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Chapter 1

Algebraic and Transcendental
Numbers

Definition 1.0.1 (Algebraic Number). α ∈ C is an algebraic number if it is a
root of a polynomial with finite degree and integer coefficients.

Definition 1.0.2 (Transcendental Number).α ∈ C is a transcendental number
if it is not algebraic.

Thus, a transcendental number is a number that does not satisfy any poly-
nomial equation with integer coefficients. Fortunately primitive man must have
thought that every number is algebraic otherwise the development of mathematics
would have suffered greatly. But transcendental numbers do exist. The mere exis-
tence of such numbers was a puzzling problem for hundreds of years. Remember
that back in the Pythagorean era the existence of irrational numbers was quite a
devastating event. The existence of transcendental numbers, however, must have
brought a sense of relief to the mathematical psyche. For one, the transcendence
of a certain number,π, settled the long-standing problem of proving the impossi-
bility of squaring a circle. Also, it showed that the theory of equations is simply
not enough, and hence it opened the door for the development of other branches of
mathematics. The purpose of this chapter is to prove the existence of transcenden-
tal numbers. While it is possible to write down explicit examples of transcenden-
tal numbers (e, π, etc!), we prefer to show the existence using a different method.
Here we will use Cantor’s ingenious counting argument. The basic idea is to show
that there are a lot more real numbers than there are algebraic numbers. This will
then show that there must be a left-over set, entirely consisting of transcendental
numbers. We will see from the proof, that are a lot more transcendental numbers
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than there are algebraic ones; in fact, if one chooses a random number, the chance
of it being transcendental is effectively one hundred percent!

1.1 Definitions and Cardinalities of Sets

1.1.1 Definitions

A functionf : A → B is one-to-one(or injective) iff(x) = f(y) impliesx = y;
f is onto (or surjective) if given anyb ∈ B, ∃a ∈ A with f(a) = b. A bijection
is a one-to-one and onto function.

We say two setsA andB have the same cardinality(ie, are the same size) if
there is a bijectionf : A → B. We denote the common cardinality by|A| = |B|.
If A has finitely many elements (sayn elements),A is finite and|A| = n < ∞.

Exercise 1.1.1.Show two finite sets have the same cardinality if and only if they
have the same number of elements.

Exercise 1.1.2.If f is a bijection fromA to B, prove there is a bijectiong = f−1

fromB to A.

Exercise 1.1.3.SupposeA and B are two sets, and suppose we have two onto
mapsf : A → B andg : B → A. Then show that|A| = |B|. NOT AS EASY AS
IT SEEMS

Exercise 1.1.4.A setA is called infinite if there is a one-to-one mapf : A → A
which is not onto. Using this definition, show that the setsN and Z are infinite
sets. In other words, prove that an infinite set has infinitely many elements.

Exercise 1.1.5.Show that the cardinality of the even integers is the same as the
cardinality of the integers.

Remark 1.1.6. The above example is surprising to many.MAYBE ADD RE-
MARK HERE ABOUT COUNTING INTEGERS UP TO X, AND LOOKING
AT LIMITS .

A is countable if there is a bijection betweenA and the integersZ. A is at
most countableif A is either finite or countable.

Exercise 1.1.7.Let x, y, z be subsets ofX (for example,X = Q, R, C, Rn, et
cetera). DefineR(x, y) to be true if|x| = |y| (the two sets have the same cardi-
nality), and false otherwise. ProveR is an equivalence relation.
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1.1.2 Countable Sets

We show that several common sets are countable. Consider the set of whole num-
bersW = {1, 2, 3, . . . }. Definef : W → Z by f(2n) = n − 1, f(2n + 1) =
−n− 1. By inspection, we seef gives the desired bijection betweenW andZ.

Similarly, we can construct a bijection fromN to Z, whereN = {0, 1, 2, . . . }.
Thus, we have proved

Lemma 1.1.8.To show a setS is countable, it is sufficient to find a bijection from
S to eitherW or N.

We need the intuitively plausible

Lemma 1.1.9. If A ⊂ B, then|A| ≤ |B|.

Definition 1.1.10. If f : A → C is a one-to-one function (not necessarily onto),
then|A| ≤ |C|. Further, ifC ⊂ A, then|A| = |C|.

Exercise 1.1.11.Prove Lemmas 1.1.9 and 1.1.10.

If A andB are sets, thecartesian productA×B is {(a, b) : a ∈ A, b ∈ B}.

Theorem 1.1.12.If A andB are countable, so isA ∪B andA×B.

Proof. We have bijectionsf : N → A andg : N → B. Thus, we can label the
elements ofA andB by

A = {a0, a1, a2, a3, . . . }
B = {b0, b1, b2, b3, . . . }. (1.1)

AssumeA∩B is empty. Defineh : N → A∪B byh(2n) = an andh(2n+1) =
bn. We leave to the reader the case whenA ∩B is not empty.

To prove the second claim, consider the following functionh : N → A×B:
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h(1) = (a0, b0)

h(2) = (a1, b0), h(3) = (a1, b1), h(4) = (a0, b1)

h(5) = (a2, b0), h(6) = (a2, b1), h(7) = (a2, b2), h(8) = (a1, b2), h(9) = (a0, b2)
...

h(n2 + 1) = (an, b0), h(n2 + 2) = (an, bn−1), . . . ,

h(n2 + n + 1) = (an, bn), h(n2 + n + 2) = (an−1, bn), . . . ,

h((n + 1)2) = (a0, bn)
... (1.2)

Basically, look at all pairs of integers in the first quadrant (including those on
the axes). Thus, we have pairs(ax, by). The above functionh starts at(0, 0), and
then moves through the first quadrant, hitting each pair once and only once, by
going up and over. Draw the picture!

Corollary 1.1.13. Let Ai be countable∀i ∈ N. Then for anyn, A1 ∪ · · · ∪ An

andA1 × · · · × An are countable, where the last set is alln-tuples(a1, . . . , an),
ai ∈ Ai. Further, ∪∞i=0Ai is countable. If eachAi is at most countable, then
∪∞i=0Ai is at most countable.

Exercise 1.1.14.Prove Corollary 1.1.13. Hint: for∪∞i=0Ai, mimic the proof used
to showA×B is countable.

As the natural numbers, integers and rationals are countable, by taking each
Ai = N, Z or Q we immediately obtain

Corollary 1.1.15. Nn, Zn andQn are countable. Hint: proceed by induction. For
example writeQn+1 asQn ×Q.

Exercise 1.1.16.Prove that there are countably many rationals in the interval
[0, 1].

1.1.3 Algebraic Numbers

Consider a polynomialf(x) with rational coefficients. By multiplying by the least
common multiple of the denominators, we can clear the fractions. Thus, without
loss of generality it is sufficient to consider polynomials with integer coefficients.
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The set ofalgebraic numbers, A, is the set of allx ∈ C such that there is a
polynomial of finite degree and integer coefficients (depending onx, of course!)
such thatf(x) = 0. The remaining complex numbers are thetranscendentals.

The set ofalgebraic numbers of degreen, An, is the set of allx ∈ A such
that

1. there exists a polynomial with integer coefficients of degreen such that
f(x) = 0

2. there is no polynomialg with integer coefficients and degree less thann
with g(x) = 0.

Thus,An is the subset of algebraic numbersx where for eachx ∈ An, the
degree of the smallest polynomialf with integer coefficients andf(x) = 0 is n.

Exercise 1.1.17.Show the following are algebraic: any rational number, the
square-root of any rational number, the cube-root of any rational number,r

p
q

wherer, p, q ∈ Q, i =
√
−1,

√
3
√

2− 5.

Theorem 1.1.18.The algebraic numbers are countable.

Proof. If we show eachAn is at most countable, then asA = ∪∞n=1An, by Corol-
lary 1.1.13A is at most countable.

Recall theFundamental Theorem of Algebra (FTA): Let f(x) be a poly-
nomial of degreen with complex coefficients. Thenf(x) hasn (not necessarily
distinct) roots. Of course, we will only need a weaker version, namely that the
Fundamental Theorem of Algebra holds for polynomials with integer coefficients.

Fix ann ∈ N. We now showAn is at most countable. We can represent every
integral polynomialf(x) = anx

n + · · · + a0 by an (n + 1)-tuple (a0, . . . , an).
By Corollary 1.1.15, the set of all(n + 1)-tuples with integer coefficients (Zn+1)
is countable. Thus, there is a bijection fromN to Zn+1, and we can index each
(n + 1)-tuplea ∈ Zn+1:

{a : a ∈ Zn+1} =
∞⋃
i=1

{αi}, (1.3)

where eachαi ∈ Zn+1.
For each tupleαi (or a ∈ Zn+1), there aren roots. LetRαi

be the roots of the
integer polynomial associated toαi. The roots inRαi

need not be distinct, and the
roots may solve an integer polynomial of smaller degree. For example,f(x) =
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(x2− 1)4 is a degree8 polynomial. It has two roots,x = 1 with multiplicity 4 and
x = −1 with multiplicity 4, and each root is a root of a degree1 polynomial.

Let Rn = {x ∈ C : x is a root of a degreen polynomial}. One can show that

Rn =
∞⋃
i=1

Rαi
⊃ An. (1.4)

By Lemma 1.1.13,Rn is countable. Thus, by Lemma 1.1.9, asRn is at most
countable,An is at most countable.

Therefore, eachAn is at most countable, so by Corollary 1.1.13A is at most
countable. AsA1 ⊃ Q (given p

q
∈ Q, considerqx − p = 0), A1 is at least

countable. As we’ve shownA1 is at most countable, this impliesA1 is countable.
Thus,A is countable.

Exercise 1.1.19.Show the full force of the Fundamental Theorem of Algebra is
not needed in the above proof; namely, that it is enough that every polynomial
have finitely many roots.

Exercise 1.1.20.ProveRn ⊃ An.

1.1.4 Transcendental Numbers

A set isuncountable if there is no bijection between it and the rationals (or the
integers, or any countable set). The aim of this paragraph is to prove the following
fundamental theorem:

Theorem 1.1.21.The set of all real numbers is uncountable.

We first state and prove a lemma.

Lemma 1.1.22.LetS be the set of all sequences(yi)i∈N with yi ∈ {0, 1}. ThenS
is uncountable.

Proof. We proceed by contradiction. Suppose there is a bijectionf : S → N. It
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is clear that this is equivalent to giving a list of the elements ofS:

x1 = x11x12x13x14 · · ·
x2 = x21x22x23x24 · · ·
x3 = x31x32x33x34 · · ·

...

xn = xn1xn2xn3xn4 · · ·xnn · · ·
... (1.5)

Define an elementξ = (ξi)i∈N ∈ S by ξi = xii, and another element̄ξ =
(1−ξi)i∈N. Now the element̄ξ cannot be in the list; it is notxN because1−xNN 6=
xNN !

Proof of the theorem.Consider all those numbers in the interval[0, 1] whose dec-
imal expansion consists entirely of numbers0, 1. Clearly, there is a bijection be-
tween this subset ofR and the setS. We have established thatS is uncountable.
ConsequentlyR has an uncountable subset. This gives the theorem.

The above proof is due to Cantor (1873 − 1874), and is known asCantor’s
Diagonalization Argument. Note Cantor’s proof shows thatmostnumbers are
transcendental, though it doesn’t tell uswhich numbers are transcendental. We

can easily show many numbers (such as
√

3 + 2
3
5

√
7) are algebraic. What of

other numbers, such asπ ande?
Lambert (1761), Legendre (1794), Hermite (1873) and others provedπ irra-

tional. In1882 Lindemann provedπ transcendental.
What aboute? Euler (1737) proved thate and e2 are irrational, Liouville

(1844) provede is not an algebraic number of degree2, and Hermite (1873) proved
e is transcendental.

Liouville (1851) gave a construction for an infinite (in fact uncountable) family
of transcendental numbers; we will discuss his construction later.

1.1.5 Continuum Hypothesis

We have shown that there are more transcendental numbers than algebraic num-
bers. Does there exist a subset of[0, 1] which is strictly larger than the rationals,
yet strictly smaller than the transcendentals?

Cantor’s Continuum Hypothesis says that there are no subsets of intermediate
size.
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The standard axioms of set theory are known as the Zermelo-Fraenkel axioms
(note to the expert: often the Axiom of Choice is assumed, and we talk of ZF+
Choice).

Kurt Gödel showed that if the standard axioms of set theory are consistent, so
too are the resulting axioms where the Continuum Hypothesis is assumed true;
Paul Cohen showed that the same is true if the negation of the Continuum Hy-
pothesis is assumed.

These two results imply that the Continuum Hypothesis is independent of the
other standard assumptions of set theory!

1.2 Properties ofe

In this section, we study some of the basic properties of the numbere. One of the
many ways to define the numbere, the base of the natural logarithms, is to write
it as the sum of the following infinite series:

e =
∞∑

n=1

1

n!
(1.6)

Now, let us denote the partial sums of the above series by

sm =
m∑

n=1

1

n!
(1.7)

Hencee is the limit of the convergent sequencesm. This idea will be the main
tool in analyzing the nature ofe.

Theorem 1.2.1 (Euler, 1737).The numbere is irrational.

Proof. Assume thate ∈ Q. Then we can writee = p
q
, wherep, q are positive

integers.
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Now,

e− sm =
∞∑

n=m+1

1

n!

=
1

(m + 1)!

{
1 +

1

m + 1
+

1

(m + 1)(m + 2)
+ ...

}
<

1

(m + 1)!

{
1 +

1

m + 1
+

1

(m + 1)2
+

1

(m + 1)3
+ ...

}
=

1

(m + 1)!

1

1− 1
m+1

=
1

m!m
(1.8)

Hence we obtain

0 < e− sm <
1

m!m
. (1.9)

In particular, takingm = q we get:

0 < e− sq <
1

q!
0 < q!e− q!sq < 1 (1.10)

which is clearly impossible since the left hand side of the last equation, namely
q!e − q!sq, would have to be an integer between 0 and 1. This contradicts our
assumption thate was rational.

1.2.1 e is Transcendental

Here we prove the following beautiful fact:

Theorem 1.2.2 (Hermite,1873).The numbere is transcendental.

Proof. The proof is again by contradiction. Assume thate is algebraic. Then it
must satisfy a polynomial equation

anX
n + ... + a1X + a0 = 0 (1.11)

wherea0, a1, .., an are integer numbers, and we can assume without loss of
generality thata0, an 6= 0.
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Now consider a polynomialf(X) of degreer, and associate to it the following
linear combination of its derivatives:

F (X) = f(X) + f ′(X) + ... + f (r)(X) (1.12)

Now, the polynomialF (X) has the property that

d

dx

[
e−xF (x)

]
= e−xf(x). (1.13)

As F (X) is differentiable, applying the Mean Value Theorem toe−xF (X) on
the interval[0, k] for k any integer gives

e−kF (k)− F (0) = −ke−ckf(ck), for some ck ∈ (0, k), (1.14)

or, equivalently

F (k)− ekF (0) = −kek−ckf(ck) =: εk. (1.15)

Now, if we plug in the previous equation the valuesk = 0, 1, ..., n we get the
following system of equations:

F (0)− F (0) = 0 =: ε0

F (1)− eF (0) = −e1−c1f(c1) =: ε1

F (2)− e2F (0) = −2e2−c2f(c2) =: ε2

.................

F (n)− enF (0) = −nen−cnf(cn) =: εn

(1.16)

We multiply the first equation bya0, the second bya1, . . . , the(n + 1)st by
an. Adding the resulting equations gives

n∑
k=0

akF (k)−

(
n∑

k=0

ake
k

)
F (0) =

n∑
k=0

akεk. (1.17)
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Notice that on the left hand side we have exactly the polynomial equation that
is satisfied bye:

n∑
k=0

ake
k = 0; (1.18)

hence Equation 1.17 reduces to

n∑
k=0

akF (k) =
n∑

k=0

akεk. (1.19)

So far we had complete freedom in our choice off , and the previous equation
always holds for its associateF . In what follows we choose a special polynomial
f in order to reach a contradiction.

Take a large primep, large enough such thatp > |a0| andp > n. Let f equal

f(X) =
1

(p− 1)!
Xp−1(1−X)p(2−X)p · · · (n−X)p

=
1

(p− 1)!

(
(n!)pXp−1 + higher order terms

)
. (1.20)

Though it plays no role in the proof, we note that the degree off is

deg(f) := r = (n + 1)p− 1. (1.21)

In what follows we make a number of remarks which will help us finish the
proof. BypZ we mean the set of integer multiples ofp.

Remark 1.2.3. For i ≥ p, f (i)(j) ∈ pZ,∀j ∈ N.

Proof. Differentiate Equation 1.20i ≥ p times. The only terms which survive
bring down at least ap!. As each term off(x) is an integer over(p − 1)!, we see
that all surviving terms are multiplied byp.

Remark 1.2.4. For 0 ≤ i < p, f (i)(j) = 0, j = 1, 2, .., n.

Proof. The multiplicity of a root of a polynomial gives the order of vanishing of
the polynomial at that particular root. Asj = 1, 2, . . . , n are roots of multiplicity
p, differentiatingf(x) less thanp times yields a polynomial which still vanishes
at thesej.
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Remark 1.2.5.LetF be the polynomial associated tof . ThenF (1), F (2), . . . , F (n) ∈
pZ.

Proof. Recall thatF (j) = f(j) + f ′(j) + .. + f (r)(j). By the first remark,f (i)(j)
is a multiple ofp for i ≥ p and any integerj. By the second remark,f (i)(j) = 0
for 0 ≤ i < p andj = 1, 2, . . . , n. Thus,F (j) is a multiple ofp for thesej.

Remark 1.2.6. For 0 ≤ i ≤ p− 2, f (i)(0) = 0.

Proof. Similar to the second remark, we note thatf (i)(0) = 0 for 0 ≤ i < p− 2,
because0 is a root off(x) of multiplicity p− 1.

Remark 1.2.7. F (0) is not a multiple ofp.

Proof. By the first remark,f (i)(0) is a multiple ofp for i ≥ p; by the fourth
remark,f (i)(0) = 0 for 0 ≤ i ≤ p− 2. Since

F (0) = f(0)+f ′(0)+· · ·+f (p−2)(0)+f (p−1)(0)+f (p)(0)+· · ·+f (r)(0), (1.22)

to proveF (0) is a not multiple ofp it is sufficient to provef (p−1)(0) is not
multiple ofp (as all other termsaremultiples ofp).

However, from the Taylor Series expansion off in Equation 1.20, we see that

f (p−1)(0) = (n!)p +
(

terms that are multiples ofp
)
. (1.23)

Since we chosep > n, n! is not divisible byp, proving the remark.

We resume the proof of the transcendence ofe.
We also chosep such thata0 is not divisible byp. This fact plus the above

remarks imply first that
∑

k akF (k) is an integer, and second that

n∑
k=0

akF (k) ≡ a0F (0) 6≡ 0 modp. (1.24)

Thus,
∑

k akF (k) is a non-zero integer.
Let us recall equation 1.19:

n∑
k=0

akF (k) = a1ε1 + · · ·+ anεn. (1.25)
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We have already proved that the left hand side is a non-zero integer. We ana-
lyze the sum on the right hand side. We have

εk = −kek−ckf(ck) =
−kek−ckcp−1

k (1− ck)
p · · · (n− ck)

p

(p− 1)1
. (1.26)

As 0 ≤ ck ≤ k ≤ n we obtain

|εk| ≤ ekkp(1 · 2 · · ·n)p

(p− 1)!

≤ en(n!n)p

(p− 1)!
→ 0 as p →∞. (1.27)

Now recall thatn is fixed, and so are the constantsa0, . . . , an (they define the
polynomial equation supposedly satisfied bye), and the only thing that varies in
our argument is the prime numberp. Hence, by choosing a prime numberp large
enough, we can make sure that allεk’s are uniformly small, in particular we can
make them small enough such that the following holds:∣∣∣∣∣

n∑
k=1

akεk

∣∣∣∣∣ < 1 (1.28)

To be more precise, we only have to choosep such thatp > n, |a0| and:

en(n!n)p

(p− 1)!
<

1∑n
k=0 |ak|

(1.29)

In this way we reach a contradiction in the identity 1.19 where the left hand
side is a non-zero integer, while the right hand side is a real number of absolute
value< 1.

Exercise 1.2.8.In the above proof, we assumeda0, an 6= 0. Prove that if a non-
zero number is algebraic, one can always find a polynomial such that the leading
term and the constant term are both non-zero.

Exercise 1.2.9.For fixedn, prove that asp →∞, (n!n)p

(p−1)!
→ 0. Hint: LetC = n!n.

Choosep > 2(2C)4. Then(p−1)! > (p−1)(p−2) · · · (p− p
2
)≈ (p

2
)

p
2 . Substitute

and compare.
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1.3 Properties of Algebraic Numbers

Let α andβ be two algebraic numbers. Is their sum algebraic? Is their product?
What about a general linear combination? What if both are transcendental?

1.3.1 Symmetric Polynomials

Consider the set{1, . . . , n}. There aren! ways to permute then elements (where
order counts). Letσ denote one of these permutations. Thus,{σ(1), . . . , σ(n)} is
the same set as{1, . . . , n}, with the elements (possibly) in a different order. Let
the group of permutations of{1, . . . , n} be denotedSn, where the product of two
permutations is given by composition.

Definition 1.3.1 (Symmetric Functions).Let f : Rn → C and let σ be any
permutation of the set{1, . . . , n}. Thenf is symmetric if for any permutation
σ ∈ Sn,

f(x1, x2, . . . , xn−1, xn) = f(xσ(1), xσ(2), . . . , xσ(n−1), xσ(n)). (1.30)

Forn = 2, there are two possible permutations, and we have

f(x1, x2) = f(x2, x1). (1.31)

Forn = 3, there are six possible permutations, and we have

f(x1, x2, x3) = f(x1, x3, x2) = f(x2, x1, x3) = f(x2, x3, x1) = f(x3, x1, x2) = f(x3, x2, x1).
(1.32)

Example 1.3.2.For example,f(x1, x2) = x1x2 or x1

x2
+ x2

x1
or x2

1 + x2
2 are sym-

metric, butf(x1, x2) = x2
1x2 is not.

If we haven = 2, we often denote the variables byx andy instead ofx1 and
x2.

In two variables, there are two basic symmetric polynomials:

1. σ1 = σ1(x, y) = x + y.

2. σ2 = σ2(x, y) = xy.
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Theorem 1.3.3.Let f(x, y) be a symmetric polynomial in two variables. Then
f(x, y) can be expressed in terms ofσ1 andσ2.

For example,

x2 + y2 = σ2
1(x, y)− 2σ2(x, y)

yx4 + xy4 = σ2(x, y) ·
(
σ3

1(x, y)− 3σ1(x, y)σ2(x, y)
)
. (1.33)

1.3.2 Needed Lemmas

Definition 1.3.4 (Zero Polynomial). A polynomialf is the zero polynomial if it
has no non-zero terms. In other words, iff is a function ofx1, . . . , xn, it contains
no monomialsCxr1

1 · · ·xrn
n .

Lemma 1.3.5.Letf(x, y) be a polynomial with at least one non-zero term. Then
f(x, y) is not identically zero. Equivalently, iff(x, y) = 0 for all complexx and
y, f(x, y) is the zero polynomial.

FROM REVIEWER: FOR ANY INFINITE FIELD K, AN ELEMENT
OF K(X1,...,XN) IS IDENTICALLY ZERO IF IT ONLY TAKES ZERO VAL-
UES. BY INDUCTION IT’S ENOUGH TO PROVE FOR N=1, WHICH IS
OBVIOUS.

Proof. Without loss of generality, we can assume there is at least one term con-
taining a power ofx, sayxa. We collect terms wherex has the same degree, and
write f(x, y) as

f(x, y) =
n∑

i=0

gi(y)xi, (1.34)

where eachgi(y) is a polynomial iny of finite degree (not necessarily the same
degree for eachi). Clearly,ga(y) is not the zero polynomial (if it were, it would
contradict our assumption that we have a termxa).

By the Fundamental Theorem of Algebra, a polynomial in one variable with
complex coefficients of degreem has at mostm roots. Thus, there are only finitely
manyy such thatga(y) = 0. Choosey0 such thatga(y0) 6= 0. Then

F (x) = f(x, y0) =
n∑

i=0

g(y0)x
i (1.35)
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is not the zero polynomial, asga(y0) 6= 0. Therefore,F (x) is a finite polyno-
mial of degree at leasta. By the Fundamental Theorem of Algebra,F (x) equals
zero at most finitely often; therefore,F (x) is not identically zero, which implies
f(x, y) is not identically zero.

Lemma 1.3.6.Letf(x1, . . . , xn) have at least one non-zero term. Thenf(x1, . . . , xn)
is not the zero polynomial. Equivalently, iff(x1, . . . , xn) = 0 for all (x1, . . . , xn),
thenf is the zero polynomial.

The proof is by induction. The Fundamental Theorem of Algebra does the
case where we have just one variable; we did two variables above. The general
case is handled similarly. Briefly, we may assume without loss of generality that
there is a term containing a power ofx1, sayxa

1. We may write

f(x1, . . . , xn) =
N∑

i=0

gi(x2, . . . , xn)xi
1. (1.36)

ga(x2, . . . , xn) is not the zero polynomial (otherwise we would not have anxa;
by the inductive assumption (sincega is a function ofn−1 instead ofn variables),
there is a tuple(x20, . . . , xn0) such thatga(x20, . . . , xn0) 6= 0.

We form

F (x) = f(x1, x20, . . . , xn0) =
N∑

i=0

gi(x20, . . . , xn0)x
i. (1.37)

The rest of the proof is as before.2

Lemma 1.3.7. If a symmetric polynomial contains a termCxayb, then it must
contain the termCxbya.

Clearly, we only need to check whena 6= b.
Assumef(x, y) is symmetric, sof(x, y) = f(y, x). Assume for somea and

b, Cxayb occurs inf(x, y) butCxbya does not. ThenCxbya occurs inf(y, x) but
Cxayb does not.

Hence, if we look atf(x, y)−f(y, x), we see the termCxayb−Cxbya occurs.
Hence,f(x, y)− f(y, x) is not the zero polynomial.

By Lemma 1.3.5,f(x, y) − f(y, x) cannot be identically zero, which contra-
dictsf(x, y) = f(y, x) (as we assumedf was symmetric).2
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Remark 1.3.8.One could have defined symmetric polynomials slightly differently.
Namely, we could say a polynomialf(x, y) is symmetric if wheneverf contains a
termCxayb, it contains a termCxbya. For polynomials with variables inC, the
two definitions are equivalent. Consider, however, the following:

f(x, y) = e
2πiy(x3+1)

3 + e
2πix(y+1)3

3 , x, y ∈ Z. (1.38)

Thenf(x, y) = f(y, x) for all x, y ∈ Z, but the two terms look different.

1.3.3 Proof of Theorem 1.3.3

The following is due to Newton. We proceed by induction on the number of terms
of the symmetric polynomialf .

By Lemma 1.3.7, if a symmetric polynomial contains a termCxayb, then it
must contain the termCxbya.

Thus, the polynomial must containCxayb +Cxbya; if we subtract this expres-
sion from the original polynomial, the remaining polynomial will still be symmet-
ric, and it will have fewer terms.

Thus, it is sufficient to prove that we can expressxayb + xbya in terms of
σ1(x, y) andσ2(x, y).

Supposea > b. Then

xayb + xbya = xbyb(xa−b + ya−b)

= σ2(x, y)b(xa−b + ya−b). (1.39)

Thus, to complete the proof, it suffices to show

Lemma 1.3.9.Any polynomialxn + yn can be expressed in terms ofσ1(x, y) and
σ2(x, y).

We proceed by induction; the basis stepn = 1 is clear. We also note that for
n = 2, x2 + y2 = σ1(x, y)2 − 2σ2(x, y).

Look at

(X − x)(X − y) = X2 − (x + y)X + xy

= X2 − σ1(x, y)X + σ2(x, y). (1.40)

SettingX = x gives
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0 = x2 − σ1(x, y)x + σ2(x, y). (1.41)

Therefore, we find

x2 = σ1(x, y)x− σ2(x, y). (1.42)

Multiplying by xn yields

xn+2 = σ1(x, y)xn+1 − σ2(x, y)xn

yn+2 = σ1(x, y)yn+1 − σ2(x, y)yn, (1.43)

where the second line follows from the symmetry ofx andy (we can apply
same type of argument withx replaced withy, asσi(x, y) = σi(y, x)). Adding
the two equations above yields

xn+2 + yn+2 = σ1(x, y)
(
xn+1 + yn+1

)
− σ2(x, y)(xn + yn). (1.44)

By induction, we are done. Note that it was important to verify forn = 1 and
n = 2.

1.3.4 Theory for More Variables

There is a theory of symmetric polynomials in any number of variables.
The basic symmetric functions in three variables are

1. σ1 = x + y + z;

2. σ2 = xy + xz + yz;

3. σ3 = xyz;

in four variables, the basic symmetric functions are

1. σ1 = x + y + z + t;

2. σ2 = xy + xz + xt + yz + yt + zt;

3. σ3 = yzt + xzt + xyt + xyz;
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4. σ4 = xyzt.

The main result, which we will not prove, is

Theorem 1.3.10 (Newton).For eachn, there aren basic symmetric functions
σ1, . . . , σn such that any symmetric polynomialP can be expressed in terms ofσ1

throughσn. Furthermore, ifP has rational coefficients, the expression ofP in
terms in theσi will have rational coefficients.

FROM REVIEWER: UTE PROOF OF THIS USING GALOIS THE-
ORY – SEE E. ARTIN’S GALOIS THEORY

1.3.5 Applications

The formula

(X − x)(X − y) = X2 − (x + y)X + xy

= X2 − σ1(x, y)X + σ2(x, y), (1.45)

generalizes to

(X − x1) · · · (X − xn) = Xn − σ1X
n−1 + · · ·+ (−1)nσnX

0. (1.46)

If we have any polynomial with coefficients inC, it factors overC into a
product of linear factors (the Fundamental Theorem of Algebra).

Thus, if we take a polynomial with rational coefficients,

anX
n + an−1X

n−1 + · · ·+ a1X + a0 = an(X − α1) · · · (X − αn),(1.47)

where theαi ∈ C. A simple comparison combined with Newton’s theorem
implies

Lemma 1.3.11.Let α1, α2, . . . , αn be the solutions of an algebraic equation of
degreen with rational coefficients. Then every symmetric polynomial expression
with rational coefficients in terms of theαi will be a rational number.

This lemma has a number of interesting consequences.
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Proposition 1.3.12.If α andβ are two algebraic numbers, thenα + β, αβ, and
α/β will be algebraic numbers.

Proof. We will prove this forα + β; the others are similar. Letα1, . . . , αm

(β1, . . . , βm, resp.) be all the roots of the algebraic equation satisfied byα (β,
resp.). Consider the polynomial∏

1≤i≤n

∏
1≤j≤m

(x− αi − βj).

It is clear that(x−α−β)|P (x). So our result will follow if we can show thatP (x)
has rational coefficients. The coefficients ofP (x) are polynomials with integral
coefficients in terms of theαi and theβj. Also they are separately symmetric in
each set of the variables. The lemma then gives the result.

Exercise 1.3.13.Complete the details of the proof.

Proposition 1.3.14.A number that satisfies an equation with algebraic coeffi-
cients (not necessarily rational) is algebraic.

Proof. Suppose our equation is

anx
n + an−1x

n−1 + · · ·+ a1x + a0 = 0,

and supposeα is a solution of this equation. We will find an equation with integral
coefficients that hasα as a root. For this we proceed as follows. Take a typical
coefficient of the above equation, sayai. Sinceai is algebraic it will be the solution
of an equation

b(i)mi
xmi + b(i)mi−1x

mi−1 + · · ·+ b(i)1x
1 + b(i)0 = 0,

with b(i)j ’s rational. Letc(i)1, c(i)2, . . . , c(i)mi
be all the roots of this equation.

Notice that by definitionai is one of thec(i)j ’s. Next we consider the product
n∏

k=0

∏
1≤jk≤mk

(
c(n)jnxn + c(n− 1)jn−1x

n−1 + · · ·+ c(1)j1x + c(0)j0

)
.

This is an equation which hasα as a solution. Also it has rational coefficients!
This proves the claim.

Exercise 1.3.15.Fill in the missing steps.

Remark 1.3.16.The last two propositions imply that the set of algebraic numbers
is an algebraically closed field.

REVIEWER: PROBABLY WANT TO MENTION RESULTS ON AL-
GEBRAIC INTEGERS
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Chapter 2

Liouville’s Theorem Constructing
Transcendentals

2.1 Review of Approximating by Rationals

Definition 2.1.1 (Approximated by rationals to order n). A real numberx is
approximated by rationals to ordern if there exist a constantk(x) (possibly de-
pending onx) such that there are infinitely many rationalp

q
with∣∣∣∣x− p

q

∣∣∣∣ < k(x)

qn
. (2.1)

Recall that Dirichlet’s Box Principle gives us, forα 6∈ Q,∣∣∣∣x− p

q

∣∣∣∣ < 1

q2
(2.2)

for infinitely many fractionsp
q
. This was proved by choosing a large parameter

Q, and considering theQ + 1 fractionary parts{qx} ∈ [0, 1) for q ∈ {0, . . . , Q}.
The box principle ensures us that there must be two differentq’s, say:

0 ≤ q1 < q2 ≤ Q (2.3)

such that both{q1x} and{q2x} belong to the same interval[ a
Q
, a+1

Q
), for some

0 ≤ a ≤ Q − 1. Note that there are exactlyQ such intervals partitioning[0, 1),
andQ + 1 fractionary parts! Now, the length of such an interval is1

Q
so we get
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|{q2x} − {q1x}| <
1

Q
. (2.4)

There exist integersp1 andp2 such that

{q1x} = q1x− p, {q2x} = q2x− p. (2.5)

Lettingp = p2 − p1 we find

|(q2 − q1)x− p| ≤ 1

Q
(2.6)

Let q = q2 − q1, so1 ≤ q ≤ Q, and the previous equation can be rewritten as∣∣∣∣x− p

q

∣∣∣∣ < 1

qQ
≤ 1

q2
(2.7)

Now, letting Q → ∞, we get an infinite collection of rational fractionsp
q

satisfying the above equation. If this collection contains only finitely many dis-
tinct fractions, then one of these fractions, sayp0

q0
, would occur for infinitely many

choicesQk of Q, thus giving us:∣∣∣∣x− p0

q0

∣∣∣∣ < 1

qQk

→ 0, (2.8)

ask → ∞. This implies thatx = p0

q0
∈ Q. So, unlessx is a rational number,

we can find infinitely manydistinct rational numbersp
q

satisfying Equation 2.7.
This means that any real, irrational number can be approximated to ordern = 2
by rational numbers.

2.2 Liouville’s Theorem

Theorem 2.2.1 (Liouville’s Theorem).Let x be a real algebraic number of de-
green. Thenx is approximated by rationals to order at mostn.

Proof. Let

f(X) = anX
n + · · · a1X + a0 (2.9)

be the polynomial with coprime integer coefficients of smallest degree (mini-
mal polynomial) such thatx satisfies
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f(x) = 0. (2.10)

Note thatdeg x = deg f and the condition of minimality implies thatf(X)
is irreducible overZ. Further, a well known result from algebra states that a
polynomial irreducible overZ is also irreducible overQ.

Remark 2.2.2. FROM REVIEWER: LET f1(x) = xn + bn−1x
n−1 + · · ·+ bn ∈

Q[x]. Then it is irreducible overQ with no rational roots. Clear the denomina-
tors to getf .

In particular, asf(X) is irreducible overQ, f(X) does not have any rational
roots. If it did, thenf(X) would be divisible by a linear polynomial(X − a

b
). Let

G(X) = f(X)
X−a

b
. Clear denominators (multiply throughout byb), and letg(X) =

bG(X). Thendeg g = deg f − 1, andg(x) = 0. This contradicts the minimality
of f (we choosef to be a polynomial of smallest degree such thatf(x) = 0).
Therefore,f is non-zero at every rational.

Let

M = sup
|z−x|<1

|f ′(z)|. (2.11)

Let now p
q

be a rational such that
∣∣∣x− p

q

∣∣∣ < 1. The Mean Value Theorem

GIVE REF gives us that∣∣∣∣f (p

q

)
− f(x)

∣∣∣∣ =

∣∣∣∣f ′(c)(x− p

q

)∣∣∣∣ ≤ M

∣∣∣∣x− p

q

∣∣∣∣ (2.12)

wherec is some real number betweenx and p
q
; |c − x| < 1 for p

q
moderately

close tox.
Now we use the fact thatf(X) does not have any rational roots:

0 6= f

(
p

q

)
= an

(
p

q

)n

+ · · ·+ a0 =
anp

n + · · · a1p
n−1q + a0q

n

qn
(2.13)

The numerator of the last term is a nonzero integer, hence it has absolute value
at least1. Since we also know thatf(x) = 0 it follows that

∣∣∣∣f (p

q

)
− f(x)

∣∣∣∣ =

∣∣∣∣f (p

q

)∣∣∣∣ =
|anp

n + · · · a1p
n−1q + a0q

n|
qn

≥ 1

qn
. (2.14)
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Combining the equations 2.12 and 2.14, we get:

1

qn
≤ M

∣∣∣∣x− p

q

∣∣∣∣ ⇒ 1

Mqn
≤
∣∣∣∣x− p

q

∣∣∣∣ (2.15)

whenever|x− p
q
| < 1. This last equation shows us thatx can be approximated

by rationals to order at mostn. For assume it was otherwise, namely thatx can be
approximated to ordern + ε. Then we would have an infinite sequence of distinct
rational numbers{pi

qi
}i≥1 and a constantk(x) depending only onx such that∣∣∣∣x− pi

qi

∣∣∣∣ <
k(x)

qn+ε
i

. (2.16)

Since the numberspi

qi
converge tox we can assume that they already are in the

interval(x− 1, x + 1). Hence they also satisfy Equation 2.15:

1

qn
i

≤ M

∣∣∣∣x− pi

qi

∣∣∣∣ . (2.17)

Combining the last two equations we get

1

Mqn
i

≤
∣∣∣∣x− pi

qi

∣∣∣∣ <
k(x)

qn+ε
i

, (2.18)

hence

qε
i < Mk(x) (2.19)

and this is clearly impossible for arbitrarily largeq sinceε > 0 andqi →∞.

Exercise 2.2.3.Justify the fact that if{pi

qi
}i≥1 is a sequence of rational approxi-

mations to ordern ≥ 1 of x, thenqi →∞.

Remark 2.2.4. So far we have seen that the order to which an algebraic number
can be approximated by rationals is bounded by its degree. Hence if a real, ir-
rational numberα /∈ Q can be approximated by rationals to an arbitrary large
order, thenα must be transcendental! This provides us with a recipe for construct-
ing transcendental numbers.
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2.3 Constructing Transcendental Numbers

2.3.1
∑

m 10−m!

The following construction of transcendental numbers is due to Liouville.

Theorem 2.3.1.The number

x =
∞∑

m=1

1

10m!
(2.20)

is transcendental.

Proof. The series definingx is convergent, since it is dominated by the geometric
series

∑
1

10m . In fact, the series converges very rapidly and it is this high rate of
convergence that will yieldx is transcendental.

Fix N large, and letn > N . Write

pn

qn

=
n∑

m=1

1

10m!
(2.21)

with pn, qn > 0 and(pn, qn) = 1. Then{pn

qn
}n≥1 is a monotone increasing

sequence converging tox. In particular, all these rational numbers are distinct.
Not also thatqn must divide10n!, which implies

qn ≤ 10n!. (2.22)

Using this, we get

0 < x− pn

qn

=
∑
m>n

1

10m!
=

1

10(n+1)!

(
1 +

1

10n+2
+

1

10(n+2)(n+3)
+ · · ·

)
<

2

10(n+1)!
=

2

(10n!)n+1

<
2

qn+1
n

≤ 2

qN
n

. (2.23)

This gives an approximation by rationals of orderN of x. SinceN can be
chosen arbitrarily large, this implies thatx can be approximated by rationals to
arbitrary order. We can conclude, in view of our previous remark 2.2.4, thatx is
transcendental.
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2.3.2 [101!, 102!, . . . ]

Theorem 2.3.2.The number

y = [101!, 102!, . . . ] (2.24)

is transcendental.

Proof. Let pn

qn
be the continued fraction of[101! · · · 10n!]. Then

∣∣∣∣y − pn

qn

∣∣∣∣ =
1

qnq′n+1

=
1

qn(a′n+1qn + qn−1)

<
1

an+1

=
1

10(n+1)!
. (2.25)

Sinceqk = anqk−1 + qn−2, it implies thatqk > qk−1 Also, qk+1 = ak+1qn +
qk−1, so we get

qk+1

qk

= ak+1 +
qk−1

qk

< ak+1 + 1. (2.26)

Hence writing this inequality fork = 1, · · · , n− 1 we obtain

qn = q1
q2

q1

q3

q2

· · · qn

qn−1

< (a1 + 1)(a2 + 1) · · · (an + 1)

= (1 +
1

a1

) · · · (1 +
1

an

)a1 · · · an

< 2na1 · · · an = 2n101!+···+n!

< 102n! = a2
n (2.27)

Combining equations 2.25 and 2.27 we get:

∣∣∣∣y − pn

qn

∣∣∣∣ <
1

an+1

=
1

an+1
n

<

(
1

a2
n

)n
2

<

(
1

q2
n

)n
2

=
1

q
n/2
n

. (2.28)
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In this way we get, just as in the previous theorem, an approximation ofy by
rationals to arbitrary order. This proves thaty is transcendental.
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