(Diag) Diagonalizability Math 683L (Summer 2003)

In this lecture we look at a property possessed by some linear transformations which makes their
behaviour very easy to understand, and obtain a useful characterization of the transformations having
this property. We begin by obtaining a suitable definition of the minimal polynomial of a matrix.

Let A € M,,(F). Via matrix multiplication, A is a linear transformation of the row space F™. Let
the MINIMAL POLYNOMIAL OF A, denoted my4(x), be the minimal polynomial of that transformation.

Note that, if B, is the elementary basis of F", then we are really defining m () to be my4)(z), where
T(A) is the transformation of F" such that g, Ap4) = A. Note further that if we choose a different
basis relative to which to represent T, we obtain a different matrix; what should be the minimal
polynomial of this new matrix? In order to be a useful definition, the minimal polynomials of the two

matrices should be equal. Our first result confirms that this is, indeed, the case.

(Diagl) Lemma. If A, A’ € M,(F) are similar, then ma(x) = ma:(x).

Proof. Suppose that A ~ A’. Then there exists an invertible matrix P such that A’ = PAP~L.
For any f(z) € F[z] observe that f(PAP~!) = Pf(A)P~!. We have v.ma(x) = vms(A) = 0 for all
v € F*. Fix v € V and consider

vma(A') = vma(PAP™Y) = vPma(A) P! = ((wP)ma(A)P™' = 0P~! = 0.

Thus m|m /. The result now follows by symmetry. 0

You might want think about whether or not the converse holds: is it true that matrices having the

same minimal polynomial similar? We can now restate (Dec3) in terms of matrices.

(Diag2) Theorem. Let my(x) = p1(z)™ ...pg(x)™ be the unique factorization of the minimal
polynomial of A € M,,(F). Then, for each 1 < i <k, there exists a unique sequence

Ng =M1 2 Njg = ... =2 Ny > 1

of natural numbers and a set A;1, ..., Ayn, of square matrices A;; € Mnij (F) such that, for some

invertible matrixz P,

PAP! = diag(Ai1, .-y Aimys ooy Ak, - aAkmk)7



and the minimal polynomial of Ay; is p;(x)™. 0

There is an analogous matrix formulation of (Dec4) which I leave for you to write down. What
would be the simplest possible form for the matrix PAP~! above? A rather vague question, but a pleas-
ing possibility is that the matrices A;; are all 1 x 1 matrices, in which case PAP~! = diag(Ay,. .., An)
(\i € F) is DIAGONAL. We shouldn’t expect this to occur very often but it is worth a little effort to
figure out exactly when it does. We call a matrix A DIAGONALIZABLE if there exists an invertible

matrix P such that PAP~! is a diagonal matrix. Equivalently we will call a linear transformation 7'

diagonalizable if there exists a basis B such that gAr is diagonal.

Examples.

1. If T € Endg(V), where V is an n-dimensional F-vector space, and mp(z) = x — A is linear, then

T is diagonalizable. Indeed, if B is any basis of V', then
gAr = diag(\, ..., \) = A,

where I,, is the n x n identity matrix. For, if v € V' is any vector, then 0 = v.my(z) = v.(x—\) =

v.x — Av = vT — Av, whence vT = Av.

2. Let’s revisit an example we looked at in the previous lecture. Let

Sy

I
o O =
o = O
N O N

Then we saw that F2 has a B-cyclic decomposition F3 = sp(es) @ sp(eq,e3). Furthermore,
we have eaB = ey and e3B = 2e3; if we could find v € sp(ej,e3) \ sp(e1) and A € F with
vB = Av, then we will have shown that B is diagonalizable. Put v := e; + aez and compute
v = (e1 + aez)B = e1 + 2e3 + 2aes = e1 + (24 2a)ez. In order that vT' = Av, we must have
A = 1. In this case, we must also have aes = (2 + 2av)es, so that « = —2. We have shown that

(e1 — 2e9) B = e1 — 2e4, so that B is, indeed, diagonalizable. In fact, putting

we have PAP™! = diag(1,1,2).



3. Consider the matrix

C =

o O =
N O O

2
1
0

Here we have a C-cyclic decomposition F? = sp(ey, e2)@sp(es) such that eoC = e3 and e3C = 2e3.
Suppose we play the same game and try to find v = e;+aes € sp(ey, e2) and A € F with vC = Av.
Then (e1 + aes)C = e1 + 2e2 + aey = €1 + (2 + a)ea = A(eg + aez). Once again we must have
A =1, but now we have 2 + a = «a, which is absurd. It turns out that C is not diagonalizable.
Look closely at the matrices B and C' and try to distinguish the essential difference between
them.

Let’s have a look at the minimal polynomials in the three examples above. In example 1 we
observed in general that, if mp(z) is linear, then T is diagonalizable. For the matrix B in example 2,
we have calculated earlier that mp(z) = (z — 1)(x — 2). A similiar computation with the matrix C' in
example 3 reveals that mp(x) = (r—1)?(z—2). Examples 1 and 2 provided examples of diagonalizable

transformations; example 3 did not. What is the common thread?

(Diag3) Theorem. A matriz A € M, (F) is diagonalizable if and only if its minimal polynomial

ma(z) factors as a product of distinct linear factors

ma(z) = (x — A1)(x — A2) ... (z — Ag).

Proof. (=) Suppose that A is diagonalizable, and let P be an invertible matrix such that A" =
PAP ! = diag(Ailmy s A2lmys - - - AkIm, ), where the \; are distinct scalars and the m; are integers. A

simple induction confirms that
(A" = ML) (A = Nol) ... (A = \pI,) = 0.

It follows that the element f(x) = (x—\)...(x—Ag) € F[x] is divisible by m4/(z) = ma(z) and hence
that m4(x) factors in F[x] as the product of distinct linear polynomials..
(<) Suppose that ma(x) = (x — A1) ... (x — \x) where the \; are distinct. Then, by (Diag2), for

each 1 <14 < k, there exists a unique sequence

l=np=np=...=nj,, =1
and a list a1, ..., ayn, of scalars (1 x 1 matrices) such that
PAP ! = diag(ai1, .- Qimys ooy Qkly -+ s Qo)



for some invertible P. Hence A is diagonalisable. Furthermore, since p;(z) = (z — A;) is the minimal

polynomial of each 1 x 1 matrix [[a;]], it follows that A\; = a1 = ... = qjm,. O

Exercises.

1.

Find the number of similarity classes in M5(Q) having minimal polynomial (z — 1)(x — 2).
What about Mg(Q)? Can you find some sort of formula for the number in M,,(Q)?

. Show that the matrix

_ o O
o O =

0
1
0
(R).

Show that the formal derivative operator D: W — W, defined in (Dec), Example 1, is not

is diagonalizable in M3(C) but not in M

diagonalizable.

If G is a group, then an involution in G is any element g € G of order 2 (i.e. ¢> = idg). Show

that each involution in GL, (F) (the group of invertible n x n matrices) is diagonalizable.

. Equip R™ with the inner product (v,w) =v-w =Y, v;w;. We say that a basis e1, ..., ey

is ORTHONORMAL if (e;,e;) = 0;; for 1 < 4,5 < n. Let T € Endr(R") be diagonalizable.

Show that there is an orthonormal basis B of R™ such that g Ap is a lower triangular matrix.



