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Abstract

Matrices can be thought of as rectangular (often square) arrays of numbers, or as linear transformations
from one space to another (or possibly to the same space). The former picture is the simplest starting point,
but it is the latter, geometric view that gives a deeper understanding. We content ourselves in these notes
with giving a brief review of some of the definitions and results of Linear Algebra, leaving many of the
proofs to the reader; for more detail, the reader should consult a textbook in Linear Algebra, for example,
[St].
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1 Definitions

Definition 1.1 (Transpose, Complex Conjugate Transpose ).Given ann × m matrix A (wheren is the
number of rows andm is the number of columns), the transpose ofA, denotedAT , is them×n matrix where
the rows ofAT are the columns ofA. The complex conjugate transpose,A∗, is the complex conjugate of the
transpose ofA.

Exercise 1.2.Prove(AB)T = BT AT and(AT )T = A.
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Definition 1.3 (Real Symmetric, Complex Hermitian). If an n × n real matrixA satisfiesAT = A, then
we sayA is real symmetric; if ann × n complex matrixA satisfiesA = (A∗)T , then we sayA is complex
hermitian.

Definition 1.4 (Dot or Inner Product). The dot (or inner) product of two real vectorsv andw is defined
asvT w; if the vectors are complex, we instead use(v∗)T w. If v andw haven components,vT w = v1w1 +
· · · vnwn.

Definition 1.5 (Orthogonality). Two real vectors are orthogonal (or perpendicular) ifvT w = 0; for complex
vectors, the equivalent condition is(v∗)T w = 0.

Definition 1.6 (Length of a vector). The length of a real vectorv is |v| =
√

vT v; for a complex vector, we
have|v| =

√
(v∗)T v.

Definition 1.7 (Eigenvalue, Eigenvector).λ is an eigenvalue andv is an eigenvector ifAv = λv andv is
not the zero vector.

Exercise 1.8.If v is an eigenvector ofA with eigenvalueλ, showw = av, a ∈ C, is also an eigenvector ofA
with eigenvalueλ. Therefore, given an eigenvalueλ and an eigenvectorv, one can always find an eigenvector
w with the same eigenvalue, but|w| = 1.

To find the eigenvalues, we solve the equationdet(λI − A) = 0. This gives a polynomialp(λ) = 0. We
call p(λ) thecharacteristic polynomial.

Definition 1.9 (Degrees of freedom).The number of degrees of freedom in a matrix is the number of elements
needed to completely specify it; a generaln×m real matrix hasnm degrees of freedom.

Exercise 1.10.Show ann × n real symmetric matrix hasn(n+1)
2

degrees of freedom, and determine the
number of degrees of freedom of ann× n complex hermitian matrix.

Exercise 1.11.If A andB are symmetric, showAB is symmetric.

2 Change of Basis

Given a matrixA, we call the element in theith row andj th columnaij. We represent a vectorv as a column of
elements with theith beingvi. A nice way to see matrix-vector multiplication is that thevi give thecoefficients
by which the columns ofA are linearly mixed together. For the productw = Av to make sense, the length
(dimension) ofv must equalm, and the dimension ofw will be n. A is therefore a linear transform from
m-dimensional ton-dimensional space.

Multiple transformations appear written backwards: if we applyA thenB thenC to a vector, we write
w = CBAv. Note that taking the product of twon× n matrices requiresO(n3) effort.

Exercise 2.1.Show that there are two ways to evaluate triple matrix products of the typeCBA. The slow
way involvesO(n4) effort. How about the fast way? How do these results scale for the case of a product ofk
matrices?

Definition 2.2 (Invertible Martices). A is invertible if a matrixB can be found such thatBA = AB = I.
The inverse is then writtenB = A−1.

Exercise 2.3.Prove ifA is invertible, thanA must be a square matrix.
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A matrix A is a linear transformation; to write it in matrix form requires us to choose a coordinate system
(basis), and the transformation will look different in different bases. Consider the scalar quantityx = wT Av,
whereA, v andw are written relative to a given basis, sayu1, . . . , un. If M is an invertible matrix, we can
write these quantities in a new basis,Mu1, . . . ,Mun. We findv′ = Mv andw′ = Mw. How does the matrix
A look in the new basis?

Forx to remain unchanged by the transformation (as any scalar must) for all choices ofv andw requires
thatA becomeA′ = (MT )−1AM−1:

x′ = w′T A′v′ = (Mw)T ((MT )−1AM−1)(Mv) = wT IAIv = wT Av = x. (1)

This is asimilarity transformation , and representsA in the new basis.

3 Orthogonal Matrices

Definition 3.1 (Orthogonal Matrices). Q is an orthogonaln × n matrix if it has real entries andQT Q =
QQT = I.

NoteQ is invertible, with inverseQT .

Exercise 3.2.Show that the dot product is invariant under orthogonal transformation. That is, show that
given two vectors, transforming them using the same orthogonal matrix leaves their dot product unchanged.

Exercise 3.3.Show the number of degrees of freedom in an orthogonal matrix isn(n−1)
2

.

The set of orthogonal matrices of ordern forms acontinuousor topological group, which we callO(n).
For the group properties:

• Associativity follows from that of matrix multiplication.

• The identity matrix acts as an identity element, since it is in the group.

• Inverse is the transpose (see above):Q−1 = QT .

• Closure is satisfied because any product of orthogonal matrices is itself orthogonal.

Exercise 3.4.Prove the last assertion.

Forn = 2, a general orthogonal matrix can be written(
cos θ − sin θ
sin θ cos θ

)
or

(
cos θ − sin θ
− sin θ − cos θ

)
, (2)

where0 ≤ θ < 2π is a real angle. The determinant of the first is+1 and defines thespecial(i.e.,unit deter-
minant)orthogonal group SO(2) which is a subgroup ofO(2) with identity I. The second has determinant
−1 and corresponds to rotations with a reflection; this subgroup is disjoint fromSO(2).

Note thatSO(2), alternatively written as the family of planar rotationsR(θ), is isomorphic to the unit
length complex numbers under the multiplication operation:

R(θ) ←→ eiθ; (3)

(there is a bijection between the two sets). Therefore we haveR(θ1)R(θ2) = R(θ1 + θ2). This commutativity
relation doesnothold in highern > 2.
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Exercise 3.5.In 3 dimensions a general rotation involves3 angles (for example, azimuth, elevation, and roll).
How many angles are needed in4 dimensions? In3 dimensions one rotates about a line (the set of points
which do not move under rotation); what object do you rotate about in4 dimensions?

If an orthogonal matrixQ is used for conjugation of a general square matrixA, then the rule for transfor-
mation ((1)) becomesA′ = QAQT .

Exercise 3.6.Recall the Taylor expansions ofsin andcos:

cos(x) =
∞∑

n=0

(−x)2n

(2n)!
, sin(x) =

∞∑
n=0

−(−x)2n+1

(2n + 1)!
. (4)

For smallx, we have
cos(x) = 1 + O(x2), sin(x) = x + O(x3). (5)

For smallε, show a rotation byε is(
cos(ε) − sin(ε)
sin(ε) cos(ε)

)
=

(
1 + O(ε2) ε + O(ε3)
−ε + O(ε3) 1 + O(ε2)

)
. (6)

4 Trace

Thetrace of a matrixA, denote Trace(A) is the sum of the diagonal entries ofA:

Trace(A) =
n∑

i=1

aii. (7)

Lemma 4.1 (Eigenvalue Trace Formula).Trace(A) =
∑n

i=1 λi, where theλis are the eigenvalues ofA.

Proof. The proof relies on writing out the characteristic equation and comparing powers ofλ with the factor-
ized version. As the polynomial has rootsλi, we can write

det(λI − A) = p(λ) =
n∏

i=1

(λ− λi). (8)

Note the coefficient ofλn is 1, thus we have
∏

i(λ − λi) and notc
∏

i(λ − λi) for some constantc. By
expanding out the RHS, the coefficient ofλn−1 is −

∑n
i=1 λi. Expanding the LHS, the lemma follows by

showing the coefficient ofλn−1 in det(λI − A) is−Trace(A).

Lemma 4.2. det(A1 · · ·Am) = det(A1) · · · det(Am). Notedet(I) = 1.

Corollary 4.3. Trace(A) is invariant under rotation of basis: Trace(QT AQ) = Trace(A).

Exercise 4.4.Prove the above corollary.
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5 Spectral Theorem for Real Symmetric Matrices

The main theorem we prove is

Theorem 5.1 (Spectral Theorem ).LetA be a real symmetricn×n matrix. Then there exists an orthogonal
n × n matrix Q and a real diagonal matrixΛ such thatQT AQ = Λ, and then eigenvalues ofA are the
diagonal entries ofΛ.

This result is remarkable: any real symmetric matrix is diagonal when rotated into an appropriate basis.
In other words, the operation of a matrixA on a vectorv can be broken down into three steps:

Av = QΛQT v = (undo the rotation)(stretch along the coordinate axes)(rotation)v. (9)

We shall only prove the theorem in the case when the eigenvalues are distinct (note a generic matrix hasn
distinct eigenvalues, so this is not a particularly restrictive assumption). A similar theorem holds for complex
hermitian matrices; the eigenvalues are again real, except instead of conjugating by an orthogonal matrixQ
we must now conjugate by a unitary matrixU .

Remark 5.2. The spectral theorem allows us to calculate the effect of high powers of a matrix quickly. Given
a vectorv, write v as a linear combination of the eigenvectorsvi: v =

∑
i civi. ThenAmv =

∑
ciλ

m
i vi; this

is significantly faster than calculating the entries ofAm.

5.1 Preliminary Lemmas

For the Spectral Theorem we prove a sequence of needed lemmas:

Lemma 5.3. The eigenvalues of a real symmetric matrix are real.

Proof. Let A be a real symmetric matrix with eigenvalueλ and eigenvectorv. Note that we do not yet know
that v has only real coordinates. Therefore,Av = λv. Take the dot product of both sides with the vector
(v∗)T , the complex conjugate transpose ofv:

(v∗)T Av = λ(v∗)T v. (10)

The two sides are clearly complex numbers. AsA is real symmetric, taking the complex conjugate transpose
of the left hand side of (10) gives(v∗)T Av∗. Therefore, both sides of (10) are real. As(v∗)T v is real, we
obtainλ is real.

Lemma 5.4. The eigenvectors of a real symmetric matrix are real.

Proof. The eigenvectors solve the equation(λI − A)v = 0. As λI − A is real, Gaussian elimination shows
v is real.

Lemma 5.5. If λ1 andλ2 are two distinct eigenvalues of a real symmetric matrixA, then their corresponding
eigenvectors are perpendicular.

Proof. We studyvT
1 Av2. Now

vT
1 Av2 = vT

1 (Av2) = vT
1 (λ2v2) = λ2v

T
1 v2. (11)

Also,
vT

1 Av2 = vT
1 AT v2 = (vT

1 AT )v2 = (Av1)
T v2 = (λ1v1)

T v2 = λ1v
T
1 v2. (12)

Therefore
λ2v

T
1 v2 = λ1v

T
1 v2 or (λ1 − λ2)v

T
1 v2 = 0. (13)

As λ1 6= λ2, vT
1 v2 = 0. Thus, the eigenvectorsv1 andv2 are perpendicular.
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5.2 Proof of the Spectral Theorem (Easy Case)

We prove the Spectral Theorem for real symmetric matricesif there are n distinct eigenvectors. Let λ1 to
λn be then distinct eigenvectors, and letv1 to vn be the corresponding eigenvectors chosen so that eachvi

has length1. Consider the matrixQ, where the first column ofQ is v1, the second column ofQ is v2, all the
way to the last column ofQ which isvn:

Q =

 ↑ ↑ ↑
v1 v2 · · · vn

↓ ↓ ↓

 (14)

The transpose ofQ is

QT =

 ← v1 →
...

← vn →

 (15)

Exercise 5.6.Show thatQ is an orthogonal matrix. Use the fact that thevi all have length one, and are
perpendicular to each other.

ConsiderB = QT AQ. To find its entry in theith row andj th column, we look at

eT
i Bej (16)

where theek are column vectors which are1 in thekth position and0 elsewhere. Thus, we need only show
thateT

i Bej = 0 if i 6= j and equalsλj if i = j.

Exercise 5.7.ShowQei = vi andQT vi = ei.

We calculate

eT
i Bej = eT

i QT AQej

= (eT
i QT )A(Qej)

= (Qei)
T A(Qej)

= vT
i Avj

= vT
i (Avj)

= vT
i λjvj = λjv

T
i vj. (17)

As vT
i vj equals0 if i 6= j and1 if i = j, this proves the claim.

Thus, the off-diagonal entries ofQT AQ are zero, and the diagonal entries are the eigenvaluesλj. This
shows thatQT AQ is a diagonal matrix whose entries are then eigenvalues ofA. 2

Note that, in the case ofn distinct eigenvalues, not only can we write down the diagonal matrix, we
can easily write down whatQ should be. Further, by reordering the columns ofQ, we see we reorder the
positioning of the eigenvalues on the diagonal.

Exercise 5.8.Prove similar results for a complex hermitian matrixA. In particular, show the eigenvalues
are real, and if the eigenvalues ofA are distinct, thenA = U∗ΛU for a unitaryU .
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6 Spectral Theorem for Real Symmetric Matrices (Harder Case)

Let A be a real symmetric matrix acting onRn. ThenA has an orthonormal basisv1, . . . , vn such that
Avj = λjvj. We sketch the proof.

Write the inner or dot product〈v, w〉 = vtw. As A is symmetric,〈Av, w〉 = 〈v, Aw〉.
Definition 6.1. V ⊥ = {w : ∀v ∈ V, 〈w, v〉 = 0}.
Lemma 6.2. SupposeV ⊂ Rn is an invariant vector subspaceunderA (ifv ∈ V , thenAv ∈ V ). ThenV ⊥

is alsoA-invariant: A(V ⊥) ⊂ V ⊥.

This proves the spectral theorem. Suppose we find av0 6= 0 such thatAv0 = λ0v0. TakeV = {µv0 : µ ∈
R} for the invariant subspace.

By Lemma 6.2,V ⊥ is left invariant underA, and is one dimension less. Thus, by whatever method we
used to find an eigenvector, we apply the same method onV ⊥.

Thus, all we must show is given anA-invariant subspace, there is an eigenvector. Consider

max
v with 〈v,v〉=1

{
〈Av, v〉

}
. (18)

Standard fact: every continuous function on a compact set attains its maximum (not necessarily uniquely).
Note that the set ofv such that〈v, v〉 = 1 is a compact set. See, for example, [?].

Let v0 be a vector giving the maximum value, and denote this maximum value byλ0. As 〈v0, v0〉 = 1, v0

is not the zero vector.

Lemma 6.3. Av0 = λ0v0.

Clearly, if Av0 is a multiple ofv0 it has to beλ0 (from the definition ofv0 andλ0). Thus, it is sufficient to
show

Lemma 6.4. {µv0 : µ ∈ R} is anA-invariant subspace.

Proof. let w be an arbitrary vector perpendicular tov0, andε be an arbitrary small real number. Consider

〈A(v0 + εw), v0 + εw〉 (19)

We need to renormalize, asv0 + εw is not unit length; it has length1 + ε2〈w,w〉. As v0 was chosen to
maximize〈Av, v〉 subject to〈v, v〉 = 1, after normalizing the above cannot be larger. Thus,

〈A(v0 + εw), v0 + εw〉 = 〈Av0, v0〉+ 2ε〈Av0, w〉+ ε2〈w, w〉. (20)

Normalizing the vectorv0 + εw by its length, we see that in Equation 20, the orderε terms must be zero.
Thus,

〈Av0, w〉 = 0; (21)

however, this impliesAv0 is in the space spanned byv0 (asw was an arbitrary vector perpendicular tov0),
completing our proof.

Corollary 6.5. Any local maximum will lead to an eigenvalue-eigenvector pair.

The second largest eigenvector (denotedλ1) is

λ1 = max
〈v,v0〉=0

〈Av, v〉
〈v, v〉

. (22)

We can either divide by〈v, v〉, or restrict to unit length vectors.
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