
(Rgs) Rings Math 683L (Summer 2003)

We will first summarise the general results that we will need from the theory of rings. A unital ring,
R, is a set equipped with two binary operations + and · such that (R,+) is an abelian group and, for
all r, s, t ∈ R, the following axioms hold.

(R1) There is an element 1 ∈ R such that 1 · r = r · 1 = r (the unit element).

(R2) r · s ∈ R.

(R3) r · (s · t) = (r · s) · t, the associativity axiom.

(R4) r · (s+ t) = r · s+ r · t and (r + s) · t = r · t+ s · t, the distributivity axioms.

For r ·s we will write simply rs. Note that it is not required that an element r ∈ R has a multiplicative
inverse but, if it does, we call it a unit of R. We assume some basic familiarity with rings and move
immediately to summarise some of the special classes of rings in which we will be interested. A ring
R is

1. a commutative ring if rs = sr for all r, s ∈ R.

2. an integral domain if is commutative and contains no zero divisors (recall a zero divisor

of a commutative ring R is an element 0 6= r ∈ R such that rs = 0 for some 0 6= s ∈ R);

3. a division ring if its nonzero elements are all units (i.e. they form a group under multiplication);

4. a field if it is a commutative division ring.

For the remainder of the course, “ring” will mean “commutative unital ring”.

It is not our purpose here to conduct an extensive study of rings in general. We now introduce the
classes of rings which will interest us most throughout the course.

The Integers: Everybody’s favourite ring! Well, OK, this may be a slight exaggeration, but it is
the properties of Z that will most influence the direction the course takes for quite a while. The ring
Z is an integral domain but not a field. The elements ±1 are the only units of Z.

Polynomial rings: Suppose that R is any ring. Then the set R[x] of all polynomials in the
indeterminate x having coefficients in the ring R is also a ring, called a polynomial ring (over R in
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1 indeterminate). Notice that R[x] is commutative, and that R[x] is an integral domain if and only
if R is. For an element f(x) ∈ R[x], define the degree of f(x), denoted deg(f), to be the highest
power of x occurring in f(x) (with nonzero coefficient). The units of R[x] are the scalar polynomials
f(x) = r, where r is a unit of R. We will be especially interested in polynomial rings in the special
case when R = F is a field.

Matrix rings: Once again, suppose that R is any ring, and let n be a positive integer. Then the set
Mn(R) of all n × n matrices whose entries are elements of R is also a ring. Unlike polynomial rings,
not many of the nice properties of R are preserved when one moves to a matrix ring over R. Note
that Mn(R) is commutative iff n = 1. Also, if R is an integral domain, then Mn(R) is an integral
domain iff n = 1. Take the case n = 2, R = R for example; then r = ( 1 0

0 0 ) is a zero divisor, since
( 1 0

0 0 ) ( 0 0
0 1 ) = ( 0 0

0 0 ). Again the special case when R = F is a field will be of greatest interest to us.
Note that, in this case, the set of units of Mn(F) is the set (actually, group) of all invertible matrices;
we denote this set by GLn(F).

We next introduce some structural notions concerning rings. A subring S of a ring R is a subset
of R which is also a ring. In general, if S ⊂ R is a subring and r ∈ R, then rS 6⊆ S (i.e. S is not stable
under multiplication by R). Subrings which do have this property play a central role in ring theory,
completely analogous to that played by normal subgroups in group theory. A subring I ⊂ R is an
ideal of R, denoted I ≤ R, if, for all r ∈ R and a ∈ I we have ra ∈ I. An ideal I ≤ R is proper if
0 < I < R. An ideal I < R is: maximal if it is not properly contained in any other ideal; and prime

if whenever J1J2 ⊂ I for ideals J1, J2 of R, either J1 ⊂ I or J2 ⊂ I. It turns out that the collection
of prime ideals of a ring properly contains the collection of maximal ideals (see Exercise 3).

Recall that, if N is a normal subgroup of G, then we can form the factor group G/N consisting of
“cosets” {gN | g ∈ G} under the operation (gN)(hN) = ghN . We can do exactly the same if I ≤ R is
an ideal. The factor ring R/I is the set {r+I | r ∈ R} with operations (r+I)+(s+I) = (r+s)+I
and (r + I) · (s+ I) = rs+ I (see Exercise 1).

A map ϕ : R → S between rings R and S is a ring homomorphism if it preserves the ring
structure, namely for all r, s ∈ R ϕ(r + s) = ϕ(r) + ϕ(s) and ϕ(rs) = ϕ(r)ϕ(s). If ϕ : R → S is ring
homomorphism then kerϕ = {r ∈ R | ϕ(r) = 0} is an ideal of R and im ϕ = {ϕ(r) | r ∈ R} is a
subring of S (see Exercise 2); ϕ is an epimorphism if im ϕ = S; ϕ is a monomorphism if kerϕ = 0;
and ϕ is a isomorphism if it is both a monomorphism and an epimorphism.

Note that, if I is an ideal of R, then there is a (canonical) epimorphism π : R → R/I sending
r 7→ r + I and kerπ = I. Hence we have the following 1-1 correspondence:
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{ ideals of R } ←→ { kernels of ring homomorphisms R→ S }

We next introduce an important class of rings. If a ∈ R, then the set Ra = {ra | r ∈ R} is an
ideal of R called a principal ideal of R and denoted (a) (see Exercise 5). Note that (a) = R iff a is
a unit of R. A ring R is called a principal ideal ring if all of its ideals are principal. A principal
ideal ring which is also an integral domain is called a principal ideal domain, or PID and will be
of particular interest to us in what follows. The prototypical example of a PID is the ring of integers
Z. We now wish to show that F[x] is a PID. This will not prove too difficult and uses only facts that
we have “known” about polynomials for as long as we can remember. The same arguments hold inside
Z so, if it is not already clear why Z is a PID, then it should soon be.

(Rgs1) Lemma [Division Algorithm]. Let F be a field and let f(x), g(x) ∈ F[x]. Then there exist
unique q(x), r(x) ∈ F[x] with deg(r) < deg(g) such that f(x) = q(x)g(x) + r(x).

Proof. Let f(x) = anx
n + . . .+ a1x+ a0 and g(x) = bmx

m + . . .+ b1 + b0. We proceed by induction
on deg(f) to show the existence of q(x) and r(x). The result is trivial if deg(f) ≤ deg(g) so we may
assume that deg(f) > deg(g). Set f0(x) := f(x)− (an/bm)xn−mg(x) and note that deg(f0) < deg(f).
By induction, there exist q0(x), r0(x) ∈ F[x] with deg(r0) < deg(g) such that f0(x) = q0(x)g(x)+r0(x).
Setting q(x) := q0(x) + (an/bm)xn−m and r(x) := r0(x) does the job.

For uniqueness, suppose that q1(x), q2(x), r1(x), r2(x) ∈ F[x] with deg(r1) ≤ deg(r2) < deg(g) are
such that q1(x)g(x) + r1(x) = q2(x)g(x) + r2(x). Then (q1(x) − q2(x))g(x) = r1(x) − r2(x) so that
deg(q1 − q2) + deg(g) = deg(r1 − r2) < deg(g). This is impossible unless q1(x) = q2(x) whence also
r1(x) = r2(x). �

(Rgs2) Theorem. If F is a field then F[x] is a PID.

Proof. Let I 6= 0 be an ideal of F[x], 0 6= g(x) ∈ I have least possible degree, and let f(x) ∈ I.
Then, by (Rgs1), there exist q(x), r(x) ∈ F[x] with deg(r) < deg(g) such that f(x) = q(x)g(x)+r(x).
Thus r(x) = f(x)− q(x)g(x) ∈ I and it follows from the minimality of deg(g) that r(x) = 0. That is
f(x) ∈ (g(x)), so I = (g(x)). �

We conclude this lecture by introducing an important property which is known to hold for the ring
Z, and demonstrate that holds for generally for any PID. We say that, for elements a, b ∈ R, a is
a divisor of b (denoted a|b) and b is a multiple of a if b = ac for some c ∈ R. Note that a|b iff
b ∈ Ra = (a) iff (b) ≤ (a). A nonzero, non-unit p ∈ R is called: irreducible if, for all a, b ∈ R, if
p = ab then either a or b is a unit; or prime if, for all a, b ∈ R, if p|ab then either p|a or p|b. These
two candidates for the “atoms” of a ring are closely related. Indeed, the two concepts coincide in our
favourite rings, Z and F[x]. This turns out to be the case for all PIDs (see Exercise 7). The following
result should look somewhat familiar.
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(Rgs3) Theorem. Each non-unit a of a PID R has a “prime” (or “irreducible”) factorisation; that
is, there exist primes p1, . . . , pn ∈ R such that a = p1 . . . pn. Moreover such a factorisation is unique
up to rearrangement.

Proof. Since R is a PID, we may use the terms “prime” and “irreducible” interchangeably. Let
B ⊂ R denote the set of all elements which do not possess a factorisation of the type specified.
Suppose that B 6= ∅, and let b ∈ B. Then b factors as b = b1b2 where neither b1 nor b2 is a unit. Since
a ∈ B, at least one of b1 or b2 does not possess a prime factorisation. Therefore there are functions
f : B → B and g : B → R such that b = f(b)g(b) with g(b) a non-unit. Hence we obtain a proper
ascending chain of ideals

(b) ⊂ (f(b)) ⊂ (f2(b)) ⊂ . . . ⊂ (fn(b)) ⊂ . . .

Now the join of a chain of ideals is also an ideal of R (Exercise 8) and, since R is a PID, it is necessarily
principal. It follows that the join of our chain is the principal ideal (fm(b)) for some m. But then the
chain stabilises, contradicting the assertion that it is proper. It follows that B = ∅.

Let a = p1 . . . pn = q1 . . . qn be two prime factorisations of a with n minimal. We show uniqueness
by induction on n. Since p1 is prime, it follows that p1 is a factor of some qi; we may assume p1|q1.
But q1 is also irreducible, so p1 = q1u for some unit u ∈ R. Thus p2p3 . . . pn = (uq2)q3 . . . qm, and the
proof of uniqueness now follows easily. �

The operation “|” places a partial order on the elements of R. Using this simple observation we
can now define a concept which, again, is familiar to our favourite ring Z (and, perhaps less so, to
F[x]). For elements a1, . . . ak in a PID R, define gcd(a1, . . . , ak), the greatest common divisor of
a1, . . . , ak, to be the largest element d ∈ R such that d|ai for 1 ≤ i ≤ k. Similarly, lcm(a1, . . . , ak), the
least common multiple of a1, . . . , ak, is the smallest element m ∈ R such that ai|m for 1 ≤ i ≤ k.
Note that (Rgs3) guarantees the existence and uniqueness of gcds and lcms. A set P of a PID R is
called a complete set of primes for R if it contains exactly one generator for each of the (principle)
maximal ideals of R.

Exercises.

1. If I ≤ R, show that R/I is a ring.

2. For a ring homomorphism ϕ : R→ S show that kerϕ ≤ R and that im ϕ is a subring of S.
Is im ϕ always an ideal of S? Show that ϕ induces a ring isomorphism R/ kerϕ→ im ϕ.

3. (a) Show that I < R is a prime ideal iff the following property holds for all a, b ∈ R:
(♣) ab ∈ I =⇒ either a ∈ P or b ∈ P .

(b) Show that every maximal ideal is prime.

4



(c) Give an example of a ring R and nonzero prime ideal I which is not maximal.

4. Show that I < R is a maximal ideal iff R/I is a field.

5. For a ∈ R, show that (a) is an ideal of R.

6. Prove that a ring has precisely two ideals if and only if it is a field.

7. Let R be an integral domain. Prove each of the following:

(a) If p ∈ R is prime then (p) is a prime ideal.

(b) If p ∈ R is irreducible then (p) is a maximal principal ideal (i.e. it is not properly
contained in any other principal ideal, but it may not be maximal).

(c) Every prime element of R is irreducible.

(d) If R is a PID, then every irreducible element is prime (in particular, all nonzero prime
ideals are maximal).

8. Let J1 < J2 < J3 < . . . < Jn < . . . be an ascending chain of ideals in a ring R. Show that
the join of this chain,

⋃∞
n=1 Jn is also an ideal of R.

9. Write down a complete set of primes for each of the polynomial rings C[x] and R[x]. How
does (Rgs3) translate in these two settings?

10. Let f(x) = c0 + c1x + . . . + crx
r be a polynomial of degree r with coefficients ci ∈ Q, the

field of rational numbers, and let u ∈ C be a zero of f . Let Q[u] be the set of all complex
numbers of the form z = d0 + d1u+ . . .+ dr−1u

r−1, where di ∈ Q.

(a) Show that if y, z ∈ Q[u], then y ± z and yz ∈ Q[u].

(b) Show that if f is irreducible in Q[x], then Q[u] is a field.

11. Let R be a PID and let ϕ : R→ S be an epimorphism of rings. Prove that S is also a PID.

12. Let R be a ring (not necessarily commutative) and suppose that, for each a ∈ R, there is
a unique b ∈ R (depending on a) such that aba = a.

(a) Show that R contains no zero divisors.

(b) Show that R is a division ring.

13. Define addition and multiplication on the cartesian product Cn coordinatewise (where C is
field of complex numbers), thus giving it the structure of a ring. Find all ring homomor-
phisms Cn → C.
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