
MATH 162: SUMS OF POISSON RANDOM VARIABLES

STEVEN J. MILLER

Abstract. We show that, appropriately scaled, the mean of n independent Poisson variables con-

verges to the standard normal distribution N(0, 1).

1. Review

Theorem 1.1. Let X be a Poisson random variable with parameter λ. Its moment generating function
satisfies

MX(t) = eλ(et−1). (1.1)
Note the mean is µX = λ and the variance is σ2

X = λ.

Theorem 1.2. Let X be a normal random variable with mean µ and variance σ2. Its moment gener-
ating function satisfies

MX(t) = eµt+ σ2t2
2 . (1.2)

2. Sum of Poisson Random Variables

Let Xi be Poisson random variables with parameter λ. Let

Yn = X1 + · · ·+ Xn. (2.1)

We expect Yn to be of size nµ = nλ. This follows from the linearity of expected value:

E[Yn] =
∑

i

1 · E[Xi] =
∑

i

λ = nλ. (2.2)

Let σ denote the variance of X (the Poisson distribution with parameter λ). The variance of Yn is
computed similarly; since the Xi are independent we have

Var(Yn) = σ2
Yn

=
∑

i

12 ·Var(Xi) = nσ2. (2.3)

Note this is a little different than class because we have not divided Yn by n; if Wn = 1
nYn, then

Var(Wn) = 1
n2 Var(Yn) = σ2

n .
The natural quantity to study is

Zn =
Yn − nλ

σYn

=
(X1 + · · ·+ Xn)− nλ

σ
√

n
. (2.4)

The reason this is the natural quantity is that the sum of the Xi is expected to be around nλ; if we
subtract the predicted value, what is left is the fluctuations about the mean. We then need to figure
out what are the correct units. As the variance of the sum of the Xis is nσ2, its standard deviation
is σ

√
n; thus, it is natural to measure the difference from the predicted mean in units of the expected

standard deviation.
Note this is a little different than class (I accidentally wrote σ/

√
n instead of σ

√
n. Another way to

reach the same result is to study
Wn − λ

σWn

; (2.5)
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here Wn is normalized so it has mean λ, and of course its standard deviation is σWn
. Substituting

gives
Wn − λ

σWn

=
1
nYn − λ

σ/n
=

Yn − nλ

σ
√

n
= Zn. (2.6)

Thus, we obtain the same quantity as before. We now use

MX+a
b

(t) = eat/bMX(t/b) (2.7)

and the moment generating function of a sum of independent variables is the product of the moment
generating functions to find the moment generating function of Zn. Note Yn−nλ

σ
√

n
=

∑
i

Xi−λ
σ
√

n
. Therefore

MZn(t) = MYn−nλ
σ
√

n
(t)

= MP
i

Xi−λ

σ
√

n

(t)

=
∏

i

MXi−λ

σ
√

n

(t)

=
∏

i

e
−λt
σ
√

n MX

(
t

σ
√

n

)

=
∏

i

e
−λt
σ
√

n e
λ

�
e

t
σ
√

n −1

�
. (2.8)

We now Taylor expand the exponential, using

eu =
∞∑

k=0

uk

k!
= 1 + u +

u2

2
+

u3

6
+ · · · . (2.9)

This is one of the most important Taylor expansion we will encounter. Thus the exponential in (2.8) is

e
t

σ
√

n = 1 +
t

σ
√

n
+

t2

2σ2n
+

t3

6σ3n
√

n
+ · · · . (2.10)

The important thing to note is that after subtracting 1, the first piece is t
σ
√

n
, the next piece is t2

2σ2n ,
and the remaining pieces are dominated by a geometric series (starting with the cubed term) with
r = t

σ
√

n
. Thus, the contribution from all the other terms is of size at most some constant times t3

n
√

n
.

For large n, this will be negligible, and we write errors like this as O
(

t3

n
√

n

)
.

Thus, (2.8) becomes

MZn(t) =
∏

i

e
−λt
σ
√

n e
λ·
�

t
σ
√

n
+ t2

2σ2n
+O

�
t3

n
√

n

��

=
∏

i

e
λt2

σ2n
+O

�
t3

n
√

n

�

= e
t2

2
+O

�
t3√

n

�
(2.11)

where the last line follows from the fact that we have a product over n identical terms, and as the
variance of X is σ2 = λ (for X Poisson with parameter λ), we see λ

σ2 = 1. Thus, for all t, as n → ∞
the moment generating function of Zn tends to e

t2
2 , which is the moment generating function of the

standard normal. This completes the proof. �

Remark 2.1. We only need to Taylor expand far enough to get the main term (which has a finite
limit as n →∞) and then estimate the size of the error term (which tends to zero as n →∞).


