
(PID) Modules over a PID Math 683L (Summer 2003)

Perhaps the most elegant and concise classifications that exist in elementary algebra is that of
finitely generated abelian groups (in stark contrast to that of finite simple groups!) We have seen that
abelian groups are nothing other than Z-modules and a natural question is whether or not we can
obtain a nice classification of modules over a slightly broader class of rings than just Z. It turns out
that, for our purposes, the most fruitful setting to consider is R-modules when R is a PID.

We will eventually apply this theory to the setting where R is a polynomial ring acting on a vector
space V over a field F, where the action is defined in terms of a linear transformation T of V . The
idea is that knowledge of the module theory of F[x] will provide information regarding the properties
of T . With this in mind, and in keeping with our established convention, we switch orientation and
consider right modules. Until further notice, R is a fixed PID and MR is a module over R (recall that
all modules are finitely generated).

We begin somewhat at the end by giving a general structure theorem for MR which should remind
you of finitely generated abelian groups. In fact, although we state it in its full generality, we will only
prove it for abelian groups (i.e. for modules over our favourite PID, Z). This cheat is justified by a
desire to capture the flavour of the result without getting lost in technical details. I will, however, be
delighted to discuss the general case with interested parties!

(PID1) Theorem [The Fundamental Theorem of Modules over a PID] If R is a PID then
MR is the direct sum of cyclic submodules.

Proof. We proceed by induction on the cardinality of a generating set for M of smallest size. Note
that, if M is generated by a single element, then it is cyclic and the theorem is (trivially) true. Suppose
then that the smallest generating set for M has cardinality k > 1 and that the result holds for all
l-generated modules with l < k. Among all relations of the form

y1d1 + y2d2 + . . .+ ykdk = 0, (1)

where M = y1Z+ . . .+ykZ, di ∈ Z, and not all yidi = 0, find the smallest positive integer c occuring as
some di. Let z1, . . . , zk denote a generating set for which c occurs in such a relation. Thus, reordering
the zi if necessary, we have

z1c+ z2e2 + . . .+ zkek = 0, (2)

for some integers e2, . . . , ek.
We first claim that, if z1d1+. . . zkdk = 0, then c|d1. Use the division theorem to write d1 = qc+r for

0 ≤ r < c. Multiplying (2) by q and subtracting, we get z1(d1−qc)+z2(d2−qe2)+. . .+zk(dk−qek) = 0.
Since r = d1 − qc ≥ 0, by minimality of c, it follows that r = 0.
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We next claim that c|ei for 2 ≤ i ≤ k. It suffices to show that c|e2. Write e2 = qc+ r for 0 ≤ r < c

and put z′1 = z1 + z2q. Then z′1c+ z2r+ z3e3 + . . .+ zkek = 0; observe also that z′1, z2 . . . , zk generates
M because the zi do. Again, the minimality of c forces r = 0.

Hence, for 2 ≤ i ≤ k, we can write ci = cqi for some qi ∈ Z. Put z∗1 = z1 + z2q2 + . . . + zkqk and
observe that z∗1 , z2, . . . , zk generates M . Now, by equation (2), we have

z∗1c = z1c+ z2cq2 + . . .+ zkcqk = 0. (3)

Suppose that z = z∗1d1 = z2d2 + . . .+ zkdk ∈ z∗1Z ∩ {z2, . . . , zk}Z, so that

(z1 + z2q2 + . . .+ zkqk)d1 − z2d2 − . . .− zkdk = z1d1 + z2(q2 − d2) + . . .+ zk(qk − dk) = 0.

Then, by the first claim, c|d1 and hence, by equation (3), z = z∗1d1 = 0. We have shown that
M = z∗1Z+z2Z+. . .+zkZ = z∗1Z⊕{z2, . . . , zk}Z. By the inductive hypothesis, the module {z2, . . . , zk}Z
decomposes as the direct sum of cyclic submodules, and the result now follows. �

Armed with this powerful weapon, we proceed now in full generality to nail down completely the
structure of MR. Recall that a finitely generated abelian group is made up of subgroups of two
contrasting flavours: the infinite variety (direct products of Z); and the finite variety (direct products
of Z/nZ for integers n). In the language of modules, the first type are simply free Z-modules. We
now define the analogue of the latter type in a general module. We say that 0 6= x ∈MR is torsion

if there exists 0 6= r ∈ R such that xr = 0. Set

Mt := {x ∈M | x is torsion}.

We say thatM is torsion free if it contains no torsion elements; we say thatM is a torsion module

if M = Mt.

(PID2) Theorem. Mt is a submodule of MR and there is a free submodule Mf ≤M such that

M = Mt ⊕Mf .

Proof. By (PID1), there exist x1, . . . , xm ∈ M such that M = x1R ⊕ . . . ⊕ xmR. For each
i, either xi is torsion or it is not; assume that x1, . . . , xk are the generators which are not torsion
and set Mf := x1R ⊕ . . . ⊕ xkR. It is clear that Mf is free (and, in particular, torsion free) and
that xk+1R ⊕ . . . ⊕ xmR ≤ Mt. Finally, let x ∈ M and write x = xf + xt where xf ∈ Mf and
xt ∈ xk+1R⊕ . . . xmR. But x is torsion if and only if xf = 0 so that Mt = xk+1R⊕ . . .⊕ xmR. �
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We know that a free R-module is determined up to isomorphism by its rank. Therefore, in view of
(PID2), a complete analysis of a finitely generated generated module MR over a PID R hinges only
on a description of its torsion submodule Mt. For x ∈M set Ax := {r ∈ R | xr = 0} the annihilator

of x. Note that Ax is a (right) ideal of R or, equivalently, a submodule of the regular module RR. We
record a little fact connecting annihilators to cyclic modules (in light of (PID1) the precise structure
of cyclic modules is now of key interest to us).

(PID3) Lemma. MR = xR is cyclic iff MR
∼= R/Ax.

Proof. Let MR and let 0 6= x ∈ M . Define λx : R → M sending r 7→ xr, where R is the regular
module RR. Then MR is cyclic with generator x iff λx is an epimorphism. But in this case, by
(Mod2), im λx ∼= R/ kerλx = R/Ax. �

Let P be a complete set of representative of the primes of R. For each MR and p ∈ P set

M(p) := {x ∈M | Ax = (pn) for some n ≥ 0}.

Then M(p) is a submodule of M (see Exercise 1).

(PID4) Theorem. If MR is a torsion module, then

M =
⊕
p∈P

M(p).

Proof. Let 0 6= x ∈ M . Since R is a PID, Ax = (a) 6= R for some a = pe11 . . . penn with pi ∈ P and
ei ∈ N for 1 ≤ i ≤ n. For each i, let qi ∈ R such that qipeii = a. Observe that xqi ∈ M(pi) and that
the gcd of {q1, . . . , qn} is 1. By the Euclidean Algorithm, there exist ri ∈ R with q1r1 + . . .+ qnrn = 1.
But then

x = x1 = xq1r1 + . . . xqnrn ∈M(p1) + . . .+M(pn),

so the submodules M(p) certainly generate M . Next let p1, p2 ∈ P be distinct and let y ∈ M(p1) ∩
M(p2). Then for some m1,m2 ∈ N, we have Ay = (pm1

1 ) = (pm2
2 ). Hence m1 = m2 = 0 and Ay = R

so that y = 0. The result now follows. �

To complete the description of finitely generated modules over a PID, it suffices now to analyse the
structure of the torsion modules M(p) for p ∈ R a prime.
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(PID5) Lemma. There exist natural numbers n1 ≥ n2 ≥ . . . ≥ nk ≥ 1 such that

M(p) ∼= R/(pn1)⊕ . . .⊕R/(pnk).

Proof. By (PID1), there exist x1, . . . xk ∈M(p) such that M(p) = x1R⊕. . .⊕xkR. For 1 ≤ i ≤ k, by
Lemma 2, xiR ∼= R/Axi = R/(pni) for some natural number ni. The result now follows by reordering
the xi so that n1 ≥ n2 ≥ . . . ≥ nk ≥ 1. �

Combining (PID2), (PID4) and (PID5), we have now proved the first of two big decomposition
theorems.

(PID6) [Elementary Divisor Theorem] Let MR be a finitely generated module over the PID R.
Then there exist: unique primes p1, . . . , pm ∈ P; for each pi, natural numbers ni1 ≥ ni2 ≥ . . . ≥ niki ≥
1; and an integer r ≥ 0, such that

M ∼= Mf ⊕
m⊕
i=1

ki⊕
j=1

R/(pniji ),

where Mf is a free module of rank r.

Not too surprisingly in view of the name of the preceding theorem, the prime powers pniji which,
together with the integer r, characterise the module MR are called the elementary divisors of M .
The elementary divisors will be used later to obtain a canonical form for a linear operator. We now
reassemble these submodules to obtain another valuable decomposition for M which will give rise to
an alternate canonical form. Consider the following array:

p1 : n11 ≥ . . . ≥ n1k1

p2 : n21 ≥ . . . ≥ n2k2

...
pm : nm1 ≥ . . . ≥ nmkm

For each 1 ≤ i ≤ k := max{k1, . . . , km}, put

qi := pn1i
1 pn2i

2 . . . pnmim .

Then we have
R/(qi) ∼= R/(pn1i

1 )⊕R/(pn2i
2 )⊕ . . .⊕R/(pnmim )
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(see Exercise 2). Notice that, for 1 ≤ i < k, qi|qi+1. The ideals (q1), . . . , (qk) (and also their generators
q1, . . . , qk) are called the invariant factors ofM . Our final result, often called the The Fundamental
Theorem of Finitely Generated Modules over a PID, gives an alternate decomposition of M in terms
of its invariant factors.

(PID7) [Invariant Factor Theorem] Let MR be a finitely generated module over the PID R. Then
there is a unique integer r ≥ 0 and a unique chain of non-trivial ideals

(q1) ≤ (q2) ≤ . . . ≤ (qk)

of R such that
M ∼= Mf ⊕R/(q1)⊕R/(q2)⊕ . . .⊕R/(qk),

where Mf is a free module of rank r.

Exercises.

1. Show that M(p) = {x ∈M | Ax = (pn) for some n ≥ 0} is a submodule of M .

2. Show that if q = pn1
1 pn2

2 . . . pnmm then

R/(q) ∼= R/(pn1
1 )⊕R/(pn2

2 )⊕ . . .⊕R/(pnmm )

3. For each of the following abelian groups M describe its torsion submodule Mt and, for each
prime p ∈ N, the submodule M(p):

(a) M = Q/Z; (b) M = Q/2Z; (c) M = R/Z; (d) M = R/Q.

4. Find the elementary divisors and the invariant factors of the Z-module Z120 ⊕ Z72 ⊕ Z98.
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