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Abstract

Matrices can be thought of as rectangular (often square) arrays of numbers, or as linear transformations
from one space to another (or possibly to the same space). The former picture is the simplest starting point,
but it is the latter, geometric view that gives a deeper understanding. We content ourselves in these notes
with giving a brief review of some of the definitions and results of Linear Algebra, leaving many of the
proofs to the reader; for more detail, the reader should consult a textbook in Linear Algebra, for example,
[St].
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1 Definitions

Definition 1.1 (Transpose, Complex Conjugate Transpose JGiven ann x m matrix A (wheren is the
number of rows andh is the number of columns), the transposelptienotedA?, is them x n matrix where
the rows ofA” are the columns afl. The complex conjugate transpost, is the complex conjugate of the
transpose ofd.

Exercise 1.2.Prove(AB)T = BT AT and (AT)T = A.
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Definition 1.3 (Real Symmetric, Complex Hermitian). If an n x n real matrix A satisfiesA” = A, then
we sayA is real symmetric; if am x n complex matrix4 satisfiesd = (A*)7, then we sayd is complex
hermitian.

Definition 1.4 (Dot or Inner Product). The dot (or inner) product of two real vectorsand w is defined
asvlw; if the vectors are complex, we instead s&)”w. If v andw haven componentsy”w = vyw; +
DY /Unwn.

Definition 1.5 (Orthogonality). Two real vectors are orthogonal (or perpendicular)ffw = 0; for complex
vectors, the equivalent condition(is*)”w = 0.

Definition 1.6 (Length of a vector). The length of a real vectar is |v| = VvTv; for a complex vector, we
have|v| = /(v*)Tv.

Definition 1.7 (Eigenvalue, Eigenvector).\ is an eigenvalue and is an eigenvector ilv = Av andv is
not the zero vector.

Exercise 1.8.1f v is an eigenvector ofl with eigenvalue\, showw = av, a € C, is also an eigenvector of
with eigenvalue\. Therefore, given an eigenvaldeand an eigenvectar, one can always find an eigenvector
w with the same eigenvalue, but| = 1.

To find the eigenvalues, we solve the equatien(\/ — A) = 0. This gives a polynomigh(\) = 0. We
call p(\) thecharacteristic polynomial.

Definition 1.9 (Degrees of freedom)The number of degrees of freedom in a matrix is the number of elements
needed to completely specify it; a genetak m real matrix hasnm degrees of freedom.

Exercise 1.10.Show ann x n real symmetric matrix hag% degrees of freedom, and determine the
number of degrees of freedom ofarx n complex hermitian matrix.

Exercise 1.11.If A and B are symmetric, show B is symmetric.

2 Change of Basis

Given a matrix4, we call the element in th& row and;" columna,;. We represent a vecteras a column of
elements with thé" beingu;. A nice way to see matrix-vector multiplication is that th@ive thecoefficients
by which the columns ofi are linearly mixed together. For the product= Av to make sense, the length
(dimension) ofv must equaln, and the dimension ab will be n. A is therefore a linear transform from
m-dimensional to»-dimensional space.

Multiple transformations appear written backwards: if we applthen B thenC' to a vector, we write
w = C'BAv. Note that taking the product of two x n matrices require®(n?) effort.

Exercise 2.1.Show that there are two ways to evaluate triple matrix products of the@ypd. The slow
way involves)(n?) effort. How about the fast way? How do these results scale for the case of a product of
matrices?

Definition 2.2 (Invertible Martices). A is invertible if a matrixB can be found such thd8A = AB = I.
The inverse is then writteB = A~

Exercise 2.3.Prove if A is invertible, thanA must be a square matrix.



A matrix A is a linear transformation; to write it in matrix form requires us to choose a coordinate system
(basis), and the transformation will look different in different bases. Consider the scalar quaatity Av,
where A, v andw are written relative to a given basis, say, . .., u,. If M is an invertible matrix, we can
write these quantities in a new basigy, ..., Mu,. We findv' = Mv andw’ = Mw. How does the matrix
A'look in the new basis?

For x to remain unchanged by the transformation (as any scalar must) for all choicesdfv requires
that A becomed’ = (MT)"tAM~:

v =wT AV = (Mw)" (M) TAM Y (Mv) = w ' TAIv = wh Av = 2. (1)

This is asimilarity transformation , and representd in the new basis.

3 Orthogonal Matrices

Definition 3.1 (Orthogonal Matrices). @ is an orthogonal: x n matrix if it has real entries and)”Q =

QQ" = 1.
Note(Q is invertible, with inverse)’.

Exercise 3.2.Show that the dot product is invariant under orthogonal transformation. That is, show that
given two vectors, transforming them using the same orthogonal matrix leaves their dot product unchanged.

Exercise 3.3.Show the number of degrees of freedom in an orthogonal mati’ﬁl(%Tél.

The set of orthogonal matrices of ordeforms acontinuousor topological group, which we callO(n).
For the group properties:

e Associativity follows from that of matrix multiplication.

e The identity matrix acts as an identity element, since it is in the group.

e Inverse is the transpose (see abovg)! = Q7.

e Closure is satisfied because any product of orthogonal matrices is itself orthogonal.
Exercise 3.4.Prove the last assertion.

Forn = 2, a general orthogonal matrix can be written

cosf) —sinf or cosf) —sinf )
sinf  cosf —sinf —cosf )’
where0 < # < 27 is a real angle. The determinant of the firstis and defines thepecial(i.e., unit deter-
minant)orthogonal group SO(2) which is a subgroup a(2) with identity I. The second has determinant
—1 and corresponds to rotations with a reflection; this subgroup is disjoint$fO(2).

Note thatSO(2), alternatively written as the family of planar rotatioR$0), is isomorphic to the unit
length complex numbers under the multiplication operation:

R(0) «— €, 3)

(there is a bijection between the two sets). Therefore we Rawe) R(6,) = R(6; + 62). This commutativity
relation doesothold in highern > 2.



Exercise 3.5.In 3 dimensions a general rotation involvésngles (for example, azimuth, elevation, and roll).
How many angles are needed4rdimensions? Ir3 dimensions one rotates about a line (the set of points
which do not move under rotation); what object do you rotate abodtdimensions?

If an orthogonal matrix) is used for conjugation of a general square matrjxhen the rule for transfor-
mation ((1)) becomed’ = QAQ".

Exercise 3.6.Recall the Taylor expansions @f andcos:

S S (!
cos(z) = ; on) sin(z) = ;m 4)
For smallz, we have
cos(r) = 1+ O0(2?), sin(z) = =+ O(a?). (5)
For smalle, show a rotation by is
cos(e) —sin(e) \ 1+0(e*) e+ 0(e)
( sin(e)  cos(e) ) N < —e+0(e) 1+ 0(e) ) ' ()

4 Trace

Thetrace of a matrixA, denote Traced) is the sum of the diagonal entries é4f

n

TracdA) = > aj. 7)

=1
Lemma 4.1 (Eigenvalue Trace Formula).TracgA) = Y | \;, where the\;s are the eigenvalues ¢f.

Proof. The proof relies on writing out the characteristic equation and comparing powgssitf the factor-
ized version. As the polynomial has rodts we can write

n

det(\ — A) = p(A) = JJ(A = ). (8)

=1

Note the coefficient of\" is 1, thus we havd [,(A — ;) and notc[[,(A — )A;) for some constant. By
expanding out the RHS, the coefficientdf ' is — > "  A;. Expanding the LHS, the lemma follows by
showing the coefficient ok~ in det(\ — A) is —Tracg A). O

Lemma 4.2. det(A; --- A,,) = det(A;) - - - det(A,,). Notedet(I) = 1.
Corollary 4.3. Trace A) is invariant under rotation of basis: Tra¢@” AQ) = TracegA).

Exercise 4.4.Prove the above corollary.



5 Spectral Theorem for Real Symmetric Matrices

The main theorem we prove is

Theorem 5.1 (Spectral Theorem ) Let A be a real symmetrie x n matrix. Then there exists an orthogonal
n x n matrix @ and a real diagonal matrix\ such thatQ” AQ = A, and then eigenvalues ofd are the
diagonal entries of\.

This result is remarkable: any real symmetric matrix is diagonal when rotated into an appropriate basis.
In other words, the operation of a matrixon a vectow can be broken down into three steps:

Av = QAQ"v = (undo the rotatioj(stretch along the coordinate ax@stationv. 9)

We shall only prove the theorem in the case when the eigenvalues are distinct (note a generic matrix has
distinct eigenvalues, so this is not a particularly restrictive assumption). A similar theorem holds for complex
hermitian matrices; the eigenvalues are again real, except instead of conjugating by an orthogong) matrix
we must now conjugate by a unitary mattix

Remark 5.2. The spectral theorem allows us to calculate the effect of high powers of a matrix quickly. Given
a vectorv, write v as a linear combination of the eigenvectersv = ). ¢;v;. ThenA™v = )" ¢;A\7"v;; this
is significantly faster than calculating the entries4f.

5.1 Preliminary Lemmas

For the Spectral Theorem we prove a sequence of needed lemmas:
Lemma 5.3. The eigenvalues of a real symmetric matrix are real.

Proof. Let A be a real symmetric matrix with eigenvaldend eigenvectos. Note that we do not yet know
thatv has only real coordinates. Thereforéy = A\v. Take the dot product of both sides with the vector
(v*)T, the complex conjugate transposevof

(v*)T Av = A(v*) . (10)

The two sides are clearly complex numbers. As real symmetric, taking the complex conjugate transpose
of the left hand side of (10) give®*)? Av*. Therefore, both sides of (10) are real. As)Tv is real, we
obtain\ is real. n

Lemma 5.4. The eigenvectors of a real symmetric matrix are real.

Proof. The eigenvectors solve the equation — A)v = 0. As \I — A is real, Gaussian elimination shows
vis real. O

Lemma5.5.If \; and )\, are two distinct eigenvalues of a real symmetric matfjxhen their corresponding
eigenvectors are perpendicular.

Proof. We studyv! Av,. Now

vl Avy = vl (Avy) = vl (M) = Aoviws. (11)
Also,
vl Avy = v] ATvy = (WF AT vy = (Av) v = (M) vy = Mol v, (12)
Therefore
Avivy = Mvivy of (A — A)vivg = 0. (13)
As \; # Ay, vivy = 0. Thus, the eigenvectors andv, are perpendicular. O
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5.2 Proof of the Spectral Theorem (Easy Case)

We prove the Spectral Theorem for real symmetric matricdsere are n distinct eigenvectors Let \; to

A be then distinct eigenvectors, and let to v, be the corresponding eigenvectors chosen so that®ach
has lengthl. Consider the matrix), where the first column af) is v, the second column @ is vy, all the
way to the last column af) which isv,,:

T T 7
Q = V1 Uy e U (24)
ol !

The transpose dd is

— v —
Q" = : (15)

— v, —

Exercise 5.6.Show that() is an orthogonal matrix. Use the fact that theall have length one, and are
perpendicular to each other.

ConsiderB = QT AQ. To find its entry in the™ row and;" column, we look at
el Be; (16)

where thee;, are column vectors which afein the k" position and) elsewhere. Thus, we need only show
thate! Be; = 0if i # j and equals\; if i = ;.
Exercise 5.7.ShowQe; = v; andQ”v; = e;.

We calculate

el Be; = e} QT AQe;

(e QT)A(Qey)
= (Qei)"A(Qe)
v} Av;
vi (Avy)

= v Ay = A vy (17)

Asv]v; equald if i # j andlif i = j, this proves the claim.

Thus, the off-diagonal entries ¢f” AQ are zero, and the diagonal entries are the eigenvalpe$his
shows that)? AQ is a diagonal matrix whose entries are theigenvalues ofl. O

Note that, in the case of distinct eigenvalues, not only can we write down the diagonal matrix, we
can easily write down wha® should be. Further, by reordering the columng pfwe see we reorder the
positioning of the eigenvalues on the diagonal.

Exercise 5.8.Prove similar results for a complex hermitian mateix In particular, show the eigenvalues
are real, and if the eigenvalues dfare distinct, therd = U*AU for a unitaryU..



6 Spectral Theorem for Real Symmetric Matrices (Harder Case)

Let A be a real symmetric matrix acting d&". Then A has an orthonormal basis, ..., v, such that
Av; = \jv;. We sketch the proof.
Write the inner or dot product, w) = v'w. As A is symmetric,{ Av, w) = (v, Aw).
Definition 6.1. V* = {w : Vv € V, (w,v) = 0}.
Lemma 6.2. Supposé’ C R” is aninvariant vector subspacenderA (ifv € V, thenAv € V). ThenV+
is also A-invariant: A(V+) c V+.
This proves the spectral theorem. Suppose we find-a 0 such thatdvy = \gvg. TakeV = {uvg : p €
R} for the invariant subspace.
By Lemma 6.2,V is left invariant under4, and is one dimension less. Thus, by whatever method we
used to find an eigenvector, we apply the same methdd-an
Thus, all we must show is given atrinvariant subspace, there is an eigenvector. Consider
A } 18
vwitrflll%v},{w:l {< U7U> ( )
Standard fact: every continuous function on a compact set attains its maximum (not necessarily uniquely).
Note that the set of such thatv,v) = 1 is a compact set. See, for examplg, [
Let vy be a vector giving the maximum value, and denote this maximum valug.bds (v, vg) = 1, vy
is not the zero vector.

Lemma 6.3. Avg = A\gvyp.

Clearly, if Av, is a multiple ofy, it has to be\, (from the definition ofvy and\y). Thus, it is sufficient to
show

Lemma 6.4. {uv, : 1 € R} is an A-invariant subspace.
Proof. let w be an arbitrary vector perpendicularig ande be an arbitrary small real number. Consider
(A(vg + ew), vy + €w) (19)

We need to renormalize, ag§ + ew is not unit length; it has length + €*(w, w). As vy, was chosen to
maximize(Av, v) subject to(v, v) = 1, after normalizing the above cannot be larger. Thus,

(A(vo + ew), v + ew) = (Avg,vo) + 2e{Avg, w) + *(w, w). (20)

Normalizing the vector, + cw by its length, we see that in Equation 20, the ordérms must be zero.
Thus,

<AU0a U}> - O) (21)
however, this impliesAv, is in the space spanned by (asw was an arbitrary vector perpendicularg),
completing our proof. ]

Corollary 6.5. Any local maximum will lead to an eigenvalue-eigenvector pair.
The second largest eigenvector (denotedis
(Av,v)
(wwo)=0 (v, v)

We can either divide byw, v), or restrict to unit length vectors.

A=

(22)
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