Math 104: Factoring Handout *

Steven Miller[†]

October 18, 2003

Abstract

We sketch the rules to determine the signs of factors of some quadratics. **Note: these notes were prepared in good faith; however,**

1 Formulation

The most general quadratic (degree two) polynomial in one variable x looks like

$$rx^2 + px + q$$
, r, p, q integers. (1)

In these notes we only concern ourselves with r=1, and we look for linear (degree one) factors such that

$$x^{2} + px + q = (ax + b)(dx + c),$$
 (2)

with a, b, c and d integers. Using FOIL to expand, we find

$$x^{2} + px + q = adx^{2} + (ac + bd)x + bc.$$
 (3)

Therefore,

$$ad = 1, \quad ac + bd = p, \quad bc = q. \tag{4}$$

As a, b, c and d are integers, we see either a = d = 1 or a = d = -1.

^{*}Ohio State University, Autumn 2003

[†]E-mail:sjmiller@math.ohio-state.edu

One can prove that it is sufficient to study the case when a=d=1. The reason is that if both a and d are negative, one can pull out a negative sign from each linear factor, and reduce to studying the case

$$x^{2} + px + q = (x+b)(x+c). {5}$$

Rule: if we are trying to factor $x^2 + px + q$ over the integers, it is sufficient to look for factorizations of the form (x + b)(x + c).

We will now give rules to determine the signs of b and c given p and q.

When we do not know the sign of a number, we will use lower case letters; upper case letters are always positive.

2
$$p > 0, q > 0$$

Thus, we want to factor

$$x^{2} + Px + Q = (x+b)(x+c); (6)$$

remember, we are using capital letters to denote positive quantities. Thus

$$bc = Q, \quad b+c = P. \tag{7}$$

As Q is positive, either b, c > 0 or b, c < 0. If both are negative, then b + c < 0. But b + c = P > 0, a contradiction.

Therefore we have shown

Theorem 2.1. If p, q > 0, then b, c > 0, and we look for factors of the form

$$x^{2} + Px + Q = (x+B)(x+C).$$
 (8)

3 p < 0, q > 0

Thus, we want to factor

$$x^{2} - Px + Q = (x+b)(x+c). (9)$$

As Q is positive, either b,c>0 or b,c<0. If both are positive, then b+c>0. But b+c=-P<0, a contradiction.

Therefore we have shown

Theorem 3.1. If p, q > 0, then b, c < 0, and we look for factors of the form

$$x^{2} + Px + Q = (x - B)(x - C).$$
(10)

4 p > 0, q < 0

Thus, we want to factor

$$x^{2} + Px - Q = (x+b)(x+c).$$
(11)

As bc=-Q, we find exactly one of b and c is positive, and the other is negative. Without loss of generality, we may assume b>0 and c<0. Then we have

$$x^{2} + Px - Q = (x+B)(x-C).$$
 (12)

Further, from FOIL

$$B - C = P > 0. ag{13}$$

Therefore, |B| > |C|, and we have proved

Theorem 4.1. If p > 0 and q < 0, then we may take b > 0 and c < 0, and |b| > |c|.

5 p < 0, q < 0

Thus, we want to factor

$$x^{2} - Px - Q = (x+b)(x+c). (14)$$

As bc = -Q, we find exactly one of b and c is positive, and the other is negative. Without loss of generality, we may assume b > 0 and c < 0. Then we have

$$x^{2} - Px - Q = (x+B)(x-C).$$
 (15)

Further, from FOIL

$$B - C = -P > 0. (16)$$

Therefore, |B| < |C|, and we have proved

Theorem 5.1. If p < 0 and q < 0, then we may take b > 0 and c < 0, and |b| < |c|.

6 Summary

Again letting uppercase letters denote positive quantities, we find

$$x^{2} + Px + Q = (x + B)(x + C)$$

$$x^{2} - Px + Q = (x - B)(x - C)$$

$$x^{2} + Px - Q = (x + B)(x - C), |B| > |C|$$

$$x^{2} - Px - Q = (x + B)(x - C), |B| < |C|.$$
(17)