
(Mat) Matrices and Similarity Math 683L (Summer 2003)

Our primary goal in this course is to obtain an intimate understanding of vector spaces (modules
over a field F) and of linear transformations of vector spaces (F-endomorphisms of such modules). So
far we have seen that F-modules are free and that a free R-module is isomorphic to a bunch of copies
of R; hence, if FV is an F-vector space, then

FV ∼= F
n = {(α1, . . . , αn) | αi ∈ F} = {row vectors}

for some positive integer n.
Let us first make the connection between FV and Fn more concrete. Let B = v1, . . . , vn be a basis of

V (recall that “basis” means “free basis” of the free module FV ). Each v ∈ V can be written uniquely
in the form v =

∑n
i=1 αivi for αi ∈ F. Hence, for each basis B of V , we obtain a map B( ) : V → F

n

sending v 7→ B(v) := (α1, . . . , αn). We will call B(v) the row vector of v relative to B.
Next let T ∈ EndF(V ). We associate to T and B an element BAT of the matrix ring Mn(F) as

follows: for 1 ≤ i ≤ n, find scalars αij ∈ F (1 ≤ j ≤ n) such that viT =
∑n

j=1 αijvj ; and set

BAT := [[αij ]]ni,j=1.

We call BAT the matrix of T relative to B. Observe that if A = BAT then

B(vT ) = B(v)A
function matrix

evaluation multiplication

for all v ∈ V.

Special case. The subscripts are required to keep track of bases and whether we are working
in V or in Fn but they quickly become annoying! When V actually is Fn things are nicer
since we have an obvious choice of basis. Let V = F

n and, for 1 ≤ i ≤ n, let ei denote the
ith elementary row vector, namely the one with ‘1’ in position i and ‘0’s elsewhere. Let

Be = e1, e2, . . . , en,

be the elementary basis of F
n. Now if v = (α1, . . . , αn) ∈ Fn we have Be(v) = v. That is,

the elements of Fn are already row vectors relative to Be! We called this a special case but, since
each vector space is isomorphic to Fn for some n, we can (and do!) usually work directly with
row vectors.

If we used a different basis B′ for V we would get a new matrix B′AT ; hence the matrices BAT and

B′AT are different matrices representing the same linear transformation T . We say that A,A′ ∈Mn(F)
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are similar, denoted A ∼ A′, if there exists a T ∈ EndF(V ) and bases B and B′ of V such that A = BAT

and A′ = B′AT . The definition involves a linear transformation T but we can characterise the property
of similarity in purely matrix-theoretic terms.

(Mat1) Lemma. A ∼ A′ iff there exists an invertible P ∈Mn(F) such that A′ = PAP−1.

Proof. A ∼ A′ iff ∃T ∈ Mn(F) and bases B = v1, . . . , vn and B′ = v′1, . . . , v
′
n such that A = BAT

and A′ = B′AT . Writing viT =
∑n

j=1 αijvj and v′iT =
∑n

j=1 α
′
ijv
′
v for 1 ≤ i ≤ n, we have A = [[αij ]]

and A′ = [[α′ij ]]. Next, since B is a basis, we obtain expressions v′i =
∑n

i=1 βijvj for 1 ≤ i ≤ n; set
P := [[βij ]]. Since B′ is also a basis, we can express each vi as a linear combination of elements of B′;
that is, the matrix P is invertible. We claim that A′ = PAP−1. For 1 ≤ i ≤ n, we have

v′iT =
n∑
j=1

α′ijv
′
j =

n∑
j=1

α′ij

n∑
k=1

βjkvk =
n∑

j,k=1

α′ijβjkvk.

On the other hand,

v′iT = (
n∑
j=1

βijvj)T =
∑
j=1

βij

n∑
k=1

αjkvk =
n∑

j,k=1

βijαjkvk.

It follows that for all 1 ≤ i, k ≤ n,
∑n

j=1 α
′
ijβjk =

∑n
j=1 βijαjk. In matrix terms, these conditions

imply that A′P = PA and hence that A′ = PAP−1.
Conversely, suppose that A′ = P−1AP for some invertible P ; we leave it as an exercise to show

that A ∼ A′ (Exercise 1). �

Observations

1. Suppose that we are given a matrix A relative to some basis B = v1, . . . , vn, and we wish to
write A relative to some new basis B′ = v′1, . . . , v

′
n. We saw in the proof of (Mat1) an algorithm

for doing this, namely find scalars βij ∈ F such that v′i =
∑n

j=1 βijvj for 1 ≤ i ≤ n and set
P := [[βij ]]. Then A′ := PAP−1 is the matrix we seek. That is, the rows of the “conjugating
matrix” Q are just the new basis vectors expressed as linear combinations of the old basis. See
Exercise 2 to practice using this algorithm.

When we say “write A relative to B” we really mean express the linear transformation which is
represented by the matrix A (relative to the old basis B) as a matrix relative to the new basis
B′.

2. Let GLn(F) denote the set of all invertible elements of Mn(F). It should be pretty clear that
GLn(F) is a group under matrix multiplication. Notice also that GLn(F) “acts” on Mn(F) by
conjugation: A 7→ PAP−1 for A ∈ Mn(F) and P ∈ GLn(F). Now, in the language of group
theory, (Mat1) states that A ∼ A′ iff A and A′ are in the same GLn(F) conjugacy class. Or,
more succinctly, the “similarity classes” in Mn(F) are the GLn(F) conjugacy classes.
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In this course we wish to understand completely the behaviour of a single linear transformation
T . Since similar matrices represent the same linear transformation (relative to different bases)
we can look for a basis B relative to which the behaviour of T is transparent; i.e. such that BAT
is as elementary as possible.

3. Consider the following algorithmic problem. Suppose that we are given two matrices A and B

and we wish to decide whether or not they are similar. (i.e. do they represent the “same” linear
transformation?) (Mat1) gives us a theoretical criterion, but how are we supposed to determine
whether or not A and B are conjugate in GLn(F)?

The solution to this algorithmic problem is strongly connected with the comments made in the
last paragraph of observation 2.

Before proceeding further let us lay down some terminology and elementary properties of matrices
for use later on. I assume, however, that you know how matrix addition/subtraction and multiplication
work. Let A = [[αij ]], B = [[βij ]] ∈Mn(F) and α ∈ F.

1. We define the matrix αA to be [[ααij ]]. Note that this turns Mn(F) into an F-module (vector
space) of dimension n2.

2. We define the transpose of A, denoted Atr, to be the matrix [[αji]].

(Mat2) Lemma. The transpose of a matrix has the following properties:

(a) (A+B)tr = Atr +Btr;

(b) (αA)tr = αAtr;

(c) (AB)tr = BtrAtr;

(d) If A is invertible, then Atr is invertible and (Atr)−1 = (A−1)tr.

Proof. Exercise 3.

To any T ∈ EndF(V ) we associate two types of subspace of V : V T (the image, im T , of T ) is a
subspace of V called the range of T ; and NS(T ) = kerT is called the nullspace of T . Also, we call
dim(V T ) the rank of T (denoted r(T )); and dim(NS(T )) is called the nullity of T (denoted n(T )).
The following is our first fundamental property of a linear transformation.

(Mat4) Theorem. Let FV have dimension n and let T ∈ EndF(V ). Then

n = r(T ) + n(T ).

Proof. Let v1, . . . , vk be a basis for NS(A); hence n(T ) = k. In particular, v1, . . . , vk are lin-
early independent and so may be extended to a basis of v1, . . . , vk, vk+1, . . . , vn of V . We claim that
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vk+1T, . . . , vnT is a basis for V T (note that this will prove the theorem). Fix vT ∈ V T and write
v =

∑n
i=1 αivi. Hence

vT = (
n∑
i=1

αivi)T =
k∑
i=1

αi(viT ) +
n∑

i=k+1

αi(viT ) =
n∑

i=k+1

αi(viT ).

Next suppose that, for some βk+1, . . . , βn ∈ F, we have
∑n

k+1 βi(viT ) = 0. Then (
∑n

k+1 βivi)T = 0 so
that

∑n
k+1 βivi ∈ NS(T ) = Fv1 + . . .+ Fvk. Since v1, . . . , vn is a basis, we have βk+1 = . . . = βn = 0.

The claim now follows. �

We close this lecture by translating some of the above terminology to matrices. We view a given
A = [[αij ]] ∈ Mn(F) as a transformation of Fn via matrix multiplication. Let Be = e1, . . . , en be the
elementary basis of Fn. For 1 ≤ i ≤ n, consider the image eiA = (αi1, . . . , αin). It follows that the
range of the transformation represented by A is simply the subspace spanned by the rows of A; the
so-called row space of A. The rank of the transformation represented by A (called the row rank,
or simply rank, of A) is the dimension of its row space. The nullspace of A is the nullspace of the
transformation it represents, and the nullity of A is the dimension of its nullspace.

Exercises.

1. Prove the “if” part of the “iff” statement in (Mat1); we already proved the “only if” part!
See the last paragraph of the proof.

2. Suppose that the matrix

A =

 1 0 −3
1 1 1
0 −1 2


is written relative to the elementary basis of the vector space Q3. Write A as a matrix
relative to B = v1, v2, v3 where

v1 = (−1, 1, 2), v2 = (3, 1, 0), v3 = (0, 1, 1).

3. Prove (Mat2).

4. We say that A ∈ Mn(F) is symmetric in case A = Atr. Show that the set Σn(F) of all
symmetric matrices of Mn(F) is a subspace of the vector space Mn(F).

5. A matrix is nilpotent if there exists some positive integer n such that An = 0. A matrix
A = [[αij ]] is strictly upper triangular if αij = 0 for all j ≥ i. Prove that if A is
strictly upper triangular then it is nilpotent.
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6. Let V be vector space over R having basis u1, u2. Let S, T ∈ EndR(V ) be such that
u1S = u1 + u2, u2S = −u1 − u2, u1T = u1 − u2 and u2T = 2u2.

(a) Find the rank and nullity of S and T .

(b) Which of the transformations is invertible?

(c) Find bases for the nullspaces of S and T .

(d) Find bases for the ranges of S and T .

Answer the same questions for the linear transformation T of the 3-space V , having basis
u1, u2, u2 such that u1T = u1 + u2 − u3, u2T = u2 − 3u3, u3T = −u1 − 3u2 − 2u3.

7. Let V be an n-dimensional space over a field F, let W = Fv be a 1-dimensional subspace,
and let f : V →W be a nonzero linear transformation. Show that dim NS(f) = n− 1.

8. Give an example of a vector space V and linear transformation T of V having the property
that V T ∩NS(T ) 6= 0.

9. Let F be the finite field with q elements, and let V be a vector space of dimension 2 over
F. Find the number of endomorphisms of V that fix at least one nonzero vector.
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