
(Can) Canonical Forms Math 683L (Summer 2003)

Following the brief interlude to study diagonalisable transformations and matrices, we must now
get back to the serious business of the general case. In this lecture we will reach the first major
goal of the course. For a linear transformation T ∈ EndF(V ) we are trying to choose a “canonical”
representative of the set

Mat(T ) = {BAT | B a basis of V } ⊂Mn(F).

Equivalently, for A ∈Mn(F), we seek a representative of the similarity class

[A] = {A′ ∈Mn(F) | A ∼ A′}

which has the “simplest” form. For a diagonalisible matrix A, this choice will turn out to be the
obvious one, namely a diagonal matrix similar to A. We already have a good headstart on the general
case, thanks largely to (Dec3) and (Diag2). The latter tells us that each matrix is similar to a block
diagonal matrix, and the former suggests that if we want to further refine these individual blocks,
then we should study the action of a linear transformation T on its T -cyclic subspaces.

First a definition. Let f(x) = xn−αn−1x
n−1− . . .−α1x−α0 ∈ F[x]. Then the companion matrix

of f(x), denoted C(f), is defined to be

C(f) =



0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

. . . . . .
...

0 0 1
α0 α1 α2 α3 . . . αn−1


∈ Mn(F).

Examples.

1. C(x− λ) = (λ) ∈M1(F) (since n = 1, we have α0 = αn−1 = λ.

2. C((x− λ)2) =

(
0 1
−λ2 2λ

)
, and C((x− λ)3) =

 0 1 0
0 0 1
λ3 −3λ2 3λ

.
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Let T ∈ EndF(V ) and suppose that V is T -cyclic of dimension n with cyclic generator v0 ∈ V .
That is,

V = v0F[x] = sp(v0, v0T, v0T
2, . . .).

Let mT (x) = xk − αk−1x
k−1 − . . .− α1x− α0 be the minimal polynomial of T , and consider the list

B(T ; v0) = v0, v0T, . . . , v0T
k−1.

Fix i > 0, and use the Division Theorem to write

xi = qi(x)mT (x) + ri(x)

with deg(ri) < deg(mT ) = n; then v0T
i = v0ri(T ) ∈ sp(B(T ; v0)). It follows that V is spanned by

B(T ; v0). Next suppose that there exist β0, . . . , βn−1 ∈ F such that β0v0 +β1v0T + . . . βn−1v0T
n−1 = 0.

Put f(x) = β0 + β1x + . . . + βk−1x
k−1. Then, for each 1 ≤ i ≤ k, (v0T

i−1)f(x) = (v0f(T ))T i−1 = 0.
It follows that V f(x) = 0, and hence that mT (x)|f(x). But deg(f) ≤ k − 1 < k = deg(mT ), so we
must have f(x) ≡ 0, whence β0 = . . . = βk−1 = 0. We have shown that B(T ; v0) is, in fact, a basis for
V ; in particular n = dim(V ) = k = deg(mT ).

For 1 ≤ i ≤ n − 1, let vi = v0T
i, so that B(T ; v0) = v0, v1, . . . , vn−1. Then viT = vi+1 for each

0 ≤ i ≤ n−2. Furthermore, since mT (T ) = Tn−αn−1T
n−1− . . .−α1T−α0 is the zero transformation,

it follows that

vn−1T = v0T
n−1T = v0T

n =
n−1∑
i=0

αiv0T
i =

n−1∑
i=0

αivi.

We have now proved:

(Can1) Lemma. If V is T -cyclic with generator v0 and T has minimal polynomial mT , then
deg(mT ) = dimF(V ), B = B(T ; v0) = v0, v0T, . . . , v0T

n−1 is an ordered basis for V and

BAT = C(mT ).

�

Example.

Consider the matrix A from (Dec), Exercise 1. Since mA(x) = (x− 1)3, by the first Example,

A is similar to C((x − 1)3) =

 0 1 0
0 0 1
1 −3 3

. Can you find an invertible matrix P such that

PAP−1 = C((x− 1)3)?
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The previous Lemma paves the way for our first two “canonical form” theorems for linear trans-
formations. They follow easily from (Dec3) and (Dec4) respectively.

(Can2) Theorem. [Primary Rational Canonical Form]
Let T ∈ EndF(V ) have elementary divisors

{pi(x)nij ∈ F[x] | 1 ≤ i ≤ k, 1 ≤ j ≤ mi}.

Then there exists an ordered basis B for V such that

BAT = diag(C(pnijij ) | 1 ≤ i ≤ k, 1 ≤ j ≤ mi).

�

The matrix BAT = diag(C(pnijij ) | 1 ≤ i ≤ k, 1 ≤ j ≤ mi) appearing in (Can2) is called the
primary rational canonical form (PRCF) of T . The use of the article “the” in this definition is
a little clumsy; while the companion matrices C(pnijij ) that appear on the diagonal are unique, their
order depends upon the choice of B. The next canonical form does not suffer from this weakness.

(Can3) Theorem. [Rational Canonical Form]
Let T ∈ EndF(V ) have invariant factors q1(x), . . . , qm(x). Then there exists an ordered basis B for

V such that

BAT = diag(C(q1), . . . , C(qm)).

�

The matrix BAT = diag(C(q1), . . . , C(qm)) is called the rational canonical form (RCF) of T .
This time the matrix is unique because of the ordering of the blocks induced by the natural ordering
of the invariant factors. It is not the case, however, that the choice of basis, B, is unique.
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Example.

Let us determine the PRCF and RCF for the matrix

A =

 1 2 0
0 1 0
0 0 2

 ∈M3(Q).

An easy calculation shows that the minimal polynomial of A is mA(x) = (x−1)2(x−2) and that
the elementary divisors are (x − 1)2 and x − 2. There is, therefore, only one invariant factor,
namely mA(x) itself. Hence, 0 1 0

−1 2 0
0 0 2

 and

 0 1 0
0 0 1
4 −5 2


are, respectively, the PRCF and RCF of A.

This is about is much as we can say in general but we can derive a much neater result if we specialise
slightly to the case where mT (x) factors as a product of (not necessarily distinct) linear polynomials
in F[x]. While this may sound like quite a leap, you should note that this always the case when F = C

(or, more generally, when F is algebraically closed).
If mT (x) = (x − λ1)n1 . . . (x − λk)nk then we know from the Elementary Divisor Theorem that V

decomposes as a direct sum of T -invariant subspaces Vij such that the minimal polynomial of TVij
is (x − λi)nij . Hence, we now restrict our attention to the case when V is T -cyclic with minimal
polynomial mT (x) = (x− λ)n.

Recall that a trnaformation N is nilpotent is there exists an integer k such that Nk = 0. Suppose
that V , of dimension n, is N -cyclic for some nilpotent transformation N . Since V xk = 0, it follows
that mN (x) divides xk. Moreover, since n = dim(V ) = deg(mT ), it follows that n is the smallest
integer k such that Nk = 0. That is, mT (x) = xn. We see that a nilpotent transformation acting
cyclically on V is the special case λ = 0 of the problem we are considering.

Let us now consider the general case. Since V is T -cyclic, there exists v ∈ V such that B(v;T ) =
v, vT, . . . , vTn−1 is a basis for V . Denoting the identity transformation of V by 1V , set N := T −λ1V .
Since Nn = (T − λ1V )n = 0, it follows that N is nilpotent. Furthermore, by a direct computation,

vT i = v(N + λ1V )i = vN i +
i−1∑
j=0

γjvN
j .
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Since the vT i are linearly independent, it follows that the vN i are linearly independent. Hence
B = B(v,N) = v, vN, . . . , vNn−1 is also a basis for V , and V is N -cyclic. We have just seen that

BAN = C(xn) so that

BAT = BAN+λ1V = BAN + BAλ1V = C(xn) + λIn =



λ 1 0 0 . . . 0
0 λ 1 0 . . . 0
0 0 λ 1 . . . 0
...

. . . . . . . . .
...

0 0 λ 1
0 0 0 . . . 0 λ


.

We call a matrix of this sort a Jordan block; this particular matrix will be denoted Jn(λ). We can
now state the result we have been after.

(Can5) Theorem. [Jordan Canonical Form] T ∈ EndF(V ) has minimal polynomial

mT (x) = (x− λ1)n1 . . . (x− λk)nk

if and only if, for each 1 ≤ i ≤ k, there exists a unique sequence ni = ni1 ≥ ni2 ≥ . . . ≥ nimi ≥ 1, and
a basis B such that

BAT = diag(Jnij (λi) | 1 ≤ i ≤ k, 1 ≤ j ≤ mi).

�

The matrix BAT in (Can5) is called the Jordan Canonical Form (JCF) or Jordan normal form

(JNF) of the linear transformation T . We reiterate that not every linear transformation has such a
form unless we are dealing with a special sort of field.

(Can6) Corollary. If F is algebraically closed (for example, if F = C) then every linear transfor-
mation of an F-vector space V has a Jordan Canonical Form. �
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Example.

Let us compute the JCF for the matrix A of the previous example. Since mA(x) = (x−1)2(x−2)
and sp(e1, e2) and sp(e3) are A-cyclic subspaces of dimensions 1 and 2, the JCF of A is

diag(J2(1), J1(2)) =

 1 1 0
0 1 0
0 0 2

 .

Note that A was almost in JCF already!

Exercises.

1. Let V be a Q-space of dimension 14 and consider the f(x) = (x4 − x2 − 2)2 ∈ Q[x].

(a) Write a PRCF for each T ∈ EndQ(V ) having mT (x) = f(x).

(b) Write an RCF for each T ∈ EndQ(V ) having mT (x) = f(x).

2. Prove that det(xIn − C(f)) = f(x) for any monic polynomial f(x) ∈ F[x]. [Hint. Expand
det(xIn − C(f)) along the first column and induct]

3. Is it true that for every choice of n and every A ∈Mn(F), A is similar to its transpose Atr?
Explain.

4. Classify up to similarity all A ∈M3(C) such that A3 = I3.
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