Perhaps the most elegant and concise classifications that exist in elementary algebra is that of finitely generated abelian groups (in stark contrast to that of finite simple groups!) We have seen that abelian groups are nothing other than \mathbb{Z}-modules and a natural question is whether or not we can obtain a nice classification of modules over a slightly broader class of rings than just \mathbb{Z}. It turns out that, for our purposes, the most fruitful setting to consider is R-modules when R is a PID.

We will eventually apply this theory to the setting where R is a polynomial ring acting on a vector space V over a field \mathbb{F}, where the action is defined in terms of a linear transformation T of V. The idea is that knowledge of the module theory of $\mathbb{F}[x]$ will provide information regarding the properties of T. With this in mind, and in keeping with our established convention, we switch orientation and consider right modules. Until further notice, R is a fixed PID and M_{R} is a module over R (recall that all modules are finitely generated).

We begin somewhat at the end by giving a general structure theorem for M_{R} which should remind you of finitely generated abelian groups. In fact, although we state it in its full generality, we will only prove it for abelian groups (i.e. for modules over our favourite PID, \mathbb{Z}). This cheat is justified by a desire to capture the flavour of the result without getting lost in technical details. I will, however, be delighted to discuss the general case with interested parties!
(PID1) Theorem [The Fundamental Theorem of Modules over a PID] If R is a PID then M_{R} is the direct sum of cyclic submodules.

Proof. We proceed by induction on the cardinality of a generating set for M of smallest size. Note that, if M is generated by a single element, then it is cyclic and the theorem is (trivially) true. Suppose then that the smallest generating set for M has cardinality $k>1$ and that the result holds for all l-generated modules with $l<k$. Among all relations of the form

$$
\begin{equation*}
y_{1} d_{1}+y_{2} d_{2}+\ldots+y_{k} d_{k}=0 \tag{1}
\end{equation*}
$$

where $M=y_{1} \mathbb{Z}+\ldots+y_{k} \mathbb{Z}, d_{i} \in \mathbb{Z}$, and not all $y_{i} d_{i}=0$, find the smallest positive integer c occuring as some d_{i}. Let z_{1}, \ldots, z_{k} denote a generating set for which c occurs in such a relation. Thus, reordering the z_{i} if necessary, we have

$$
\begin{equation*}
z_{1} c+z_{2} e_{2}+\ldots+z_{k} e_{k}=0 \tag{2}
\end{equation*}
$$

for some integers e_{2}, \ldots, e_{k}.
We first claim that, if $z_{1} d_{1}+\ldots z_{k} d_{k}=0$, then $c \mid d_{1}$. Use the division theorem to write $d_{1}=q c+r$ for $0 \leq r<c$. Multiplying (2) by q and subtracting, we get $z_{1}\left(d_{1}-q c\right)+z_{2}\left(d_{2}-q e_{2}\right)+\ldots+z_{k}\left(d_{k}-q e_{k}\right)=0$. Since $r=d_{1}-q c \geq 0$, by minimality of c, it follows that $r=0$.

We next claim that $c \mid e_{i}$ for $2 \leq i \leq k$. It suffices to show that $c \mid e_{2}$. Write $e_{2}=q c+r$ for $0 \leq r<c$ and put $z_{1}^{\prime}=z_{1}+z_{2} q$. Then $z_{1}^{\prime} c+z_{2} r+z_{3} e_{3}+\ldots+z_{k} e_{k}=0$; observe also that $z_{1}^{\prime}, z_{2} \ldots, z_{k}$ generates M because the z_{i} do. Again, the minimality of c forces $r=0$.

Hence, for $2 \leq i \leq k$, we can write $c_{i}=c q_{i}$ for some $q_{i} \in \mathbb{Z}$. Put $z_{1}^{*}=z_{1}+z_{2} q_{2}+\ldots+z_{k} q_{k}$ and observe that $z_{1}^{*}, z_{2}, \ldots, z_{k}$ generates M. Now, by equation (2), we have

$$
\begin{equation*}
z_{1}^{*} c=z_{1} c+z_{2} c q_{2}+\ldots+z_{k} c q_{k}=0 . \tag{3}
\end{equation*}
$$

Suppose that $z=z_{1}^{*} d_{1}=z_{2} d_{2}+\ldots+z_{k} d_{k} \in z_{1}^{*} \mathbb{Z} \cap\left\{z_{2}, \ldots, z_{k}\right\} \mathbb{Z}$, so that

$$
\left(z_{1}+z_{2} q_{2}+\ldots+z_{k} q_{k}\right) d_{1}-z_{2} d_{2}-\ldots-z_{k} d_{k}=z_{1} d_{1}+z_{2}\left(q_{2}-d_{2}\right)+\ldots+z_{k}\left(q_{k}-d_{k}\right)=0
$$

Then, by the first claim, $c \mid d_{1}$ and hence, by equation (3), $z=z_{1}^{*} d_{1}=0$. We have shown that $M=z_{1}^{*} \mathbb{Z}+z_{2} \mathbb{Z}+\ldots+z_{k} \mathbb{Z}=z_{1}^{*} \mathbb{Z} \oplus\left\{z_{2}, \ldots, z_{k}\right\} \mathbb{Z}$. By the inductive hypothesis, the module $\left\{z_{2}, \ldots, z_{k}\right\} \mathbb{Z}$ decomposes as the direct sum of cyclic submodules, and the result now follows.

Armed with this powerful weapon, we proceed now in full generality to nail down completely the structure of M_{R}. Recall that a finitely generated abelian group is made up of subgroups of two contrasting flavours: the infinite variety (direct products of \mathbb{Z}); and the finite variety (direct products of $\mathbb{Z} / n \mathbb{Z}$ for integers n). In the language of modules, the first type are simply free \mathbb{Z}-modules. We now define the analogue of the latter type in a general module. We say that $0 \neq x \in M_{R}$ is TORSION if there exists $0 \neq r \in R$ such that $x r=0$. Set

$$
M_{t}:=\{x \in M \mid x \text { is torsion }\} .
$$

We say that M is TORSION FREE if it contains no torsion elements; we say that M is a TORSION MODULE if $M=M_{t}$.
(PID2) Theorem. M_{t} is a submodule of M_{R} and there is a free submodule $M_{f} \leq M$ such that

$$
M=M_{t} \oplus M_{f} .
$$

Proof. By (PID1), there exist $x_{1}, \ldots, x_{m} \in M$ such that $M=x_{1} R \oplus \ldots \oplus x_{m} R$. For each i, either x_{i} is torsion or it is not; assume that x_{1}, \ldots, x_{k} are the generators which are not torsion and set $M_{f}:=x_{1} R \oplus \ldots \oplus x_{k} R$. It is clear that M_{f} is free (and, in particular, torsion free) and that $x_{k+1} R \oplus \ldots \oplus x_{m} R \leq M_{t}$. Finally, let $x \in M$ and write $x=x_{f}+x_{t}$ where $x_{f} \in M_{f}$ and $x_{t} \in x_{k+1} R \oplus \ldots x_{m} R$. But x is torsion if and only if $x_{f}=0$ so that $M_{t}=x_{k+1} R \oplus \ldots \oplus x_{m} R$.

We know that a free R-module is determined up to isomorphism by its rank. Therefore, in view of (PID2), a complete analysis of a finitely generated generated module M_{R} over a PID R hinges only on a description of its torsion submodule M_{t}. For $x \in M$ set $\mathcal{A}_{x}:=\{r \in R \mid x r=0\}$ the annihilator of x. Note that \mathcal{A}_{x} is a (right) ideal of R or, equivalently, a submodule of the regular module R_{R}. We record a little fact connecting annihilators to cyclic modules (in light of (PID1) the precise structure of cyclic modules is now of key interest to us).
(PID3) Lemma. $M_{R}=x R$ is cyclic iff $M_{R} \cong R / \mathcal{A}_{x}$.
Proof. Let M_{R} and let $0 \neq x \in M$. Define $\lambda_{x}: R \rightarrow M$ sending $r \mapsto x r$, where R is the regular module R_{R}. Then M_{R} is cyclic with generator x iff λ_{x} is an epimorphism. But in this case, by (Mod2), im $\lambda_{x} \cong R / \operatorname{ker} \lambda_{x}=R / \mathcal{A}_{x}$.

Let \mathcal{P} be a complete set of representative of the primes of R. For each M_{R} and $p \in \mathcal{P}$ set

$$
M(p):=\left\{x \in M \mid \mathcal{A}_{x}=\left(p^{n}\right) \text { for some } n \geq 0\right\} .
$$

Then $M(p)$ is a submodule of M (see Exercise 1).
(PID4) Theorem. If M_{R} is a torsion module, then

$$
M=\bigoplus_{p \in \mathcal{P}} M(p) .
$$

Proof. Let $0 \neq x \in M$. Since R is a PID, $\mathcal{A}_{x}=(a) \neq R$ for some $a=p_{1}^{e_{1}} \ldots p_{n}^{e_{n}}$ with $p_{i} \in \mathcal{P}$ and $e_{i} \in \mathbb{N}$ for $1 \leq i \leq n$. For each i, let $q_{i} \in R$ such that $q_{i} p_{i}^{e_{i}}=a$. Observe that $x q_{i} \in M\left(p_{i}\right)$ and that the gcd of $\left\{q_{1}, \ldots, q_{n}\right\}$ is 1 . By the Euclidean Algorithm, there exist $r_{i} \in R$ with $q_{1} r_{1}+\ldots+q_{n} r_{n}=1$. But then

$$
x=x 1=x q_{1} r_{1}+\ldots x q_{n} r_{n} \in M\left(p_{1}\right)+\ldots+M\left(p_{n}\right),
$$

so the submodules $M(p)$ certainly generate M. Next let $p_{1}, p_{2} \in \mathcal{P}$ be distinct and let $y \in M\left(p_{1}\right) \cap$ $M\left(p_{2}\right)$. Then for some $m_{1}, m_{2} \in \mathbb{N}$, we have $\mathcal{A}_{y}=\left(p_{1}^{m_{1}}\right)=\left(p_{2}^{m_{2}}\right)$. Hence $m_{1}=m_{2}=0$ and $\mathcal{A}_{y}=R$ so that $y=0$. The result now follows.

To complete the description of finitely generated modules over a PID, it suffices now to analyse the structure of the torsion modules $M(p)$ for $p \in R$ a prime.
(PID5) Lemma. There exist natural numbers $n_{1} \geq n_{2} \geq \ldots \geq n_{k} \geq 1$ such that

$$
M(p) \cong R /\left(p^{n_{1}}\right) \oplus \ldots \oplus R /\left(p^{n_{k}}\right)
$$

Proof. By (PID1), there exist $x_{1}, \ldots x_{k} \in M(p)$ such that $M(p)=x_{1} R \oplus \ldots \oplus x_{k} R$. For $1 \leq i \leq k$, by Lemma $2, x_{i} R \cong R / \mathcal{A}_{x_{i}}=R /\left(p^{n_{i}}\right)$ for some natural number n_{i}. The result now follows by reordering the x_{i} so that $n_{1} \geq n_{2} \geq \ldots \geq n_{k} \geq 1$.

Combining (PID2), (PID4) and (PID5), we have now proved the first of two big decomposition theorems.
(PID6) [Elementary Divisor Theorem] Let M_{R} be a finitely generated module over the PID R. Then there exist: unique primes $p_{1}, \ldots, p_{m} \in \mathcal{P}$; for each p_{i}, natural numbers $n_{i 1} \geq n_{i 2} \geq \ldots \geq n_{i k_{i}} \geq$ 1 ; and an integer $r \geq 0$, such that

$$
M \cong M_{f} \oplus \bigoplus_{i=1}^{m} \bigoplus_{j=1}^{k_{i}} R /\left(p_{i}^{n_{i j}}\right)
$$

where M_{f} is a free module of rank r.

Not too surprisingly in view of the name of the preceding theorem, the prime powers $p_{i}^{n_{i j}}$ which, together with the integer r, characterise the module M_{R} are called the ELEMENTARY DIVISORS of M. The elementary divisors will be used later to obtain a canonical form for a linear operator. We now reassemble these submodules to obtain another valuable decomposition for M which will give rise to an alternate canonical form. Consider the following array:

$$
\begin{array}{|cc|}
\hline \boldsymbol{p}_{\mathbf{1}}: & n_{11} \geq \ldots \geq n_{1 k_{1}} \\
\boldsymbol{p}_{\mathbf{2}}: & n_{21} \geq \ldots \geq n_{2 k_{2}} \\
\vdots & \\
\boldsymbol{p}_{\boldsymbol{m}}: & n_{m 1} \geq \ldots \geq n_{m k_{m}} \\
\hline
\end{array}
$$

For each $1 \leq i \leq k:=\max \left\{k_{1}, \ldots, k_{m}\right\}$, put

$$
q_{i}:=p_{1}^{n_{1 i}} p_{2}^{n_{2 i}} \ldots p_{m}^{n_{m i}}
$$

Then we have

$$
R /\left(q_{i}\right) \cong R /\left(p_{1}^{n_{1 i}}\right) \oplus R /\left(p_{2}^{n_{2 i}}\right) \oplus \ldots \oplus R /\left(p_{m}^{n_{m i}}\right)
$$

(see Exercise 2). Notice that, for $1 \leq i<k, q_{i} \mid q_{i+1}$. The ideals $\left(q_{1}\right), \ldots,\left(q_{k}\right)$ (and also their generators q_{1}, \ldots, q_{k}) are called the INVARIANT FACTORS of M. Our final result, often called the The Fundamental Theorem of Finitely Generated Modules over a PID, gives an alternate decomposition of M in terms of its invariant factors.
(PID7) [Invariant Factor Theorem] Let M_{R} be a finitely generated module over the PID R. Then there is a unique integer $r \geq 0$ and a unique chain of non-trivial ideals

$$
\left(q_{1}\right) \leq\left(q_{2}\right) \leq \ldots \leq\left(q_{k}\right)
$$

of R such that

$$
M \cong M_{f} \oplus R /\left(q_{1}\right) \oplus R /\left(q_{2}\right) \oplus \ldots \oplus R /\left(q_{k}\right)
$$

where M_{f} is a free module of rank r.

Exercises.

1. Show that $M(p)=\left\{x \in M \mid \mathcal{A}_{x}=\left(p^{n}\right)\right.$ for some $\left.n \geq 0\right\}$ is a submodule of M.
2. Show that if $q=p_{1}^{n_{1}} p_{2}^{n_{2}} \ldots p_{m}^{n_{m}}$ then

$$
R /(q) \cong R /\left(p_{1}^{n_{1}}\right) \oplus R /\left(p_{2}^{n_{2}}\right) \oplus \ldots \oplus R /\left(p_{m}^{n_{m}}\right)
$$

3. For each of the following abelian groups M describe its torsion submodule M_{t} and, for each prime $p \in \mathbb{N}$, the submodule $M(p)$:
(a) $M=\mathbb{Q} / \mathbb{Z}$;
(b) $M=\mathbb{Q} / 2 \mathbb{Z}$;
(c) $M=\mathbb{R} / \mathbb{Z}$;
(d) $M=\mathbb{R} / \mathbb{Q}$.
4. Find the elementary divisors and the invariant factors of the \mathbb{Z}-module $\mathbb{Z}_{120} \oplus \mathbb{Z}_{72} \oplus \mathbb{Z}_{98}$.
