differences have anything unpaired (i.e.,
everything is either paired or higher), and there is at least one crossover, it is easy
to see these terms are Ok( 1

N ). The difficulty occurs when we have unmatched
singletons on either side. Assume there are unmatched differences among the is.
We only increase the number of degrees of freedom by replacing triple pairings and
higher among the is with pairs and singletons (note we may lose these degrees of
freedom as these must be crossed and matched with the js, but we can always
cross these over to the js with no net loss of degrees of freedom). Similarly, we can
remove triple and higher pairings among the js.

Assume there are si > 0 singletons and k − si

2 pairs on the i side, sj ≥ 0
singletons on the j side, and C ≥ max(si, sj) crossings. Note sj equals 0 if we send
the singletons on the i side to matched pairs among the js, but C cannot be less
than si and sj . Note si, sj are even.

On the i side, there are 1 + (k − si

2 ) + (si − 1) degrees of freedom; the 1 is from
the freedom of assigning any value to one index, then we have k − si

2 from pairs,
and then the last singleton’s value is determined, so we have just si − 1 additional
degrees of freedom from singletons.

Assume sj > 0. On the j side, there could have been 1 + (k − sj

2 ) + (sj − 1)
degrees of freedom, but we know we have C crossings. This loses at least C − 1
degrees of freedom (it’s possible the last, forced j difference already equalled an i
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difference). Thus the number of degrees of freedom is

[
1 +

(
k − si

2

)
+ (si − 1)

]
+

[
1 +

(
k − sj

2

)
+ (sj − 1)− (C − 1)

]
= 2k+1−1

2
(2C−si−sj).

(32)
This is at most 2k + 1, which is less than 2k + 2. Therefore there has been a loss
of at least one degree of freedom, and these terms contribute Ok

(
1
N

)
.

If sj = 0, then there are 1 + k − C degrees of freedom on the j side, and we get
2k + 1− (C − si

2 ) degrees of freedom, again losing at least one degree of freedom.
Thus there are at most 2k + 1 degrees of freedom. Doing the combinatorics for

choices of sign and number of triples and higher shows these terms also contribute
Ok( 1

N ). ¤

Theorem 5.3. Let p have mean zero, variance one and finite higher moments. The
measures µA,N (x) weakly converge to a universal measure of unbounded support,
independent of p.

Proof. By Theorem 2.6 the moments Mk exist and are finite. As E[Mk(A,N)] →
Mk and the variances tend to zero, standard arguments give weak convergence. As
Mk is less than the Gaussian’s moments, the Mks uniquely determine a probability
measure, which by §4 has unbounded support. ¤

6. Almost Sure Convergence

For convenience in presentation, we assume p(x) is even (i.e., the odd moments
vanish); we remark later on the modifications to handle the additional book-keeping
for general p(x). In Theorem 6.3 we show for all m that

lim
N→∞

E
[|Mm(A,N)− E[Mm(A,N)]|4] = Om

(
1

N2

)
. (33)

We first show how (33) (plus Chebychev and Borel-Cantelli) yields almost sure
convergence, and then prove Theorem 6.3.

6.1. Almost Sure Convergence.

Theorem 6.1. Let p have mean zero, variance one and finite higher moments.
If p is even, as N → ∞ we have almost sure convergence to the limiting spectral
distribution determined by the Mms.

We first introduce some notation. Fix p(x) as before. Let ΩN be the outcome
space (TN ,

∏N−1
i=1 p(bi)dbi), where TN is the space of all N × N real symmetric

Toeplitz matrices. Let Ω be the outcome space (TN,
∏

p), where TN is the set of all
N×N real symmetric Toeplitz matrices and

∏
p is the product measure built from

having the entries i.i.d.r.v. from p(x). For each N we have projection maps from
Ω to ΩN . Thus, if A ∈ TN is a real symmetric Toeplitz matrices, then AN is the
restriction obtained by looking at the upper left N ×N block of A.
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We slightly adjust some notation from before. Let µAN (x)dx be the probability
measure associated to the Toeplitz N ×N matrix AN . Then

µAN (x)dx =
1
N

N∑

i=1

δ

(
x− λi(AN )√

N

)

Mm(AN ) =
∫

R
xmµAN

(x)dx

Mm(N) = E[Mm(AN )]
Mm = lim

N→∞
Mm(N). (34)

As N → ∞, we have shown Mm(N) converges to Mm, and the convergence for
each m is at the rate of 1

N . The expectation above is with respect to the product
measure on TN built from p(x).

We want to show that for all m, as N →∞,

Mm(AN ) −→ Mm almost surely. (35)

By the triangle inequality,

|Mm(AN )−Mm| ≤ |Mm(AN )−Mm(N)| + |Mm(N)−Mm|. (36)

As the second term tends to zero, it suffices to show the first tends to zero for
almost all A.

Chebychev’s Inequality states that for any random variable X with mean zero
and finite `th moment that

Prob(|X| ≥ ε) ≤ E[|X|`]
ε`

. (37)

Note E[Mm(AN )−Mm(N)] = 0, and in Theorem 6.3 we prove the fourth moment
of Mm(AN )−Mm(N) is Om

(
1

N2

)
. Then Chebychev’s Inequality (with ` = 4) and

Theorem 6.3 yield

Prob(|Mm(AN )−Mm(N)| ≥ ε) ≤ E[|Mm(AN )−Mm(N)|4]
ε4

≤ Cm

N2ε4
. (38)

The proof of almost sure convergence (Theorem 6.1) is completed by applying
the following:

Lemma 6.2 (Borel-Cantelli). Let Bi be a sequence of events with
∑

i Prob(Bi) <
∞. Let

B =



ω : ω ∈

∞⋂

j=1

∞⋃

k=j

Bi



 . (39)

Then the probability of B is zero.

In other words, an ω is in B if and only if that ω is in infinitely many Bi, and
the probability of events ω which occur infinitely often is zero.

Fix a large k and let

B
(k,m)
N = {A ∈ TN : |Mm(AN )−Mm(N)| ≥ 1

k
.} (40)

We have seen that Prob(B(k,m)
N ) ≤ Cmk4

N2 . Thus, for fixed m and k, the conditions
of the Borel-Cantelli Lemma are met, and we deduce that the probability of A ∈ TN
that occur in infinitely many B

(k,m)
N is zero. Letting k → ∞ we find that for any
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fixed m, as N → ∞, Mm(AN ) → Mm with probability one. Let Bi.o.
m be the

probability zero sets where we do not have such convergence.
Let Bi.o. =

⋃∞
m=1 Bi.o.

m . As a countable union of probability zero sets has prob-
ability zero, we see that Prob(Bi.o.) = 0; however, this is precisely the set where
for some m we do not have pointwise convergence. Thus, except for a set of prob-
ability zero, we find Mm(AN ) → Mm for all m. Subject to proving Theorem 6.3,
this completes the proof of Theorem 6.1. ¤

6.2. Proof of Fourth Moment Bounds.

Theorem 6.3. Let p be an even distribution with mean zero, variance one and
finite higher moments. Then

lim
N→∞

E
[|Mm(A,N)− E[Mm(A, N)]|4] = Om

(
1

N2

)
. (41)

We prove Theorem 6.3 for p even; more involved counting arguments would prove
the claim for arbitrary p. We must show

lim
N→∞

E
[|Mm(A,N)− E[Mm(A,N)]|4] = Om

(
1

N2

)
. (42)

We analyze E
[|Mm(A,N)− E[Mm(A,N)]|4], which leads to the proof. Expanding

this out, it suffices to study

E[Mm(A,N)4]−4E[Mm(A,N)3]E[Mm(A, N)]+6E[Mm(A,N)2]E[Mm(A, N)]2−3E[Mm(A,N)]E[Mm(A, N)]3.
(43)

For even moments, we may write the pieces as

E[M2m(A, N)4] =
1

N4m+4

∑

i

∑

j

∑

k

∑

l

E[bisbjsbksbls]

E[M2m(A,N)3]E[M2m(A,N)] =
1

N4m+4

∑

i

∑

j

∑

k

∑

l

E[bisbjsbks]E[bls],(44)

(note we combined the
(

4
3

)
and

(
4
4

)
terms) and so on, where for instance

E1 = E [bisbjsbksbls] = E
[
b|i1−i2| · · · b|j2m−j1|b|k1−k2| · · · b|k2m−k1|b|l1−l2| · · · b|l2m−l1|

]
.

(45)
We analyze the even moments first in Theorems 6.4. The odd moments are handled
analogously in Theorem 6.18.

We fix some notation. Denote the expected value sums above by E1, E2, E3 and
E4 (which occur with factors of 1,−4, 6 and −3 respectively). For h ∈ {i, j, k, l}, let
bh refer to the differences in b|h1−h2| · · · b|h2m−h1| If a difference in a bh is matched
with another difference in bh, we say this is an internal matching; otherwise, it is
an external matching. By a singleton, pair, triple, quadruple and so on, we refer
to matchings within a bh (i.e., an internal matching). For example, a triple occurs
when exactly three of the differences in a bh are equal.

Let pa denote the ath moment of p(x). Note p1 = 0 and p2 = 1. For example, in∑
E[bibjbkbl], if we have all differences occurring twice except for two different dif-

ferences occurring four times (two quadruples) and another different one occurring
six times (one sextuple), we would have 12m−7p2

4p6.
Note there are at most 4m+4 degrees of freedom – everything must be matched

in at least pairs (we have 8m total differences, as we are looking at the fourth power
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of the 2mth moment), and then each bh has at most one more degree of freedom
(we can choose any index). Thus any terms with a loss of at least two degrees of
freedom contribute at most Om( 1

N2 ).

6.2.1. Even Moments.

Theorem 6.4. Let p be an even distribution with mean zero, variance one and
finite higher moments. Then for m even,

lim
N→∞

E
[|Mm(A,N)− E[Mm(A, N)]|4] = Om

(
1

N2

)
. (46)

We first show in Theorem 6.13 that there is negligible contribution if p is even
and there is an internal triple or higher; thus it suffices to consider the case where
there are no internal triples or higher. We then show in Theorem 6.15 that if there
are no singletons the contribution is negligible, and then we complete the proof by
showing in Theorem 6.16 that there is a negligible contribution from singletons.

The following three lemmas are the cornerstone of the later combinatorics:

Lemma 6.5. If there is a singleton in bh paired with something in bg, then there
is a loss of at least one degree of freedom.

Note if every difference in a bh (all singletons) is paired with a difference in bg

(all singletons), we have a loss of exactly one degree of freedom, so the lemma is
sharp. We can choose any index and 2m− 1 differences in bh; the last difference is
now determined. Once we choose one index in bg, all other indices are determined,
for a total of 1+(2m−1)+1 (instead of 2m+2) degrees of freedom. Thus, instead
of being able to choose 2m differences freely, we can only choose 2m− 1. Note the
above argument holds if, instead of all singletons, we have elements of bg and bh

only matched internally and externally with each other.

Proof. As we can cycle the labels, we may assume that b|h2m−h1| is the singleton.
Note that once any index and the values of the other differences in bh are given,
then |h2m − h1| is determined. We need to conclude we have lost a degree of
freedom. It suffices to consider the case where every difference is be paired with
another difference; this is because p has mean zero, and any unpaired differences
thus contribute zero. Thus, to have the maximum number of degrees of freedom,
the difference in each pairing must be free.

We know b|h2m−h1| must equal the difference from another bg (h 6= g ∈ {i, j, k, l}),
say b|ga−ga+1|. We must show the difference |ga − ga+1| = |h2m − h1| is not a free
parameter. This is obvious because if it were free, that would contradict |h2m−h1|
being determined by the other bh differences. ¤
Remark 6.6. In the above, we did not need the matching to be with a singleton –
a pair, triple or higher would also have worked.

Lemma 6.7. If at least three of the bhs have a singleton, there is a loss of at least
two degrees of freedom.

Proof. If there is a matching of singletons from say bi and bj , and another matching
from bk and bl, the lemma is clear from above. Without loss of generality, the
remaining case is when a singleton from bi is matched with one from bj , and another
singleton from bi is matched with one from bl. We then apply the previous lemma
to (bj , bi) and (bk, bi). ¤
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Lemma 6.8. For even moments, if there are no crossovers, there is no net contri-
bution.

Proof. If there are no crossovers, the expected value of the products are the products
of the expected values. Thus, each term becomes E[M2m(A,N)]4, and 1−4+6−3 =
0. ¤

Lemma 6.9. If p(x) is even and there are at least two internal triples among all
of the bhs, the contribution is Om

(
1

N2

)
.

Proof. Everything must be matched in at least pairs (or its expected value van-
ishes). If there are only two values among six differences, then instead of getting
3 degrees of freedom, we get 2. This is enough to see decay like Om

(
1
N

)
. If we

didn’t assume p(x) were even, we would have more work to do; as the odd moments
vanish, however, the two triples must be paired with other differences, or with each
other. In either case, we lose at least one degree of freedom from each, completing
the proof. ¤

Remark 6.10. Similarly, one can show there cannot be a triple and anything higher
than a triple. Further, we cannot have two quadruples or more, as a quadruple or
more loses one degree of freedom (a quadruple is two pairs that are equal – instead
of having two degrees of freedom, we now have one).

Lemma 6.11. If there is an internal quadruple, quintuple, or higher matching
within a bh, the contribution is Om( 1

N2 ).

Proof. There can be no sextuple or higher, as this gives at least three pairs matched,
yielding one degree of freedom (instead of three). If there is a quadruple or quin-
tuple, everything else must be pairs or singletons or we have lost two degrees of
freedom. As the odd moments vanish, a quintuple must be matched with at least
a singleton, again giving six points matched, but only one degree of freedom.

We are left with one quadruple (which gives a loss of one degree of freedom)
and all else pairs and singletons. No pairs can be matched to the quadruple or
each other, as we would then lose at least two degrees of freedom. If there are
any singletons, by Lemma 6.5 there is a loss of a degree of freedom. If we have a
quintuple or higher, this is enough to lose two degrees of freedom. Thus, we need
only study the case of all pairs and one quadruple, with no external matchings.

As everything is independent, we find a contribution of

1 · p4 − 4 · p4 + 6 · p4 − 3p4 = 0, (47)

where p4 is the fourth moment of p. ¤

Lemma 6.12. If there is only one internal triple (say in bh) and p is even, then
the contribution is Om( 1

N2 ).

Proof. As odd moments vanish, the triple must be paired with a singleton from
another bh; further, there must be at least one singleton in the same bh as the
triple (as there are an even number of terms). We thus lose a degree of freedom
from the triple matched with a singleton (four points, but one instead of two free
differences), and we lose a degree of freedom from the singleton in the same bh as
the triple (Lemma 6.5). Thus we have lost two degrees of freedom. ¤

We have proved
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Theorem 6.13. The contribution from having an internal triple or higher matching
is Om( 1

N2 ) if p is even.

Remark 6.14. Similar arguments work for general p(x), but become more involved.

We have shown there is no net contribution if there are triples or higher pairings.
We now consider the case of singletons and pairs.

Theorem 6.15. Assume there are no singletons or triples or higher pairings and
p is even. Then the contribution is Om( 1

N2 ).

Proof. If there are no matchings between bhs, then everything is independent and
we get 1− 4 + 6− 3 = 0. If two pairs are matched, we lose one degree of freedom.
There are

(
4
2

)
= 6 ways to choose two out of i, j, k, l to be paired.

For the four expected value sums, we get the following contributions:
(
4
2

)
p4 from

E1;
(
3
2

)
p4 + (6− (

3
2

)
) from E2 (three times the two pairs are in the expected value

of a product together, giving p4; the other three times they are separated, giving
p2 = 1);

(
2
2

)
p4 + (6− (

2
2

)
) from E3 (only once are the matched pairs together);

(
4
2

)
from E4. Combining yields

1 · 6p4 − 4(3p4 + 3) + 6(p4 + 5)− 3(6) = 0. (48)

If at least three pairs are matched together, or two sets of two pairs are matched
together, we lose at least 2 degrees of freedom, giving a contribution of size Om( 1

N2 ).
¤

We can now prove

Theorem 6.16. The contribution when there are no triple or higher internal pair-
ings is at most Om( 1

N2 ) if p is even.

Proof. It is sufficient to show the non-zero contributions all lost at least two degrees
of freedom. We have already handled the case when there are no singletons. If
three or four bhs have a singleton, we are done by Lemma 6.7. If exactly two
have singletons, then there is no contribution in the E1 through E4, except for the
cases when they are under the expected value together (remember the mean of p
vanishes).

We have already lost a degree of freedom in this case; if any pair in any bh is
matched with a pair in a bg, we lose another degree of freedom. We may therefore
assume that there are no matches with four or more elements. Thus every difference
that occurs, occurs exactly twice.

There are
(
4
2

)
= 6 ways to choose which two of the four bhs have singletons

paired. The contribution from E1 is 6, from E2 is 3 (3 of the 6 times they are
under the expected value together; the other 3 times they are separated, and the
expected value of a difference occurring once is 0), from E3 is 1 (only 1 of the 6
ways have them under the expected value together), and from E4 is 0. We thus
have a contribution of

1 · 6− 4 · 3 + 6 · 1− 3 · 0 = 0. (49)

We are left with the case when the only singletons are in one bh. As we are
assuming there are no triple or higher internal matchings, these singletons must
then be matched with pairs, giving external triples; as the odd moments of p(x)
vanish, there is no net contribution. ¤



20 CHRISTOPHER HAMMOND AND STEVEN J. MILLER

Remark 6.17. If we do not assume the odd moments of p vanish, additional book-
keeping yields the contribution is of size 1

N2 . We give an example of the type of
argument one needs. If exactly two of the bhs have singletons, then each has at
least two; we’ve already handled the case when they are matched together. As no
difference can be left unmatched, we just need to study the case when we get four
triples or two triples and a pair; each clearly loses two degrees of freedom;

We are left with the case when only one bh has singletons. We are down one
degree of freedom already, so there cannot be another non-forced matching. If there
are at least four singletons, we are done. If there are two singletons, we get two
triples (either with the same or different bgs). Similar arguments as before yield
the contributions are

1 · 6p2
3 − 4 · 3p2

3 + 6 · p2
3 − 3 · 0 = 0 (50)

if the two external triples involve matchings from bh to the same bg, and

1 · 4p2
3 − 4 · 3p2

3 + 6 · 0− 3 · 0 = 0. (51)

6.2.2. Odd Moments.

Theorem 6.18. If p is even and has mean zero, variance one and finite higher
moments, then

lim
N→∞

E
[|M2m+1(A,N)− E[M2m+1(A,N)]|4] = Om

(
1

N2

)
(52)

Proof. Define E1, E2, E3 and E4 analogously as in (43). In each bh, there is at least
one odd internal matching (or singleton); thus for p even, only E1 can be non-zero.
If there are four (or more) internal triples (or higher), we lose at least two degrees
of freedom.

If there are exactly three internal triples, either two are matched together and
one is matched with a singleton, or all three are matched with singletons; in both
cases we lose at least two degrees of freedom.

If there are exactly two internal triples, there must be at least two bhs with sin-
gletons. If the triples are matched with singletons, we lose two degrees of freedom;
if the triples are matched together we lose one degree from that, and one more
degree from the singletons (Lemma 6.5).

If there is exactly one triple, at least three bhs have singletons, and similar
arguments yield a loss of at least two degrees.

If there are no triples, then there are four singletons and by Lemma 6.7 there is
a loss of at least two degrees. ¤

7. Future Work

As there are only N − 1 degrees of freedom for the Toeplitz Ensemble, and
not O(N2), it is reasonable to believe the spacings between adjacent normalized
eigenvalues may differ from those of full real symmetric matrices. For example, band
matrices of width 1 are just diagonal matrices, and there the spacing is Poissonian
(e−x); full real symmetric matrices are conjectured to have their spacing given by
the GOE distribution (which is well approximated by Axe−Bx2

); however, not all
ensembles with O(N) degrees of freedom exhibit Poissonian behavior. For example,
there are dN

2 degrees of freedom for d-regular graphs, but it has been numerically
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observed (see [JMRR] among others) that the spacings between adjacent eigenvalues
look GOE.

We chose 1000 Toeplitz matrices (1000 × 1000), with entries i.i.d.r.v. from the
standard normal. We looked at the spacings between the middle 11 normalized
eigenvalues for each matrix, giving us 10 spacings. A plot of the spacings between
normalized eigenvalues looks Poissonian.

1 2 3 4 5

0.2

0.4

0.6

0.8

1

We conjecture that in the limit as N →∞, the local spacings between adjacent
normalized eigenvalues will be Poissonian. While random d-regular graphs have a
comparable number of degrees of freedom, there is significantly more independence
in the aij in their adjacency matrices – for the Toeplitz ensemble, we have a strict
structure, namely aij depends only on |i− j|.

Additional topics for investigation are to obtain sharper bounds for the growth
of the moments M2k. Does

lim
k→∞

2k
√

M2k
2k
√

G2k

= 0, (53)

where G2k is the 2kth moment of the Gaussian? By Theorem 3.2 all we know is
that

lim
k→∞

M2k

G2k
= 0, (54)

and our method of proof does not yield sharp enough bounds to investigate the
2kth roots.

Finally, one may investigate Toeplitz matrices with additional symmetry. Con-
sider the ensemble of real symmetric palindromic Toeplitz matrices, where in addi-
tion to bj−i = bi−j we have bj−i = bN−1−(j−i) (note the first row is a palindrome).
Arguing similarly as in Theorem 2.2, we find the only matchings that contribute
are those where all signs are negative. The extra symmetry beautifully fixes the
Diophantine obstructions. What happens is we have many systems of equations
which can be pieced together into one system. For example, (18) becomes

i1 = i2 + i4 − i3 + AN , AN ∈ {−(N − 1), 0, N − 1}, (55)

and for each triple (i2, i3, i4) there is a choice of AN such that i1 ∈ {1, . . . , N}. To
date the first nine moments have been shown to agree with the Gaussian moments.
For more details see [MS].
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