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I've Got Your Number

How a mathematical phenomenon can help CPAs
uncover fraud and other irregularities.

BY MARK J. NIGRINI

s it possible to tell that a number is wrong just by looking at it? In some
cases, you bet. Using Benford’s law—a mathematical phenomenon that
provides a unique method of data analysis—CPAs can spot irregularities indi-
cating possible error, fraud, manipulative bias or processing inefficiency.

Benford’s law is used to determine the normal level of  ford extrapolated that he was looking up the logs of num-
number duplication in data sets, which in turn makes  bers with low first digits more frequently because there
it possible to identify abnormal digit and number oe- were more numbers with low first digits in the world.
currence. Accountants and auditors have begun to Benford then tested this idea by looking at the first
apply Benford’s law; to corporate data to discover digits of 20 lists of numbers with a total of 20,229
number-pattern anomalies. For large data observations. His lists came from varied sources,
sets, CPAs use highly focused tests that con- uch as geographic, scientific and demo-
centrate on finding deviations in subsets. graphic data. One list contained all the
_ numbers in an issue of Reader’s Digest. He
found that about 31% of the num-
bers had 1 as the first digit, 19%
. had 2, and only 5% had 9 as
a first digit. Benford then
% made some physics-
related assumptions
about the distribution
of naturally occur-
ring data and, using
integral calculus, he
computed the ex-
pected frequencies
of the digits and digit
combinations.
The expected fre-
quencies of the digits in
the first four positions can

EUREKA!

Frank Benford made a simple
observation while working
as a physicist at the GE
Research Laboratories
in Schenectady, New
York, in the 1920s.
He noticed that the
first few pages of
his logarithm tables
books were more
worn than the last
few and from this he
surmised that he was
consulting the first
pages—which gave the
logs of numbers with
low digits—more often. be seen in exhibit 1,
The first digit of a num- s page 80, which shows
ber is leftmost—for ex- a large bias in favor of

ample, the first digit of When physicist Frank Benford tested the first digits in lists of num- |6 digits in the first
45,002 is 4. (Zero can- bers during the 1920s and 1930s, he found that about 31% of the position. The proba-
not be a first digit.) Ben- numbers had 1 as the first digit, 19% had 2, and only 5% had 9. bility that the first dig-
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it is either a 1, 2 or 3 is
60.2%.

Not all data sets follow
Benford’s law. Those data sets
most likely to will have the
following characteristics:

m The numbers describe
the sizes of similar phenom-
ena (for example, market
values of corporations).

m The numbers do not
contain a built-in maximum
or minimum value (such as
deductible IRA contribu-
tions or hourly wage rates).

Assigned numbers, such
as Social Security numbers,
zip codes or bank account
numbers will not conform
to Benford’s law.

Mutual fund math. An
intuitive explanation of
Benford’s law is to consid-
er the total assets of a mu-
tual fund that is growing
at 10% per year. When
the total assets are $100
million, the first digit of
total assets is 1. The first
digit will continue to be 1
until total assets reach
$200 million. This will re-
quire a 100% increase
(from 100 to 200), which,

Position of digit in number

Digit  First Second
.11968
.30103 .11389
.17609 .10882
12494 .10433
.09691 .10031
.07918 .09668
.06695 .09337
.05799 .09035
.05115 .08757

.08500

.04576 ;

Exhibit 1: Benford’s Law—

Expected Digital Frequencies

Example:The number 147 has three digits, with 1 as the first
digit, 4 as the second digit and 7 as the third digit. The table
shows that under Benford's law the expected proportion of num-
bers with a first digit I is 30.103% and the expected propor-
tion of numbers with a third digit 7 is 9.902%.

Source: “A Taxpayer Compliance Application of Benford's Law,” by M. J. Nigrini. The
Journal of the American Taxation Association 18, 1996.
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Once total assets are $1 bil-
lion the first digit will again
be 1, until total assets again
grow by another 100%. The
persistence of a 1 as a first
digit will occur with any
phenomenon that has a

Third Fourth

10178 constant (or even an erratic)
growth rate.
10138 Bentord’s law has been
found to apply to many
10097 sets of financial data, in-
cluding income tax or
.10057 stock exchange data, cor-
porate disbursements and
.10018 sales figures, demographics
and scientific data. Since
09979 the 1940s, more than 150
academic papers on Ben-
-09940 ford’s law have been pub-
lished by mathematicians,
-09902 statisticians, engineers,
physicists and—recently—
Hosha by accountants. None dis-
109827 putes it or offers a
competing law related to
digits. Perhaps Roger

Pinkham wrote the most
convincing support in
1961, when he showed
that Benford’s law was
scale invariant. In other
words, if a set of numbers
followed Benford’s law

at a growth rate of 10%
per year, will take about 7.3 years (with compound-
ing). At $500 million the first digit will be 5.
Growing at 10% per year, the total assets will rise from
$500 million to $600 million in about 1.9 years, signifi-
cantly less time than assets took to grow from $100 million
to $200 million. At $900 million, the first digit will be 9
until total assets reach $1 billion, or about 1.1 years at 10%.

closely, and if all the num-
bers in the set were multiplied by a nonzero constant
(such as 22.04 or 0.323), then the new set of numbers
would also follow Benford’s law closely. Only the prob-
abilities of Benford’s law had this property. This scale
invariance helps us to understand why Benford’s law
works on financial data throughout the world, even
though the data are expressed in different currencies. A

EXECUTIVE SUMMARY

I BENFORD’S LAW PROVIDES A DATA analysis method
that can help alert CPAs to possible errors, potential
fraud, manipulative biases, costly processing inefficien-
cies or other irregularities.

W A PHYSICIST AT GE RESEARCH LABORATORIES in the
1920s, Frank Benford found that numbers with low first dig-
its occurred more frequently in the world and calculated the
expected frequencies of the digits in tabulated data.

M CPAs CAN USE BENFORD’S DISCOVERY in business ap-
plications ranging from accounts payable to Y2K prob-
lems. In addition, subset tests identify small lists of
serious anomalies in large data sets, making an analysis
more manageable.

I DIGITAL ANALYSIS IS WELL SUITED to finding errors and ir-
regularities in large data sets when auditors need computer
assisted technologies to direct their attention to anomalies.

sity of Kansas, Lawrence.

MARK J. NIGRINI, CA (SA), PhD, MBA, is an assistant professor at the Edwin L. Cox School of Business, Southern Methodist
University, Dallas, and a Research Fellow at the Ernst & Young Center for Auditing Research and Advanced Technology, Univer-
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Benford’s law has been found to apply to many sets of financial data,
including income tax or stock exchange data, sales figures and demographics.

Exhibit 2: First Digits of Census Data

0.35
L Actual
0.30 | IS a .
1 i Benford's law
0.25

recent review of the theory underlying Benford’s law is
by the mathematician Ted Hill in American Scientist
(July-August 1998).

Exhibit 2, above, shows the results of an analysis of the
population counts of the 3,141 U.S. counties, according to
the 1990 census. Benford’s law proportions are shown as
the diamond studs on the line. The bars show the actual
proportions. There are nine bars, one for each of the possi-
ble first digits. From the graph it’s clear that the actual pro-
portions follow Benford’s law quite closely, which is what
would be expected from authentic, unmanipulated data.
The mean absolute deviation of the first digits of the cen-
sus data is 0.7%, which means that on average, the actual
proportion differed from the expected proportion by seven
tenths of one percent. Auditors usually consider a differ-
ence of this magnitude to be immaterial. The underlying
thesis of digital analysis is that Benford’s law makes it possi-
ble to spot data anomalies.

TELLTALE THRESHOLD

In 1993, in State of Arizona v. Wayne James Nelson (CV92-
18841), the accused was found guilty of trying to defraud
the state of nearly $2 million. Nelson, a manager in the of-
fice of the Arizona State Treasurer, argued that he had di-
verted funds to a bogus vendor to demonstrate the absence
of safeguards in a new computer system. The amounts of
the 23 checks issued are shown in exhibit 3, page 82.

Because human choices are not random, invented
numbers are unlikely to follow Benford’s law. Here are
some divergent signs that Benford’s law would have
drawn attention to:

m As is often the case in fraud, the embezzler started
small and then increased dollar amounts.

m Most of the amounts were just below $100,000. It’s
possible that higher dollar amounts received additional
scrutiny or that checks above that amount required human
signatures instead of automated check writing. By keeping
the amounts just below an additional control threshold, the
manager tried to conceal the fraud.

m The digit patterns of the check amounts are almost
opposite to those of Benford’s law. Over 90% have 7, § or
9 as a first digit. Had each vendor been tested against Ben-
ford’s law, this set of numbers also would have had a low
conformity, signaling an irregularity.

m The numbers appear to have been chosen to give the
appearance of randomness. Benford’s law is quite counter-
intuitive; people do not naturally assume that some digits
occur more frequently. None of the check amounts was
duplicated; there were no round numbers; and all the
amounts included cents. However, subconsciously, the
manager repeated some digits and digit combinations.
Among the first two digits of the invented amounts, §7,
88, 93 and 96 were all used twice. For the last two digits,
16, 67 and 83 were duplicated. There was a tendency to-
ward the higher digits; note that 7 through 9 were the
most frequently used digits, in contrast to Benford’s law. A
total of 160 digits were used in the 23 numbers. The
counts for the ten digits from 0 to 9 were 7, 19, 16, 14,
12, 5,17, 22, 22, and 26, respectively. A CPA familiar
with Benford’s law could have easily spotted the fact that
these numbers—invented to seem random by someone ig-
norant of Benford’s law—fall outside expected patterns and
thus merit closer examination.

Here are some possible practical applications for Benford's law
and digital analysis.

continued on page 82

W Accounts payable data.

m Estimations in the general ledger.

& The relative size of inventory unit prices among locations.
m Duplicate payments.

m Computer system conversion (for example, old to
new systemy; accounts receivable files).

B Processing inefficiencies due to high quantity/
low dollar transactions.

m New combinations of selling prices.
m Customer refunds.
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Benford’s Law Formula

P(D=dy) = log10(1 + 1/d,) for d,i{1, 2,...,9}

ON-THE-JOB APPLICATIONS

Corporate accounts payable data are a favorite target of the
digital analysis technology. The first- and second-digit tests
are used as high-level examinations of reasonableness (data
authenticity). The graph of the first two digits of an ac-
counts payable file of 2 NASDAQ-listed software company
is shown in exhibit 4, page 83.

The line plots Benford’s law and the bars show the ac-
tual proportions. When the bars extend above the Ben-
ford’s law line, the actual proportion exceeds the Benford’s
law—predicted proportion, creating an abnormal level of
duplication for that first-two digit combination.

An analysis of the actual dollar amounts showed that the
numbers $25, $30 and $10 occurred most frequently. The
followup audit showed that invoices with these amounts
were mainly for courier charges. Repeated low dollar
amounts highlight inefliciencies if they are being processed
for the same type of purchase. At one company, the fol-
lowup audit showed that accounts payable was processing
about 12,000 invoices annually for employee business card
purchases from the same vendor. Monthly billing could

Exhibit 3: Check Fraud in Arizona

The table lists the checks that a manager in the office of the
Arizona State Treasurer wrote to divert funds for his own use.
The vendors to whom the checks were issued were fictitious.

Date of Check
October i, 1992

Amount

$ 1,927.48
27,902.31
86,241.90
72,117.46
8132175

v 97,473.96

October 19, 1992 93,249.11

89,658.17

87,776.89

92,105.83

79,949.16

87,602.93

96,879.27

91,806.47

84,991.67

90,831.83

93,766.67

88,338.72

94,639.49

83,709.28

96,412.21

88,432.86

A4 #1;8552.16

TOTAL $ 1,878,687.58

October 14, 1992

FRAUD DETECTION

make steep reductions in processing costs. Other problems
that have been found include:

W Biases in corporate data. In one company’s accounts
payable data, there was a large first-two digit spike (excess
of actual over expected) at 24. An analysis showed that the
amount §24.50 occurred abnormally often. The audit re-
vealed that these were claims for travel expenses and that
the company had a $25 voucher requirement. Employees
were apparently biased toward claiming $24.50.

& Ducking authorization levels. Sometimes managers
concentrate their purchases just below their authorization
levels so their choices won't be scrutinized. Managers
with $3,000 purchasing
levels might have a lot of
invoices for $2,800 to
$2,999, which would

Do It Yourself

For a hands-on introduction

show up in data analysis
by spikes at 28 and 29.
During one bank audit,
the auditors analyzed the
first two digits of credit
card balances written off as
uncollectible. The graph
showed a large spike at 49.
An analysis of the related
dollar amounts (that is,
from $480 to $499 and
from $4,800 to $4,999)

to Benford's law, open The
Wall Street Journal and pick
a random starting point in
the stock tables for the two
major exchanges. Tabulate
the first digits of the daily
volume (in hundreds) for
100 stocks. About 50 of the
numbers on the list should
start with a 1 or a 2. Only
about 5 numbers should
start with a 9—just as Ben-
ford's law would predict.

showed that the spike was
caused mainly by amounts
between $4,800 and $4,999, and that one officer was re-
sponsible for the bulk of these write-offs. The write-off
limit for internal personnel was $5,000. It turned out that
the officer was operating with a circle of friends who
would apply for credit cards. After they ran up balances of
just under $5,000, he would write the debts off.

It’s also possible to test for excessive round numbers
when an accountant wants to check for excessive esti-
mating (perhaps royalty receivable schedules) and to test
the last two digits to find number invention (perhaps in
inventory counts).

REFINING THE TESTS

Corporate data sets are becoming larger and larger. The
first-two-digits test could be fine-tuned to a first-three-
digits test to keep sample sizes manageable, but there is still
the potential for large samples. For example, the first two
digits 30 might have an actual proportion of 0.02, which 1s
higher than the 0.0142 expected, but an audit of 2% of the
population would be excessive and expensive.

Subset tests identify small lists of serious anomalies in
large data sets, making an analysis much more manageable.
They focus on errors as opposed to biases, fraud or pro-
cessing inefficiencies. Data subsets are natural groupings of
the data. In accounts payable, the subsets are usually vendor
numbers. In banking data, the subsets are usually account
numbers. Other subset variables could be data for sales as-
sociates in retailing, transaction dates, travel agents in air-
line data, cost centers and employees in payroll data.
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FRAUD DETECTION

The underlying thesis of digital analysis is that Benford’s law
makes it possible to spot data anomolies.

Exhibit 4: First Two Digits of Accounts Payable Data

tem does not register payment of the invoice
to that vendor). Companies that have used
this test have reaped large paybacks of misdi-
rected funds.

4% |

3%

Proportion

§ Actual

== Benford’s law

The same, same, different criteria can find
many different types of near-identical entries.
In airline ticket refund data, it can find cases
where the ticket number is the same, the dollar
amount 1s the same and the credit card number
is different. In payroll data it can find instances
where the employee number is the same, the
date is the same and the checking account
number is different. This test works very well in
large data sets where the matches signal a seri-
ous error. The “hit” list is usually short enough
to allow an audit of all the matches.

Same, same, same. This test finds identical
entries, such as duplicate payments in accounts
payable. While many AP systems can make this
identification, duplicates may still occur if some
of the purchase details are miskeyed or when
there are a number of payment centers or mul-
tiple payment systems. Duplicates are detected
when all the payment data are analyzed togeth-

Relative size factor. The RSF test finds subsets where
the largest number is out of line with the remaining num-
bers and is possibly an error. It has detected errors in ac-
counts payable when staff miscoded the decimal point in
the invoice amount. The relative size factor (RSF) for a
subset 1s: RSF = Largest number in subset / Second largest
number in subset. An amount of $452.47 was coded as
$45,247. That erroneous $45,247 greatly exceeded all the
other payments to that vendor and the error was detected
due to the high RSE

A company in the Midwest wired $600,000 to what it
thought was a vendor but actually was a charity. The
$600,000 was significantly in excess of the amount usually
donated to the charity. Had the company run the RSF test
using the recipient’s checking account numbers as the sub-
set variable, the test would have detected that an amount
of this magnitude had never before been wired to that ac-
count number. The test is designed to detect data errors.
For example, a high RSF in payroll data could signal an
overtime error and a high RSF for inventories could signal
a calculation or count error.

Same, same, different. This test also detects errors by
identifying near-identical entries. In accounts payable
data the test is often used to identify cases in which the
invoice number is the same, the dollar amount is the
same and the vendor numbers are different. These
near-identical entries could occur if the wrong vendor
is paid (perhaps the vendor number is miskeyed) and at
a later stage the correct vendor is paid (because the sys-

er. This test can also be used in inventory, pay-
roll, accounts receivable and sales.

ADDRESSING ANOMALIES

Using digital analysis on corporate data requires the use of
a computer. There are digital analysis programs that oper-
ate in SAS, IDEA, ACL and Excel. Auditors can also
write their own programs to calculate the digit and num-
ber frequencies.

Digital analysis requires knowledge of Benford’s law and
some professional judgment to identify anomalies worthy
of investigation. It can be used in ongoing applications,
such as accounts payable, and for one-time needs, such as
Y2K problems. It is a surprising answer to the problem of
data irregularities and a powerful tool for CPAs. ]

Read All about it

For more on Benford’s law and digital analysis:

= The First Digit Problem, by R. Raimi, American Mathematicat
Monthly 83 (Aug.—Sept.): 521-538, 1976.

® The Use of Benford’s Law as an Aid in Analytical Procedures,
by M. J. Nigrini and L. |. Mittermaier, Auditing: A Journal
of Practice and Theory 16 (Fall): 52-67, 1997.

m Using Digital Frequencies to Detect Fraud, by M. J. Nigrini,
The White Paper (April/May): 3-6, 1996.
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