
(Diag) Diagonalizability Math 683L (Summer 2003)

In this lecture we look at a property possessed by some linear transformations which makes their
behaviour very easy to understand, and obtain a useful characterization of the transformations having
this property. We begin by obtaining a suitable definition of the minimal polynomial of a matrix.

Let A ∈ Mn(F). Via matrix multiplication, A is a linear transformation of the row space Fn. Let
the minimal polynomial of A, denoted mA(x), be the minimal polynomial of that transformation.
Note that, if Be is the elementary basis of Fn, then we are really defining mA(x) to be mT (A)(x), where
T (A) is the transformation of Fn such that BeAT (A) = A. Note further that if we choose a different
basis relative to which to represent T , we obtain a different matrix; what should be the minimal
polynomial of this new matrix? In order to be a useful definition, the minimal polynomials of the two
matrices should be equal. Our first result confirms that this is, indeed, the case.

(Diag1) Lemma. If A,A′ ∈Mn(F) are similar, then mA(x) = mA′(x).

Proof. Suppose that A ∼ A′. Then there exists an invertible matrix P such that A′ = PAP−1.
For any f(x) ∈ F[x] observe that f(PAP−1) = Pf(A)P−1. We have v.mA(x) = vmA(A) = 0 for all
v ∈ Fn. Fix v ∈ V and consider

vmA(A′) = vmA(PAP−1) = vPmA(A)P−1 = ((vP )mA(A))P−1 = 0P−1 = 0.

Thus mA|mA′ . The result now follows by symmetry. �

You might want think about whether or not the converse holds: is it true that matrices having the
same minimal polynomial similar? We can now restate (Dec3) in terms of matrices.

(Diag2) Theorem. Let mA(x) = p1(x)n1 . . . pk(x)nk be the unique factorization of the minimal
polynomial of A ∈Mn(F). Then, for each 1 ≤ i ≤ k, there exists a unique sequence

ni = ni1 ≥ ni2 ≥ . . . ≥ nimi ≥ 1

of natural numbers and a set Ai1, . . . , Aimi of square matrices Aij ∈ Mnij (F) such that, for some
invertible matrix P ,

PAP−1 = diag(A11, . . . , A1m1 , . . . , Ak1, . . . , Akmk),
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and the minimal polynomial of Aij is pi(x)nij . �

There is an analogous matrix formulation of (Dec4) which I leave for you to write down. What
would be the simplest possible form for the matrix PAP−1 above? A rather vague question, but a pleas-
ing possibility is that the matrices Aij are all 1× 1 matrices, in which case PAP−1 = diag(λ1, . . . , λn)
(λi ∈ F) is diagonal. We shouldn’t expect this to occur very often but it is worth a little effort to
figure out exactly when it does. We call a matrix A diagonalizable if there exists an invertible
matrix P such that PAP−1 is a diagonal matrix. Equivalently we will call a linear transformation T

diagonalizable if there exists a basis B such that BAT is diagonal.

Examples.

1. If T ∈ EndF(V ), where V is an n-dimensional F-vector space, and mT (x) = x− λ is linear, then
T is diagonalizable. Indeed, if B is any basis of V , then

BAT = diag(λ, . . . , λ) = λIn,

where In is the n×n identity matrix. For, if v ∈ V is any vector, then 0 = v.mT (x) = v.(x−λ) =
v.x− λv = vT − λv, whence vT = λv.

2. Let’s revisit an example we looked at in the previous lecture. Let

B =

 1 0 2
0 1 0
0 0 2

 .

Then we saw that F3 has a B-cyclic decomposition F3 = sp(e2) ⊕ sp(e1, e3). Furthermore,
we have e2B = e2 and e3B = 2e3; if we could find v ∈ sp(e1, e3) \ sp(e1) and λ ∈ F with
vB = λv, then we will have shown that B is diagonalizable. Put v := e1 + αe3 and compute
vT = (e1 + αe3)B = e1 + 2e3 + 2αe3 = e1 + (2 + 2α)e3. In order that vT = λv, we must have
λ = 1. In this case, we must also have αe3 = (2 + 2α)e3, so that α = −2. We have shown that
(e1 − 2e2)B = e1 − 2e2, so that B is, indeed, diagonalizable. In fact, putting

P :=

 1 0 −2
0 1 0
0 0 1

 ,

we have PAP−1 = diag(1, 1, 2).
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3. Consider the matrix

C =

 1 2 0
0 1 0
0 0 2


Here we have a C-cyclic decomposition F3 = sp(e1, e2)⊕sp(e3) such that e2C = e2 and e3C = 2e3.
Suppose we play the same game and try to find v = e1+αe2 ∈ sp(e1, e2) and λ ∈ F with vC = λv.
Then (e1 + αe2)C = e1 + 2e2 + αe2 = e1 + (2 + α)e2 = λ(e1 + αe2). Once again we must have
λ = 1, but now we have 2 + α = α, which is absurd. It turns out that C is not diagonalizable.
Look closely at the matrices B and C and try to distinguish the essential difference between
them.

Let’s have a look at the minimal polynomials in the three examples above. In example 1 we
observed in general that, if mT (x) is linear, then T is diagonalizable. For the matrix B in example 2,
we have calculated earlier that mB(x) = (x− 1)(x− 2). A similiar computation with the matrix C in
example 3 reveals that mB(x) = (x−1)2(x−2). Examples 1 and 2 provided examples of diagonalizable
transformations; example 3 did not. What is the common thread?

(Diag3) Theorem. A matrix A ∈ Mn(F) is diagonalizable if and only if its minimal polynomial
mA(x) factors as a product of distinct linear factors

mA(x) = (x− λ1)(x− λ2) . . . (x− λk).

Proof. (⇒) Suppose that A is diagonalizable, and let P be an invertible matrix such that A′ =
PAP−1 = diag(λ1Im1 , λ2Im2 , . . . , λkImk), where the λi are distinct scalars and the mi are integers. A
simple induction confirms that

(A′ − λ1In)(A′ − λ2In) . . . (A′ − λkIn) = 0.

It follows that the element f(x) = (x−λ) . . . (x−λk) ∈ F[x] is divisible by mA′(x) = mA(x) and hence
that mA(x) factors in F[x] as the product of distinct linear polynomials..

(⇐) Suppose that mA(x) = (x− λ1) . . . (x− λk) where the λi are distinct. Then, by (Diag2), for
each 1 ≤ i ≤ k, there exists a unique sequence

1 = ni1 = ni2 = . . . = nimi = 1

and a list αi1, . . . , αimi of scalars (1× 1 matrices) such that

PAP−1 = diag(α11, . . . , α1m1 , . . . , αk1, . . . , αkmk)
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for some invertible P . Hence A is diagonalisable. Furthermore, since pi(x) = (x− λi) is the minimal
polynomial of each 1× 1 matrix [[αij ]], it follows that λi = αi1 = . . . = αimi . �

Exercises.

1. Find the number of similarity classes in M5(Q) having minimal polynomial (x− 1)(x− 2).
What about M6(Q)? Can you find some sort of formula for the number in Mn(Q)?

2. Show that the matrix  0 0 1
1 0 0
0 1 0


is diagonalizable in M3(C) but not in M3(R).

3. Show that the formal derivative operator D : W →W , defined in (Dec), Example 1, is not
diagonalizable.

4. If G is a group, then an involution in G is any element g ∈ G of order 2 (i.e. g2 = idG). Show
that each involution in GLn(F) (the group of invertible n× n matrices) is diagonalizable.

5. Equip Rn with the inner product (v, w) = v ·w =
∑n

i=1 viwi. We say that a basis e1, . . . , en

is orthonormal if (ei, ej) = δij for 1 ≤ i, j ≤ n. Let T ∈ EndR(Rn) be diagonalizable.
Show that there is an orthonormal basis B of Rn such that BAT is a lower triangular matrix.
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