
(Mod) Modules Math 683L (Summer 2003)

When one thinks of groups, one often thinks of them acting on some set Ω, whereupon the group
is “represented” as a subgroup of the group Sym(Ω) of all permutations of Ω. Since a ring has more
structure than a group, it is not surprising that the natural object upon which to “represent” a ring
also more structure. It is these objects, modules, that we wish to investigate in this lecture. It turns
out that when we restrict to the natural class of rings that arise in linear algebra, these objects, in a
sense, tell us everything that we need to know.

Let M be an abelian group (written additively) and let End(M) denote the set of endomorphisms
of M (as an abelian group). Unless otherwise stated, we will view an element ϕ ∈ End(M) as a left

endomorphism. We define two binary operations on End(M) as follows:

(ϕ+ ψ)(x) := ϕ(x) + ψ(x) and (ϕψ)(x) := ϕ(ψ(x)),

for ϕ,ψ ∈ End(M) and x ∈ M . These “sum” and “product” operations turn End(M) into a ring:
the ring of endomorphisms of M (more generally, see Exercise 1). If R is a unital ring, then a
representation of R is a ring homomorphism

λ : R→ End(M)

for some abelian group M ; the pair (M,λ) is called an R-module. Wherever possible we will suppress
mention of the “action” λ and simply call M and R-module under the action rx := λ(r)(x). Thus,
an R module can also be characterised by a map R ×M → M , (r, x) 7→ rx ∈ M satisfying, for all
r, s ∈ R and all x, y ∈M ,

(M1) r(x+ y) = rx+ ry;

(M2) (r + s)x = rx+ sx;

(M3) (rs)x = r(sx);

(M4) 1x = x.

Notation & Terminology

(a) As presented, we have described only a left R-module. A right R-module is M together
with a representation ρ : R → End(M) (the latter now being the ring of right endomor-
phisms of M) where the (right) action of R on M is given by xr := (x)ρ(r).

(b) When the action is unambiguous, we denote an R-module M simply by RM (or MR for a
right R-module).
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(c) If R is any division ring D (in particular, if it is a field), then we call a D-module M a
vector space.

(d) If RM and X ⊆ M , then RX denotes the set {rx | x ∈ X, r ∈ R}. We say that N ⊆ M

is a submodule of M , denoted RN ≤ RM , if RN = N (i.e. if N is stable or invariant

under the action of R). A module RM is simple (or irreducible) if the only submodules
are 0 and M itself.

(e) If X = {x1, . . . xn} ⊂ RM is finite, then RX = {r1x1 + . . . + rnxn | r1, . . . , rn ∈ R}, the
set of R-linear combinations of X. A submodule RN ≤ RM is finitely generated if
N = RX for some finite set X; it is called cyclic if it is generated by a single elements x
(i.e. N = Rx = {rx | r ∈ R}).

For the rest of the course, “module” will mean “finitely generated module”

(f) An R-module homomorphism between R-modules RM and RN is a (right) abelian group
homomorphism ϕ : M → N which is R-linear. That is,

(rx)ϕ = r(xϕ) for all r ∈ R and x ∈M.

Notice that, by writing module homomorphisms on the right, where the ring action is on
the left, the defining property above becomes a form of associativity. We’ll use the terms
R-module epimorphism, monomorphism and isomorphism without additional comment. If
ϕ : M → N is a module homomorphism, then kerϕ = {x ∈M | xϕ = 0} is a submodule of
M and im ϕ = {xϕ | x ∈M} is a submodule of N .

(g) If RM and N ≤ M , then “congruence modulo N” is R-stable in the sense that if x ≡
y (mod N) then rx ≡ ry (mod N). It follows that R acts on the factor group M/N =
{x+N | x ∈M} by r(x+N) = rx+N for all x ∈M , r ∈ R and, under this action, M/N

is an R-module, called the factor module of M modulo N .

Examples

(a) Each unital ring R is a module over itelf (denoted RR and called the left regular

module) where, for r, x ∈ R, λ(r)x = rx. The submodules of the left regular module are
the left ideals of R. One similarly defines the right regular module.

(b) Let M be any abelian group and R be Z. Then the map Z ×M → M sending (n, x) 7→
x + . . . + x = nx satisfies axioms (M1) through (M4), and hence turns M into Z-module.
Conversely if M is a Z-module, then we claim that Z must act on M via x 7→ nx for
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n ∈ Z, x ∈ M . For, if λ : Z → End(M) is any representation of Z, by axioms (M2) and
(M4),

λ(n)(x) = λ(1 + . . .+ 1)(x) = λ(1)x+ . . .+ λ(1)x = x+ . . .+ x = nx.

In other words,

Z-modules are precisely the same as abelian groups

The submodules of a Z-module M are simply the subgroups of the abelian group M .

(Mod1) Theorem [lifting homomorphisms] Let π : M → N be an R-epimorphism from RM

onto RN with kernel kerπ = K. Let ϕ : M → N ′ be another R-homomorphism with K ≤ kerϕ = K ′.
Then there is a unique R-homomorphism ϕ′ : N → N ′ such that ϕ = πϕ′:

N
↗
π

M ↓ ϕ′
ϕ

↘
N ′

Moreover, ϕ′ is a monomorphism iff K ′ = K and ϕ′ is an epimorphism iff ϕ is an epimorphism.

Proof. Fix y ∈ N , choose x ∈ M with xπ = y and define yϕ′ := xϕ. Since π is an epimorphism,
this is the only way to define ϕ′ (hence uniqueness is clear). We do, however, need to check that it’s
well defined. Suppose x′ ∈ M is such that x′π = xπ = y. Then x − x′ ∈ kerπ and, since K ≤ K ′, it
follows that x − x′ ∈ kerϕ so that xϕ = x′ϕ. The map ϕ′ is R-linear: fix r ∈ R, y ∈ N and x ∈ M
with xπ = y so that yϕ′ = xϕ; then, since π is R-linear, (rx)π = r(xπ) = ry (so we may choose rx as
our preimage of ry) and, since ϕ is R-linear, (rx)ϕ = r(xϕ) = r(yϕ′). I leave it as an (easy) exercise
to verify that ϕ′ is also a homomorphism of abelian groups. �

We get three standard structure theorems as corollaries of (Mod1) which I leave as exercises; they
are exact analogues of theorems for abelian groups.

(Mod2) First Isomorphism Theorem. If ϕ : M → N is an R-homomorphism with K = kerϕ,
then there is a unique R-isomorphism ϕ′ : M/K → im ϕ such that (x+K)ϕ′ = xϕ for all x ∈M .

(Mod3) Second Isomorphism Theorem. Let K,N be R-submodules of RM . Then x+(N∩K) 7→
x+K is an R-isomorhism N/(N ∩K)→ (N +K)/K.
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(Mod4) Correspondence Theorem. Let ϕ : M → N be an epimorphism and set K := kerϕ.
Then ϕ induces a lattice isomorphism

{lattice of submodules of M containing K} −→ {lattice of submodules of N}

We would like to study how a given module RM is built up out of certain “basic” submodules.
In the very specialised setting that will be the focus of this course, this study will prove especially
fruitful. For the time being, however, we will keep our discussion as general as possible.

If M1,M2 ≤ RM , then we say that M is the direct sum of M1 and M2 (denoted M = M1⊕M2) if
M = M1 +M2 and M1 ∩M2 = 0. In this setting we will also say that each Mi is a direct summand

of M and that each Mi is a direct complement of the other. If N ≤ M is a direct summand of
M then we write N ≤⊕ M . A nonzero module RM is indecomposable if it cannot be written as a
direct sum of submodules (i.e. whenever M = M1 ⊕M2, then either M1 or M2 is 0).

If M1, . . . ,Mk are submodules of RM such that M = M1 + . . .+Mk and Mi ∩ (M1 + . . .+Mi−1 +
Mi+1 + . . . + Mk) = 0 for each 1 ≤ i ≤ k then we write M = M1 ⊕ . . . ⊕Mk. The following result
gives a useful characterisation of direct sum decompositions.

(Mod5) Lemma. M = M1 ⊕ . . . ⊕ Mk iff each x ∈ M can be written uniquely in the form
x = x1 + . . .+ xk where xi ∈Mi for 1 ≤ i ≤ k.

Proof. Suppose that M = M1 ⊕ . . . ⊕Mk. Then clearly each x ∈ M can be written in the stated
form so it suffices to prove uniqueness. If x1 + . . .+ xk = x = x′1 + . . .+ x′k then, for 1 ≤ i ≤ k,

x′i − xi = (x1 − x′1) + . . .+ (xi−1 − x′i−1) + (xi+1 − x′i+1) + . . .+ (xk − x′k)
∈Mi ∩ (M1 + . . .+Mi−1 +Mi+1 + . . .+Mk).

It follows that xi − x′i = 0 so that xi = x′i.
Conversely, if each x ∈ M can be written in the form x = x1 + . . . + xk, then it follows that

M = M1 + . . .+Mk. Suppose that y ∈Mi ∩ (M1 + . . .+Mi−1 +Mi+1 + . . .+Mk). Then y = yi for
some yi ∈ Mi and also y = y1 + . . . + yi−1 + yi+1 + . . . + yk. But since any such expression for y is
unique, it follows that y = 0 so that M = M1 ⊕ . . .⊕Mk. �

(Mod6) Lemma. If RM and RN and ϕ : M → N and ϕ′ : N →M are such that ϕ′ϕ = idN . Then
ϕ is an epimorphism, ϕ′ is a monomorphism, and M = kerϕ⊕ im ϕ′.

Proof. It will suffice to prove the final assertion. Suppose, for x ∈M , that x ∈ kerϕ∩ im ϕ′. Then,
for some y ∈ N , we have x = yϕ′. But then x = yϕ′ = y(ϕ′ϕ)ϕ′ = xϕϕ′ = 0ϕ′ = 0. Finally, for
x ∈M , we have x = (x− xϕϕ′) + xϕϕ′ ∈ kerϕ+ im ϕ′. �

The following fact is trivial but useful to keep in mind.
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(Mod7) Lemma. For a nonzero module RM , the following are equivalent:
(a) M is indecomposable;
(b) For every pair M1,M2 ≤M , if M1 ∩M2 = 0, then M1 +M2 6= M ;
(c) For every pair M1,M2 ≤M , if M1 +M2 = M , then M1 ∩M2 = 0.

(Mod8) Lemma. Let M = M1 ⊕ M2 . . . ⊕ Mn and let ιj : Mj → M be the inclusion map for
1 ≤ j ≤ n. Then there exist epimorphisms πj : M → Mj (1 ≤ j ≤ n) such that ιjπk = δjkidMk

for
1 ≤ j, k ≤ n and such that π1ι1 + . . .+ πnιn = idM .

Sketch of proof. First observe that each x ∈ M can be written uniquely in the form x =
x1 + x2 + . . . + xn. Now verify that the map πj : M → Mj sending x 7→ xj , for 1 ≤ j ≤ n, is an
epimorphism and that π1, . . . , πn satisfy the stated conditions. �

In the case when M = M1⊕M2, the map π1 constructed in the proof above is called the projection

of M on M1 along M1. In general a direct summand M1 of a module M may have many different
direct complements; the next result gives a test, using the projection π1, for deciding whether or not
a given submodule of M is a direct complement of M1.

(Mod9) Lemma. Let M = M1⊕M2 and let π2 : M →M2 be the projection of M on M2 along M1.
A submodule N ≤M is a direct complement of M1 in M iff π2|N : N →M2 is an isomorphism.

Proof. For simplicity, let π denote the restriction π2|N . First note that kerπ = M1 ∩ N so that
M1 ∩N = 0 iff kerπ = 0. Next

Nπ = (M1 +N)π = ((M1 +N) ∩M)π
= ((M1 +N) ∩ (M1 +M2))π = (M1 + (M1 +N) ∩M2)π
= ((M1 +N) ∩M2)π = (M1 +N) ∩M2.

So Nπ = M2 iff M2 ≤M1 +N iff M1 +N = M . �

The following notion should sound familiar. A subsetX of a module RM is linearly independent

if, for every finite set {x1, . . . , xn} of distinct elements of X and for each r1, . . . , rn ∈ R,

r1x1 + r2x2 . . .+ rnxn = 0 ⇒ r1 = r2 = . . . = rn = 0.

A list x1, . . . , xn of distinct elements of RM is called independent if the set {x1, . . . , xn} is linearly
independent. We say that a module RF is a free module if there exists a (finite) linearly independent
set X such that F = RX (i.e. X generates F as R-module). We call each independent list x1, . . . , xn

such that X = {x1, . . . , xn} generates F a free basis for F . If RF has free basis x1, . . . , xn, then
the map ρ : Rn → F sending (r1, . . . , rn) 7→ r1x1 + . . . + rnxn is an isomorphism of R-modules (see
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Exercise 4). Hence, free modules are determined up to isomorphism by their rank, namely the
cardinality of X.

The next result states that when we restrict to the case when R = F is a field, all modules are free.

(Mod10) Theorem. Let F be a field and let FV be an F-module (vector space). Then every maximal
independent list v1, . . . , vn of elements of V is a (free) basis for V (in particular, every F-space is free).

Proof. Let v1, . . . , vn be maximal independent and let w ∈ V \ {v1, . . . , vn}. Then w, v1, . . . , vn is
dependent, so there exist 0 6= α, α1, . . . , αn ∈ F such that αw+ α1v1 + . . .+ αnvn = 0. But, since F is
a field, we have w = −(α1/α)v1 − . . .− (αn/α)vn ∈ F{v1, . . . , vn}. �

It follows from (Mod10) that if FV is a finite dimensional vector space, then there exists a free
basis, v1, . . . , vn say, such that V = F{v1, . . . , vn} = Fv1 ⊕ . . . ⊕ Fvn. In this setting, a free basis is
referred to simply as a basis of the vector space V and the (free) rank of V is called the dimension

of V and is denoted dim(V ). In any free module RF for an arbitrary ring R, an independent list of
elements of RF can be extended to a maximal independent list. The latter, however, need not be
a free basis of RF . But, in the case when R = F is a field, any independent list of vectors can be
extended to a basis of the vector space.

At the beginning of this lecture we introduced an R-module M by specifying the action of R
as endomorphisms of the abelian group M . We have since encountered the notion of an R-module
homomorphism and we call an R-homomorphism from M to itself an R-endomorphism and denote
the set of all such by EndR(M). We note that EndR(M) is a ring (see Exercise 1) but it is not, in
general, commutative (even if R is!) With this notation, since abelian groups are simply Z-modules,
we have End(M) = EndZ(M); that is, what we previously understood as an “endomorphism” is really
a “Z-endomorphism”.

In keeping with our notation for R-homomorphisms, we regard R-endomorphisms as operating on
the right. We point out that each R-module RM is therefore a bimodule RMEndR(M); R acting on the
left and EndR(M) acting on the right. We continue now to study R-endomorphisms of a free module

RF . Try to keep in mind what you already know about linear transformations of a vector space. To
help, I will use the letter T to denote a fixed element of EndR(F ).

(Mod11) Lemma. Let RF be a free module with basis x1, . . . , xn and let y1, . . . , yn be any sequence
of elements in RF . Then there exists a unique T ∈ EndR(F ) such that xiT = yi for 1 ≤ i ≤ n.

Proof. Define a map T0 : F → F sending r1x1 + . . .+ rnxn 7→ r1y1 + . . .+ rnyn. Clearly xiT0 = yi for
1 ≤ i ≤ n as required and one checks that T0 ∈ EndR(F ). For x ∈ F , there exist unique r1, . . . , rn ∈ R
such that x = r1x1 + . . . + rnxn. Hence, if T ∈ EndR(F ) is such that xiT = yi for 1 ≤ i ≤ n then,
xT = (r1x1 + . . .+ rnxn)T = r1(x1T ) + . . .+ rn(xnT ) = r1y1 + . . .+ rnyn = xT0, so that T = T0. �
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In the language of vector spaces, (Mod11) states that a linear transformation of a vector space V
is completely determined by the images of a basis of V and, furthermore, that a basis can be mapped
to any sequence of n points in V using a linear transformation.

Next let Mn(R) denote the ring of all n × n matrices over R. For a given A = [[aij ]] ∈ Mn(R)
define points yj :=

∑n
i=1 aijxi for 1 ≤ j ≤ n. By Lemma 5, there exists a unique R-endomorphism

TA : F → F sending xj 7→ yj for 1 ≤ j ≤ n. Hence we obtain a map λ : Mn(R) → EndR(F ) sending
A 7→ TA from which the following powerful observation follows.

(Mod12) Theorem. If RF is a free module with free basis x1, . . . , xn, then λ : Mn(R)→ EndR(F )
is a ring isomorphism.

Proof. Exercise 5.

In particular, when studying endomorphisms of a vector space we can, whenever we deem it useful,
work instead with matrices having entries in a division ring.

Exercises.

1. For an R-module RM , show that EndR(M) is a ring.

2. Show that if X ⊆M is any set, then RX ≤ RM ; RX is the submodule generated by X.

3. Show that if N1, N2 ≤ RM , then N1 ∩N2 ≤ RM and N1 +N2 ≤ RM .

4. If RF has free basis x1, . . . , xn, show that the map ρ : Rn → F sending (r1, . . . , rn) 7→
r1x1 + . . .+ rnxn is an isomorphism of R-modules.

5. Show that the map A 7→ λA defines an isomorphism of rings Mn(R)→ EndR(F ).

6. Let F be a field, V a vector space over F, and T ∈ EndF(V ). For f(x) = anx
n+. . .+a1x+a0

in the polynomial ring F[x], define a map f(T ) : V → V as follows: for each v ∈ V ,
v(f(T )) := an(vTn) + . . .+ a1(vT ) + a0v, where vT i = ((. . . (vT ) . . .)T )T .

(a) Show that f(T ) ∈ EndF(V ).

(b) If 〈T 〉 = {f(T ) | f(x) ∈ F[x]}, show that 〈T 〉 is a subring of EndF(V ). The map
ϕT : F[x] → 〈T 〉 sending f(x) 7→ f(T ) is clearly an epimorphism of rings. Discuss the
kernel, kerϕT , of this epimorphism.

Notice what this exercise demonstrates. For each T ∈ EndF(V ) we get a module VF[x],
where the action of F[x] on V is given by ϕT : for v ∈ V and f(x) ∈ F[x], vf(x) := v(f(T )).
This construction will play a key role in what is to follow.

7. Prove Schur’s Lemma: If the module RM is simple then EndR(M) is a field.

Is the converse true?
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8. Show that the map ϕ : F[x] → F[x] sending f(x) 7→ f(x2) is a ring homomorphism but is
not an F[x]-endomorphism of the regular module F[x]F[x]. Note that im ϕ is a subring of
F[x] but is not an ideal (why not?); hence im ϕ is not a submodule of F[x]F[x].
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