We now begin in earnest our prolongued excursion into the life of a single linear transformation. This is where we will finally see the pay-off for all of our hard work studying the structure of modules over a PID. First let us set up some notation and terminology.

Fix an \mathbb{F} -vector space V of dimension n. For vectors $v_1, \ldots, v_r \in V$, put

$$\operatorname{sp}(v_1,\ldots,v_r) := \mathbb{F}\{v_1,\ldots,v_r\} = \{\alpha_1 v_1 + \ldots + \alpha_r v_r \mid \alpha_i \in \mathbb{F}\},\$$

the <u>F-LINEAR SPAN</u> of v_1, \ldots, v_r . For $1 \le i \le k$, let A_i be an $n_i \times n_i$ matrix for some positive integer n_i where $n_1 + n_2 + \ldots + n_k = n$. Then define

$$\operatorname{diag}(A_1, A_2, \dots, A_k) := \begin{pmatrix} A_1 & 0 & \dots & 0 \\ 0 & A_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & A_k \end{pmatrix}$$

where the block entry entry "0" denotes the zero matrix of the appropriate dimensions (for example, the (2,1) entry is the $n_1 \times n_2$ zero matrix). Suppose that, for some $T \in \text{End}_{\mathbb{F}}(V)$ and some basis \mathcal{B} of V, we have $_{\mathcal{B}}A_T = \text{diag}(A_1, \ldots, A_k)$ for some square matrices A_i , as above. Cluster the vectors in \mathcal{B} together into groups as follows:

$$\mathcal{B} = v_{11}, \dots, v_{1n_1}, v_{21}, \dots, v_{2n_2}, \dots, v_{k1}, \dots, v_{kn_k}$$

and, for $1 \leq i \leq k$, put $V_i := \operatorname{sp}(v_{i1}, \ldots, v_{in_i})$, of v_{i1}, \ldots, v_{in_i} . Then clearly we have $V = V_1 \oplus \ldots \oplus V_k$. In addition, T moves the vectors of V_i only within V_i ; that is, $V_iT \leq V_i$. We say that a subspace $W \leq V$ is <u>*T*-INVARIANT</u> in case $WT \leq W$. Hence, for our T, each V_i is *T*-invariant and $V = V_1 \oplus \ldots \oplus V_k$ is called a <u>*T*-INVARIANT DIRECT SUM DECOMPOSITION OF V.</u>

Next suppose that W is any T-invariant subspace of V and let $\mathcal{B}_W = w_1, \ldots, w_l$ be any basis of W. Let T_W denote the restriction of T to W. Since W is T-invariant, we have $T_W \in \operatorname{End}_{\mathbb{F}}(W)$; let A_W denote $\mathcal{B}_W A_{T_W}$, the $l \times l$ matrix of T_W relative to \mathcal{B}_W . Now extend \mathcal{B}_W to a basis of V, say $\mathcal{B} = w_1, \ldots, w_l, u_1, \ldots, u_{n-l}$. Then we have

$${}_{\mathcal{B}}A_T = \left(\begin{array}{cc} A_W & 0\\ B & C \end{array}\right),$$

where B is $(n-l) \times l$ and C is $(n-l) \times (n-l)$. Let $\mathcal{B}_U = u_1, \ldots, u_{n-l}$ and $U = \operatorname{sp}(u_1, \ldots, u_{n-l})$; then we have $V = W \oplus U$. Now suppose that U is also T-invariant (so that $V = W \oplus U$ is a T-invariant direct sum decomposition). Then B = 0 and $C = A_U$ is the $(n-l) \times (n-l)$ matrix $\mathcal{B}_U A_{T_U}$. A simple induction argument now gives us the following nice fact. **(Dec1) Theorem.** Let V be an \mathbb{F} -vector space of dimension n and let $T \in \operatorname{End}_{\mathbb{F}}(V)$. Then there exists a basis \mathcal{B} of V and square matrices A_1, \ldots, A_k such that ${}_{\mathcal{B}}A_T = \operatorname{diag}(A_1, \ldots, A_k)$ if and only if there exists a T-invariant decomposition $V = V_1 \oplus \ldots \oplus V_k$ of V. Moreover \mathcal{B} is the concatenation $\mathcal{B}_1, \ldots, \mathcal{B}_k$, where \mathcal{B}_i is a basis of V_i such that $A_i = {}_{\mathcal{B}_i}A_{T_{V_i}}$ for $1 \leq i \leq k$. \Box

Remark: It is clear from (**Dec1**) that it is in our interest to investigate ways of finding T-invariant direct sum decompositions of the vector space V. For, if we can, then it suffices to study the restriction of T to each of the direct summands.

Let us revisit <u>Exercise 6</u> of the (Mod) lecture. Fix $T \in \text{End}_{\mathbb{F}}(V)$ and let $\langle T \rangle$ denote the subring of $\text{End}_{\mathbb{F}}(V)$ defined by

$$\langle T \rangle = \{ f(T) \mid f(x) \in \mathbb{F}[x] \};$$

then $\varphi_T \colon \mathbb{F}[x] \to \langle T \rangle$ sending $f(x) \mapsto f(T)$ is an epimorphism of rings. Recall that, as an \mathbb{F} -vector space, $\operatorname{End}_{\mathbb{F}}(V)$ has dimension n^2 . It follows that the $n^2 + 1$ endomorphisms

1,
$$T, T^2, \ldots, T^{n^2}$$

are linearly dependant. That is, there exist $\alpha_0, \alpha_1, \ldots, \alpha_{n^2} \in \mathbb{F}$, not all zero, such that

$$\alpha_0 + \alpha_1 T + \ldots + \alpha_{n^2} T^{n^2} = 0,$$

the zero transformation of V. Defining $k(x) = \alpha_0 + \alpha_1 x + \ldots + \alpha_{n^2} x^{n^2}$, we have $k(x) \in \ker \varphi_T$. In particular, the kernel is nonzero. Since $\mathbb{F}[x]$ is a PID, it follows that $\ker \varphi_T = (m_T(x))$, where $m_T(x)$ is the **unique** monic polynomial generating this principal ideal. The polynomial $m_T(x)$ is absolutely central to the study of the linear transformation T; it is called the <u>MINIMAL POLYNOMIAL OF T</u>. Observe that we can factorize $m_T(x)$ uniquely as

$$m_T(x) = p_1(x)^{n_1} p_2(x)^{n_2} \dots p_k(x)^{n_k},$$

where each $p_i(x)$ is a monic irreducible polynomial in $\mathbb{F}[x]$.

Next, we use φ_T to define an action of the ring $\mathbb{F}[x]$ on the vector space V. For $v \in V$ and $f(x) \in \mathbb{F}[x]$, define

$$vf(x) := v\varphi_T(f(x)) = vf(T).$$

This turns the (left) \mathbb{F} -vector space $\mathbb{F}V$ into a (right) $\mathbb{F}[x]$ -module $V_{\mathbb{F}[x]}$. Now, since $\mathbb{F}[x]$ is a PID, we can use our powerful machinery to pin down the structure of the $\mathbb{F}[x]$ -module V. Before doing so,

however, we make a crucial observation concerning T-invariant subspaces of $_{\mathbb{F}}V$ and $\mathbb{F}[x]$ -submodules of $V_{\mathbb{F}[x]}$.

(Dec2) Lemma. A subspace W of V is T-invariant iff it is a $\mathbb{F}[x]$ -submodule of $V_{\mathbb{F}[x]}$.

Proof. (\Leftarrow) Let W be an $\mathbb{F}[x]$ -submodule. Then W is stable under the action of **any** element of $f(x) \in \mathbb{F}[x]$ (i.e. $Wf(x) \subseteq W$); in particular W is stable under the action of $x \in \mathbb{F}[x]$. But x acts as T ($Wx = WT \subseteq W$) so that W is T-invariant.

(⇒) Let W be T-invariant. We show, by induction on deg(f), that W is also f(T)-invariant for any $f(x) \in \mathbb{F}[x]$. The case deg(f) = 0 is trivial, so assume that deg(f) > 0 and that W is g(T)-invariant whenever deg(g) < deg(f). Write $f(x) = \alpha x^n + g(x)$, where deg(g) < n = deg(f). Then, by definition of f(T), we have $Wf(T) = WT^n + Wg(T) \leq WT^n$. By induction we have $Wg(T) \leq W$. Furthermore, since W is T-invariant, we have $WT^n = (WT)T^{n-1} \leq WT^{n-1}$. Now, by induction again, we have $WT^n \leq W$, and hence $Wf(T) \leq W$, as required. \Box

A moment's thought should convince you that this little Lemma will be very useful: we are interested in finding *T*-invariant subspaces of *V*; we know now that these are just the $\mathbb{F}[x]$ -submodules of $V_{\mathbb{F}[x]}$; and we know quite a good deal about the latter. Before stating our first two decomposition theorems for the linear transformation *T*, let us first translate an important notion from module theory into our present setting. We call a subspace *W* of *V* <u>*T*-CYCLIC</u> if it is cyclic as $\mathbb{F}[x]$ -module under the action of φ_T . That is, for some $w \in W$,

$$W = w\mathbb{F}[x] = \operatorname{sp}\{wf(T) \mid f(x) \in \mathbb{F}[x]\} = w\langle T \rangle.$$

Examples.

- 1. Fix a positive integer n, and let $W = \{\alpha_0 + \alpha_1 x + \ldots + \alpha_n x^n \mid \alpha_i \in \mathbb{Q}\} \leq \mathbb{Q}[x]$. Let $D \in \operatorname{End}_{\mathbb{Q}}(W)$ denote the formal derivative. Then W is D-cyclic *[let w be any polynomial of degree n and verify* that $W = w \langle D \rangle$.] Is it true that **all** D-invariant subspaces of W are D-cyclic?
- 2. Consider the linear transformation of \mathbb{Q}^3 represented, relative to the elementary basis $\mathcal{B}_e = e_1, e_2, e_3$, by the matrix

$$A = \left(\begin{array}{rrrr} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right).$$

Then \mathbb{Q}^3 is not itself A-cyclic, but $\mathbb{Q}^3 = \operatorname{sp}(e_1, e_3) \oplus \operatorname{sp}(e_2)$ is an A-invariant decomposition of \mathbb{Q}^3 into A-cyclic subspaces of dimensions 1 and 2 respectively.

(Dec3) Theorem. Let $T \in \text{End}_{\mathbb{F}}(V)$ and let $m_T(x) = p_1(x)^{n_1} \dots p_k(x)^{n_k}$ be the unique factorization of the minimal polynomial $m_T(x)$ of T into monic irreducibles. Then, for each $1 \leq i \leq k$, there exists a unique sequence

$$n_i = n_{i1} \ge n_{i2} \ge \ldots \ge n_{im_i} \ge 1$$

of natural numbers and a set $V_{i1}, V_{i2}, \ldots, V_{im_i}$ of T-cyclic subspaces of V such that

$$V = \bigoplus_{i=1}^{k} \bigoplus_{j=1}^{m_i} V_{ij},$$

and the minimal polynomial of $T_{V_{ij}}$ on V_{ij} is $p(x)^{n_{ij}}$.

Proof. By the definition of $m_T(x)$, we have $Vm_T(x) = 0$. Hence, as $\mathbb{F}[x]$ -module, V is torsion. By **(PID6)**, there exists a unique set $q_1(x), \ldots, q_k(x)$ of monic irreducible polynomials in $\mathbb{F}[x]$ and, for each $1 \leq i \leq k$, a unique sequence $h_i = h_{i1} \geq \ldots \geq h_{ik_i} \geq 1$ of integers such that, if $V_{ij} = \mathbb{F}[x]/(q_i(x)^{h_{ij}})$, then

$$V = \bigoplus_{i=1}^{k} \bigoplus_{j=1}^{m_i} V_{ij}.$$

Since $V_{ij} = \mathbb{F}[x]/(q_i(x)^{h_{ij}})$, it is immediate that $q_i(x)^{h_{ij}}$ is the minimal polynomial of T restricted to the T-invariant subspace V_{ij} of V.

To complete the proof, we need only show that $q(x) = q_1(x)^{h_1} \dots q_k(x)^{h_k}$ is the minimal polynomial $m_T(x)$ of T. But, for $1 \le i \le k$, $V_{ij}q_i(x)^{h_i} = 0$, so that Vq(x) = 0; it follows that $m_T(x)|q(x)$. On the other hand, $Vm_T(x) = 0$ so that $V_{ij}m_T(x) = 0$ for all i, j. It follows that $q_i(x)^{h_{ij}}|m_T(x)$ for all i, j, so that $q(x)|m_T(x)$.

As suggested by (**PID6**), the polynomials $p_i(x)^{n_{ij}}$ are called the <u>ELEMENTARY DIVISORS OF T</u>. A similar strategy leads us to the following striking analogue of (**PID7**).

(Dec4) Theorem. There exist unique monic polynomials $q_1(x), \ldots, q_k(x) \in \mathbb{F}[x]$ such that

$$(q_1(x)) \le (q_2(x)) \le \ldots \le (q_k(x))$$

and there exist unique T-cyclic subspaces V_1, \ldots, V_k of V such that

$$V = V_1 \oplus V_2 \oplus \ldots \oplus V_k$$

where $q_i(x)$ is the minimal polynomial of T_{V_i} on V_i for $1 \le i \le k$, and $q_1(x) = m_T(x)$ is the minimal polynomial of T on V.

As in (PID7), the polynomials $q_1(x), \ldots, q_n(x)$, are called the <u>INVARIANT FACTORS OF T</u>.

Examples. We continue with our previous examples.

- 1. If $f(x) \in W$ is any polynomial of degree n, then $f(x)D^{n+1} = 0$ but $f(x)D^i \neq 0$ if i < n + 1. It follows that $m_D(x) = x^{n+1}$. Furthermore, we have seen that W is D-cyclic so that, as $\mathbb{Q}[x]$ -modules under the action of $D, W \cong \mathbb{Q}[x]/(x^{n+1})$ *[it would be a good idea for you to verify this directly again to help you get a feel for what's going on.]* In this case, the elementary divisors and the invariant factors are the same, namely they are both the single polynomial x^{n+1} .
- 2. Here, $m_A(x) = (x-1)^2$ and $\mathbb{Q}^3 = V_1 \oplus V_2$, where $V_1 = \operatorname{sp}(e_1, e_3) \cong \mathbb{Q}[x]/(x-1)^2$ and $V_2 = \operatorname{sp}(e_2) \cong \mathbb{Q}[x]/(x-1)$. Once again the elementary divisors and the invariant factors coincide: they are $(x-1)^2$ and (x-1).

Exercises.

1. For each of the following transformations of \mathbb{Q}^3 , find the minimal polynomial, the elementary divisors, the invariant factors, and a decomposition of \mathbb{Q}^3 into cyclic subspaces.

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

- 2. If V is an \mathbb{F} -space of dimension n, then $T \in \operatorname{End}_{\mathbb{F}}(V)$ is *nilpotent* in case $T^m = 0$ for some $m \geq 0$. Say as much as you can about the minimal polynomial $m_T(x)$ of a nilpotent transformation T.
- 3. Prove that, if T is a linear transformation of rank 1, then there exists $\alpha \in \mathbb{F}$ such that $T^2 = \alpha T$.