
(Dec) First Decompositions of a Linear Transformation Math 683L (Summer 2003)

We now begin in earnest our prolongued excursion into the life of a single linear transformation.
This is where we will finally see the pay-off for all of our hard work studying the structure of modules
over a PID. First let us set up some notation and terminology.

Fix an F-vector space V of dimension n. For vectors v1, . . . , vr ∈ V , put

sp(v1, . . . , vr) := F{v1, . . . , vr} = {α1v1 + . . .+ αrvr | αi ∈ F},

the F-linear span of v1, . . . , vr. For 1 ≤ i ≤ k, let Ai be an ni × ni matrix for some positive integer
ni where n1 + n2 + . . .+ nk = n. Then define

diag(A1, A2, . . . , Ak) :=


A1 0 . . . 0

0 A2
. . .

...
...

. . . . . . 0
0 . . . 0 Ak


where the block entry entry “0” denotes the zero matrix of the appropriate dimensions (for example,
the (2, 1) entry is the n1 × n2 zero matrix). Suppose that, for some T ∈ EndF(V ) and some basis B
of V , we have BAT = diag(A1, . . . , Ak) for some square matrices Ai, as above. Cluster the vectors in
B together into groups as follows:

B = v11, . . . , v1n1 , v21, . . . , v2n2 , . . . , vk1, . . . , vknk ,

and, for 1 ≤ i ≤ k, put Vi := sp(vi1, . . . , vini), of vi1, . . . , vini . Then clearly we have V = V1⊕ . . .⊕ Vk.
In addition, T moves the vectors of Vi only within Vi; that is, ViT ≤ Vi. We say that a subspace W ≤ V
is T -invariant in case WT ≤ W . Hence, for our T , each Vi is T -invariant and V = V1 ⊕ . . .⊕ Vk is
called a T -invariant direct sum decomposition of V .

Next suppose that W is any T -invariant subspace of V and let BW = w1, . . . wl be any basis of
W . Let TW denote the restriction of T to W . Since W is T -invariant, we have TW ∈ EndF(W ); let
AW denote BWATW , the l × l matrix of TW relative to BW . Now extend BW to a basis of V , say
B = w1, . . . , wl, u1, . . . , un−l. Then we have

BAT =

(
AW 0
B C

)
,

where B is (n− l)× l and C is (n− l)× (n− l). Let BU = u1, . . . , un−l and U = sp(u1, . . . , un−l); then
we have V = W ⊕ U . Now suppose that U is also T -invariant (so that V = W ⊕ U is a T -invariant
direct sum decomposition). Then B = 0 and C = AU is the (n− l)× (n− l) matrix BUATU . A simple
induction argument now gives us the following nice fact.
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(Dec1) Theorem. Let V be an F-vector space of dimension n and let T ∈ EndF(V ). Then there
exists a basis B of V and square matrices A1, . . . , Ak such that BAT = diag(A1, . . . , Ak) if and only
if there exists a T -invariant decomposition V = V1 ⊕ . . .⊕ Vk of V . Moreover B is the concatenation
B1, . . . ,Bk, where Bi is a basis of Vi such that Ai = BiATVi for 1 ≤ i ≤ k. �

Remark: It is clear from (Dec1) that it is in our interest to investigate ways of finding T -
invariant direct sum decompositions of the vector space V . For, if we can, then it suffices to
study the restriction of T to each of the direct summands.

Let us revisit Exercise 6 of the (Mod) lecture. Fix T ∈ EndF(V ) and let 〈T 〉 denote the subring
of EndF(V ) defined by

〈T 〉 = {f(T ) | f(x) ∈ F[x]};

then ϕT : F[x] → 〈T 〉 sending f(x) 7→ f(T ) is an epimorphism of rings. Recall that, as an F-vector
space, EndF(V ) has dimension n2. It follows that the n2 + 1 endomorphisms

1, T, T 2, . . . , Tn
2

are linearly dependant. That is, there exist α0, α1, . . . , αn2 ∈ F, not all zero, such that

α0 + α1T + . . .+ αn2Tn
2

= 0,

the zero transformation of V . Defining k(x) = α0 + α1x + . . . + αn2xn
2
, we have k(x) ∈ kerϕT . In

particular, the kernel is nonzero. Since F[x] is a PID, it follows that kerϕT = (mT (x)), where mT (x)
is the unique monic polynomial generating this principal ideal. The polynomial mT (x) is absolutely
central to the study of the linear transformation T ; it is called the minimal polynomial of T .
Observe that we can factorize mT (x) uniquely as

mT (x) = p1(x)n1p2(x)n2 . . . pk(x)nk ,

where each pi(x) is a monic irreducible polynomial in F[x].
Next, we use ϕT to define an action of the ring F[x] on the vector space V . For v ∈ V and

f(x) ∈ F[x], define
vf(x) := vϕT (f(x)) = vf(T ).

This turns the (left) F-vector space FV into a (right) F[x]-module VF[x]. Now, since F[x] is a PID, we
can use our powerful machinery to pin down the structure of the F[x]-module V . Before doing so,
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however, we make a crucial observation concerning T -invariant subspaces of FV and F[x]-submodules
of VF[x].

(Dec2) Lemma. A subspace W of V is T -invariant iff it is a F[x]-submodule of VF[x].

Proof. (⇐) Let W be an F[x]-submodule. Then W is stable under the action of any element of
f(x) ∈ F[x] (i.e. Wf(x) ⊆ W ); in particular W is stable under the action of x ∈ F[x]. But x acts as
T (Wx = WT ⊆W ) so that W is T -invariant.

(⇒) Let W be T -invariant. We show, by induction on deg(f), that W is also f(T )-invariant for any
f(x) ∈ F[x]. The case deg(f) = 0 is trivial, so assume that deg(f) > 0 and that W is g(T )-invariant
whenever deg(g) < deg(f). Write f(x) = αxn+g(x), where deg(g) < n = deg(f). Then, by definition
of f(T ), we have Wf(T ) = WTn+Wg(T ) ≤WTn. By induction we have Wg(T ) ≤W . Furthermore,
since W is T -invariant, we have WTn = (WT )Tn−1 ≤ WTn−1. Now, by induction again, we have
WTn ≤W , and hence Wf(T ) ≤W , as required. �

A moment’s thought should convince you that this little Lemma will be very useful: we are in-
terested in finding T -invariant subspaces of V ; we know now that these are just the F[x]-submodules
of VF[x]; and we know quite a good deal about the latter. Before stating our first two decomposition
theorems for the linear transformation T , let us first translate an important notion from module theory
into our present setting. We call a subspace W of V T -cyclic if it is cyclic as F[x]-module under the
action of ϕT . That is, for some w ∈W ,

W = wF[x] = sp{wf(T ) | f(x) ∈ F[x]} = w〈T 〉.

Examples.

1. Fix a positive integer n, and let W = {α0+α1x+. . .+αnxn | αi ∈ Q} ≤ Q[x]. Let D ∈ EndQ(W )
denote the formal derivative. Then W is D-cyclic [let w be any polynomial of degree n and verify
that W = w〈D〉.] Is it true that all D-invariant subspaces of W are D-cyclic?

2. Consider the linear transformation of Q3 represented, relative to the elementary basis Be =
e1, e2, e3, by the matrix

A =

 1 0 2
0 1 0
0 0 1

 .
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Then Q3 is not itself A-cyclic, but Q3 = sp(e1, e3) ⊕ sp(e2) is an A-invariant decomposition of
Q

3 into A-cyclic subspaces of dimensions 1 and 2 respectively.

(Dec3) Theorem. Let T ∈ EndF(V ) and let mT (x) = p1(x)n1 . . . pk(x)nk be the unique factorization
of the minimal polynomial mT (x) of T into monic irreducibles. Then, for each 1 ≤ i ≤ k, there exists
a unique sequence

ni = ni1 ≥ ni2 ≥ . . . ≥ nimi ≥ 1

of natural numbers and a set Vi1, Vi2, . . . , Vimi of T -cyclic subspaces of V such that

V =
k⊕
i=1

mi⊕
j=1

Vij ,

and the minimal polynomial of TVij on Vij is p(x)nij .

Proof. By the definition of mT (x), we have V mT (x) = 0. Hence, as F[x]-module, V is torsion. By
(PID6), there exists a unique set q1(x), . . . , qk(x) of monic irreducible polynomials in F[x] and, for each
1 ≤ i ≤ k, a unique sequence hi = hi1 ≥ . . . ≥ hiki ≥ 1 of integers such that, if Vij = F[x]/(qi(x)hij ),
then

V =
k⊕
i=1

mi⊕
j=1

Vij .

Since Vij = F[x]/(qi(x)hij ), it is immediate that qi(x)hij is the minimal polynomial of T restricted to
the T -invariant subspace Vij of V .

To complete the proof, we need only show that q(x) = q1(x)h1 . . . qk(x)hk is the minimal polynomial
mT (x) of T . But, for 1 ≤ i ≤ k, Vijqi(x)hi = 0, so that V q(x) = 0; it follows that mT (x)|q(x). On the
other hand, V mT (x) = 0 so that VijmT (x) = 0 for all i, j. It follows that qi(x)hij |mT (x) for all i, j,
so that q(x)|mT (x). �

As suggested by (PID6), the polynomials pi(x)nij are called the elementary divisors of T . A
similar strategy leads us to the following striking analogue of (PID7).

(Dec4) Theorem. There exist unique monic polynomials q1(x), . . . , qk(x) ∈ F[x] such that

(q1(x)) ≤ (q2(x)) ≤ . . . ≤ (qk(x))

and there exist unique T -cyclic subspaces V1, . . . , Vk of V such that

V = V1 ⊕ V2 ⊕ . . .⊕ Vk
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where qi(x) is the minimal polynomial of TVi on Vi for 1 ≤ i ≤ k, and q1(x) = mT (x) is the minimal
polynomial of T on V .

As in (PID7), the polynomials q1(x), . . . , qn(x), are called the invariant factors of T .

Examples. We continue with our previous examples.

1. If f(x) ∈ W is any polynomial of degree n, then f(x)Dn+1 = 0 but f(x)Di 6= 0 if i < n + 1.
It follows that mD(x) = xn+1. Furthermore, we have seen that W is D-cyclic so that, as Q[x]-
modules under the action of D, W ∼= Q[x]/(xn+1) [it would be a good idea for you to verify this
directly again to help you get a feel for what’s going on.] In this case, the elementary divisors
and the invariant factors are the same, namely they are both the single polynomial xn+1.

2. Here, mA(x) = (x − 1)2 and Q3 = V1 ⊕ V2, where V1 = sp(e1, e3) ∼= Q[x]/(x − 1)2 and V2 =
sp(e2) ∼= Q[x]/(x − 1). Once again the elementary divisors and the invariant factors coincide:
they are (x− 1)2 and (x− 1).

Exercises.

1. For each of the following transformations ofQ3, find the minimal polynomial, the elementary
divisors, the invariant factors, and a decomposition of Q3 into cyclic subspaces.

A =

 1 1 2
0 1 1
0 0 1

 , B =

 1 0 2
0 1 0
0 0 2

 , C =

 1 1 0
0 1 0
0 0 2

 .

2. If V is an F-space of dimension n, then T ∈ EndF(V ) is nilpotent in case Tm = 0 for
some m ≥ 0. Say as much as you can about the minimal polynomial mT (x) of a nilpotent
transformation T .

3. Prove that, if T is a linear transformation of rank 1, then there exists α ∈ F such that
T 2 = αT .
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