In this lecture we look at a property possessed by some linear transformations which makes their behaviour very easy to understand, and obtain a useful characterization of the transformations having this property. We begin by obtaining a suitable definition of the minimal polynomial of a matrix.

Let $A \in \mathbb{M}_{n}(\mathbb{F})$. Via matrix multiplication, A is a linear transformation of the row space \mathbb{F}^{n}. Let the MINIMAL POLYNOMIAL OF A, denoted $m_{A}(x)$, be the minimal polynomial of that transformation. Note that, if \mathcal{B}_{e} is the elementary basis of \mathbb{F}^{n}, then we are really defining $m_{A}(x)$ to be $m_{T(A)}(x)$, where $T(A)$ is the transformation of \mathbb{F}^{n} such that $\mathcal{B}_{e} A_{T(A)}=A$. Note further that if we choose a different basis relative to which to represent T, we obtain a different matrix; what should be the minimal polynomial of this new matrix? In order to be a useful definition, the minimal polynomials of the two matrices should be equal. Our first result confirms that this is, indeed, the case.
(Diag1) Lemma. If $A, A^{\prime} \in \mathbb{M}_{n}(\mathbb{F})$ are similar, then $m_{A}(x)=m_{A^{\prime}}(x)$.
Proof. Suppose that $A \sim A^{\prime}$. Then there exists an invertible matrix P such that $A^{\prime}=P A P^{-1}$. For any $f(x) \in \mathbb{F}[x]$ observe that $f\left(P A P^{-1}\right)=P f(A) P^{-1}$. We have $v \cdot m_{A}(x)=v m_{A}(A)=0$ for all $v \in \mathbb{F}^{n}$. Fix $v \in V$ and consider

$$
v m_{A}\left(A^{\prime}\right)=v m_{A}\left(P A P^{-1}\right)=v P m_{A}(A) P^{-1}=\left((v P) m_{A}(A)\right) P^{-1}=0 P^{-1}=0
$$

Thus $m_{A} \mid m_{A^{\prime}}$. The result now follows by symmetry.

You might want think about whether or not the converse holds: is it true that matrices having the same minimal polynomial similar? We can now restate (Dec3) in terms of matrices.
(Diag2) Theorem. Let $m_{A}(x)=p_{1}(x)^{n_{1}} \ldots p_{k}(x)^{n_{k}}$ be the unique factorization of the minimal polynomial of $A \in \mathbb{M}_{n}(\mathbb{F})$. Then, for each $1 \leq i \leq k$, there exists a unique sequence

$$
n_{i}=n_{i 1} \geq n_{i 2} \geq \ldots \geq n_{i m_{i}} \geq 1
$$

of natural numbers and a set $A_{i 1}, \ldots, A_{i m_{i}}$ of square matrices $A_{i j} \in \mathbb{M}_{n_{i j}}(\mathbb{F})$ such that, for some invertible matrix P,

$$
P A P^{-1}=\operatorname{diag}\left(A_{11}, \ldots, A_{1 m_{1}}, \ldots, A_{k 1}, \ldots, A_{k m_{k}}\right)
$$

and the minimal polynomial of $A_{i j}$ is $p_{i}(x)^{n_{i j}}$.

There is an analogous matrix formulation of (Dec4) which I leave for you to write down. What would be the simplest possible form for the matrix $P A P^{-1}$ above? A rather vague question, but a pleasing possibility is that the matrices $A_{i j}$ are all 1×1 matrices, in which case $P A P^{-1}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ $\left(\lambda_{i} \in \mathbb{F}\right)$ is diagonal. We shouldn't expect this to occur very often but it is worth a little effort to figure out exactly when it does. We call a matrix A diagonalizable if there exists an invertible matrix P such that $P A P^{-1}$ is a diagonal matrix. Equivalently we will call a linear transformation T diagonalizable if there exists a basis \mathcal{B} such that ${ }_{\mathcal{B}} A_{T}$ is diagonal.

Examples.

1. If $T \in \operatorname{End}_{\mathbb{F}}(V)$, where V is an n-dimensional \mathbb{F}-vector space, and $m_{T}(x)=x-\lambda$ is linear, then T is diagonalizable. Indeed, if \mathcal{B} is any basis of V, then

$$
{ }_{\mathcal{B}} A_{T}=\operatorname{diag}(\lambda, \ldots, \lambda)=\lambda I_{n},
$$

where I_{n} is the $n \times n$ identity matrix. For, if $v \in V$ is any vector, then $0=v \cdot m_{T}(x)=v \cdot(x-\lambda)=$ $v \cdot x-\lambda v=v T-\lambda v$, whence $v T=\lambda v$.
2. Let's revisit an example we looked at in the previous lecture. Let

$$
B=\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

Then we saw that \mathbb{F}^{3} has a B-cyclic decomposition $\mathbb{F}^{3}=\operatorname{sp}\left(e_{2}\right) \oplus \operatorname{sp}\left(e_{1}, e_{3}\right)$. Furthermore, we have $e_{2} B=e_{2}$ and $e_{3} B=2 e_{3}$; if we could find $v \in \operatorname{sp}\left(e_{1}, e_{3}\right) \backslash \operatorname{sp}\left(e_{1}\right)$ and $\lambda \in \mathbb{F}$ with $v B=\lambda v$, then we will have shown that B is diagonalizable. Put $v:=e_{1}+\alpha e_{3}$ and compute $v T=\left(e_{1}+\alpha e_{3}\right) B=e_{1}+2 e_{3}+2 \alpha e_{3}=e_{1}+(2+2 \alpha) e_{3}$. In order that $v T=\lambda v$, we must have $\lambda=1$. In this case, we must also have $\alpha e_{3}=(2+2 \alpha) e_{3}$, so that $\alpha=-2$. We have shown that $\left(e_{1}-2 e_{2}\right) B=e_{1}-2 e_{2}$, so that B is, indeed, diagonalizable. In fact, putting

$$
P:=\left(\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

we have $P A P^{-1}=\operatorname{diag}(1,1,2)$.
3. Consider the matrix

$$
C=\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

Here we have a C-cyclic decomposition $\mathbb{F}^{3}=\operatorname{sp}\left(e_{1}, e_{2}\right) \oplus \operatorname{sp}\left(e_{3}\right)$ such that $e_{2} C=e_{2}$ and $e_{3} C=2 e_{3}$. Suppose we play the same game and try to find $v=e_{1}+\alpha e_{2} \in \operatorname{sp}\left(e_{1}, e_{2}\right)$ and $\lambda \in \mathbb{F}$ with $v C=\lambda v$. Then $\left(e_{1}+\alpha e_{2}\right) C=e_{1}+2 e_{2}+\alpha e_{2}=e_{1}+(2+\alpha) e_{2}=\lambda\left(e_{1}+\alpha e_{2}\right)$. Once again we must have $\lambda=1$, but now we have $2+\alpha=\alpha$, which is absurd. It turns out that C is not diagonalizable. Look closely at the matrices B and C and try to distinguish the essential difference between them.

Let's have a look at the minimal polynomials in the three examples above. In example 1 we observed in general that, if $m_{T}(x)$ is linear, then T is diagonalizable. For the matrix B in example 2, we have calculated earlier that $m_{B}(x)=(x-1)(x-2)$. A similiar computation with the matrix C in example 3 reveals that $m_{B}(x)=(x-1)^{2}(x-2)$. Examples 1 and 2 provided examples of diagonalizable transformations; example 3 did not. What is the common thread?
(Diag3) Theorem. A matrix $A \in \mathbb{M}_{n}(\mathbb{F})$ is diagonalizable if and only if its minimal polynomial $m_{A}(x)$ factors as a product of distinct linear factors

$$
m_{A}(x)=\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right) \ldots\left(x-\lambda_{k}\right) .
$$

Proof. (\Rightarrow) Suppose that A is diagonalizable, and let P be an invertible matrix such that $A^{\prime}=$ $P A P^{-1}=\operatorname{diag}\left(\lambda_{1} I_{m_{1}}, \lambda_{2} I_{m_{2}}, \ldots, \lambda_{k} I_{m_{k}}\right)$, where the λ_{i} are distinct scalars and the m_{i} are integers. A simple induction confirms that

$$
\left(A^{\prime}-\lambda_{1} I_{n}\right)\left(A^{\prime}-\lambda_{2} I_{n}\right) \ldots\left(A^{\prime}-\lambda_{k} I_{n}\right)=0 .
$$

It follows that the element $f(x)=(x-\lambda) \ldots\left(x-\lambda_{k}\right) \in \mathbb{F}[x]$ is divisible by $m_{A^{\prime}}(x)=m_{A}(x)$ and hence that $m_{A}(x)$ factors in $\mathbb{F}[x]$ as the product of distinct linear polynomials..
(\Leftarrow) Suppose that $m_{A}(x)=\left(x-\lambda_{1}\right) \ldots\left(x-\lambda_{k}\right)$ where the λ_{i} are distinct. Then, by (Diag2), for each $1 \leq i \leq k$, there exists a unique sequence

$$
1=n_{i 1}=n_{i 2}=\ldots=n_{i m_{i}}=1
$$

and a list $\alpha_{i 1}, \ldots, \alpha_{i m_{i}}$ of scalars (1×1 matrices) such that

$$
P A P^{-1}=\operatorname{diag}\left(\alpha_{11}, \ldots, \alpha_{1 m_{1}}, \ldots, \alpha_{k 1}, \ldots, \alpha_{k m_{k}}\right)
$$

for some invertible P. Hence A is diagonalisable. Furthermore, since $p_{i}(x)=\left(x-\lambda_{i}\right)$ is the minimal polynomial of each 1×1 matrix $\left[\left[\alpha_{i j}\right]\right]$, it follows that $\lambda_{i}=\alpha_{i 1}=\ldots=\alpha_{i m_{i}}$.

Exercises.

1. Find the number of similarity classes in $\mathbb{M}_{5}(\mathbb{Q})$ having minimal polynomial $(x-1)(x-2)$. What about $\mathbb{M}_{6}(\mathbb{Q})$? Can you find some sort of formula for the number in $\mathbb{M}_{n}(\mathbb{Q})$?
2. Show that the matrix

$$
\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

is diagonalizable in $\mathbb{M}_{3}(\mathbb{C})$ but not in $\mathbb{M}_{3}(\mathbb{R})$.
3. Show that the formal derivative operator $D: W \rightarrow W$, defined in (Dec), Example 1, is not diagonalizable.
4. If G is a group, then an involution in G is any element $g \in G$ of order 2 (i.e. $g^{2}=\mathrm{id}_{G}$). Show that each involution in $\mathrm{GL}_{n}(\mathbb{F})$ (the group of invertible $n \times n$ matrices) is diagonalizable.
5. Equip \mathbb{R}^{n} with the inner product $(v, w)=v \cdot w=\sum_{i=1}^{n} v_{i} w_{i}$. We say that a basis e_{1}, \ldots, e_{n} is ORTHONORMAL if $\left(e_{i}, e_{j}\right)=\delta_{i j}$ for $1 \leq i, j \leq n$. Let $T \in \operatorname{End}_{\mathbb{R}}\left(\mathbb{R}^{n}\right)$ be diagonalizable. Show that there is an orthonormal basis \mathcal{B} of \mathbb{R}^{n} such that $\mathcal{B} A_{T}$ is a lower triangular matrix.

