Following the successful conclusion of the theoretical part of the course (the canonical form theory of a single linear transformation) we now face the not insignificant task of finding canonical forms in practice. If we could get our hands on the minimal polynomial, $m_{T}(x)$, of a given transformation $T \in \operatorname{End}_{\mathbb{F}}(V)$ then we would have made good progress. The key tool which will help us is yet another polynomial which has close relationship with $m_{T}(x)$; the so-called characteristic polynomial.

Before we begin, let us review some elementary facts about determinants (see Curtis Chapter 5, for a more detailed discussion). Let $A=\left[\left[\alpha_{i j}\right]\right] \in \mathbb{M}_{m}(\mathbb{F})$ and denote the i th row of A by $a_{i}=\left(\alpha_{i 1}, \ldots, \alpha_{i n}\right)$ $(1 \leq i \leq n)$. A DETERMINANT FUNCTION is a function $\operatorname{det}: \mathbb{M}_{n}(\mathbb{F}) \rightarrow \mathbb{F}$, satisfying the following conditions:

1. $\operatorname{det}\left(a_{1}, \ldots, a_{i-1}, a_{i}+a_{j}, a_{i+1}, \ldots, a_{n}\right)=\operatorname{det}(A)$ for $1 \leq i \neq j \leq n$;
2. $\operatorname{det}\left(a_{1}, \ldots, a_{i-1}, \lambda a_{i}, a_{i+1}, \ldots, a_{n}\right)=\lambda \operatorname{det}(A)$ for $1 \leq i \leq n$; and
3. $\operatorname{det}\left(I_{n}\right)=1$.

It turns out, of course, that there is such a function, and it is unique; we therefore refer to det as the determinant function. We now give a concrete, recursive definition of det. If $n=1$, put $\operatorname{det}(A)=\operatorname{det}([[\alpha]]):=\alpha$. For $n>1$ and $1 \leq i, j \leq n$, let $A_{i j}$ denote the $(n-1) \times(n-1)$ matrix obtained by deleting the i th row and j th column of $A \in \mathbb{M}_{n}(\mathbb{F})$. Now, for any $1 \leq i \leq n$, define

$$
\operatorname{det}(A):=\sum_{j=1}^{n}(-1)^{i+j} \alpha_{i j} \operatorname{det}\left(A_{i j}\right)
$$

Among the many useful properties of the determinant, we highlight two for immediate use.
(i) For $A, B \in \mathbb{M}_{n}(\mathbb{F})$, $\operatorname{det}(A B)=\operatorname{det}(B A)=\operatorname{det}(A) \operatorname{det}(B)$.
(ii) If $A \in \mathbb{M}_{n}(\mathbb{F})$ has an inverse, then $\operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det}(A)$.

We next wish to define the determinant of a linear transformation. Let $T \in \operatorname{End}_{\mathbb{F}}(V)$, choose a basis \mathcal{B} of V, and put $\operatorname{det}(T):=\operatorname{det}\left(\mathcal{B} A_{T}\right)$. Apparently, this definition depends upon the choice of \mathcal{B}, but the next result states that this is not the case.
(Ch1) Lemma. If $A^{\prime} \sim A$ then $\operatorname{det}\left(A^{\prime}\right)=\operatorname{det}(A)$.
Proof. $\quad A^{\prime} \sim A$ iff there exists invertible P such that $A^{\prime}=P A P^{-1}$. But then

$$
\operatorname{det}\left(A^{\prime}\right)=\operatorname{det}\left(P A P^{-1}\right)=\operatorname{det}(P) \operatorname{det}(A) \operatorname{det}\left(P^{-1}\right)=\operatorname{det}(P) \operatorname{det}(P)^{-1} \operatorname{det}(A)=\operatorname{det}(A)
$$

Fix $T \in \operatorname{End}_{\mathbb{F}}(V)$. We will call a scalar $\lambda \in \mathbb{F}$ an EIGENVALUE of T if there exists $0 \neq v \in V$ such that $v T=\lambda v$; such a vector v is called an EIGENVECTOR of T corresponding to λ. For an eigenvalue λ of T, define the λ-EIGENSPACE of T to be

$$
V_{T}(\lambda):=\{v \in V \mid v \text { is an eigenvector of } T \text { corresponding to } \lambda\} .
$$

We leave it as an easy exercise to show that $V_{T}(\lambda)$ is a subspace of V.
Let $\lambda \in \mathbb{F}$ and let 1_{V} denote the identity transformation on V. Then λ is an eigenvalue of T iff $\exists 0 \neq v \in \operatorname{NS}\left(\lambda 1_{V}-T\right)$ iff $\lambda 1_{V}-T$ is not invertible iff $\operatorname{det}\left(\lambda 1_{V}-T\right)=0$. Define the CHARACTERISTIC POLYNOMIAL of T, denoted $c_{T}(x)$, to be

$$
c_{T}(x):=\operatorname{det}\left(x 1_{V}-T\right)
$$

a monic polynomial of degree $n=\operatorname{dim}(V)$; the roots of $c_{T}(x)$ are called the CHARACTERISTIC VALUES of T. Hence, we have proved:
(Ch2) Lemma. The eigenvalues of T are the characteristic values of T.

We define $c_{A}(x)$, for $A \in \mathbb{M}_{n}(\mathbb{F})$ in the obvious way. Note that, while computing determinants is not particularly nice for large matrices, at least we have a formula for $c_{T}(x)$; the minimal polynomial $m_{T}(x)$, on the other hand, is somewhat more elusive. The main goal of this lecture is to establish a connection between those two polynomials.

Here are some elementary properties of $c_{T}(x)$ that we will need (recall that $C(f)$ denotes the companion matrix of the monic polynomial $f(x) \in \mathbb{F}[x]$ and, for a T-invariant subspace W, T_{W} denotes the restriction of T to $W)$.
(Ch3) Lemma. Let $T \in \operatorname{End}_{\mathbb{F}}(V)$.
(i) If $V=W_{1} \oplus W_{2}$ is a T-invariant decomposition of V, then $c_{T}(x)=c_{T_{W_{1}}}(x) \cdot c_{T_{W_{2}}}(x)$.
(ii) If $f \in \mathbb{F}[x]$, then $c_{C(f)}(x)=f(x)$.
(iii) If V is T-cyclic then $m_{T}(x)=c_{T}(x)$.

Proof. For (i), if $W_{1} \oplus W_{2}$ is a T-invariant decomposition, then select a basis $\mathcal{B}=\mathcal{B}_{1}, \mathcal{B}_{2}$ of V with \mathcal{B}_{i} a basis for $W_{i}(i=1,2)$. It follows that

$$
A={ }_{\mathcal{B}} A_{T}=\left(\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right)
$$

where, if T_{i} denotes $\left.T\right|_{V_{i}}$, we have $A_{i}=\mathcal{B}_{i} A_{T_{i}}$. Hence

$$
\operatorname{det}\left(x I_{n}-A\right)=\operatorname{det}\left(\begin{array}{cc}
x I_{n_{1}}-A_{1} & 0 \\
0 & x I_{n_{2}}-A_{2}
\end{array}\right)=\operatorname{det}\left(x I_{n_{1}}-A_{1}\right) \cdot \operatorname{det}\left(x I_{n_{2}}-A_{2}\right)=c_{T_{1}}(x) \cdot c_{T_{2}}(x)
$$

Part (ii) is (Can), Exercise 2. Part (iii) now follows easily. For, if V is T-cyclic, then there exists a basis of V relative to which T is represented by the matrix $C\left(m_{T}\right)$. Now, by part (ii) of the lemma, we have $c_{T}(x)=c_{C\left(m_{T}\right)}(x)=m_{T}(x)$.

We can now prove the main result of this lecture which will be of great value in trying to compute the minimal polynomial of a linear transformation.
(Ch4) Theorem. [Generalised Cayley-Hamilton Theorem] Let $T \in \operatorname{End}_{\mathbb{F}}(V)$.
(a) $m_{T}(x)$ divides $c_{T}(x)$.
(b) $c_{T}(x)$ is the product of the invariant factors of T (and hence also the product of the elementary divisors of T).
(c) $m_{T}(x)$ and $c_{T}(x)$ have the same irreducible factors except for multiplicities.
(d) If $m_{T}(x)=p_{1}(x)^{n_{1}} \ldots p_{k}(x)^{n_{k}}$ is the unique factorisation of $m_{T}(x)$ into monic irreducibles, then $c_{T}(x)=p_{1}(x)^{d_{1}} \ldots p_{k}(x)^{d_{k}}$, where $d_{i}=n\left(p_{i}(T)^{n_{i}}\right) / \operatorname{deg}\left(p_{i}\right)$.

Proof. By (Dec4), there exist unique monic polynomials

$$
m_{T}(x)=q_{1}(x), q_{2}(x), \ldots, q_{m}(x)
$$

and a T-cyclic decomposition $V=V_{1} \oplus V_{2} \oplus \ldots \oplus V_{m}$ such that $q_{i}(x)$ is the minimal polynomial of $T_{V_{i}}$ for $1 \leq i \leq m$. By (Ch3)(iii), $c_{T_{V_{i}}}(x)=m_{T_{V_{i}}}(x)=q_{i}(x)$ and, by (Ch3)(i),

$$
c_{T}(x)=\prod_{i=1}^{m} c_{T_{V_{i}}}(x)=\prod_{i=1}^{m} q_{i}(x) .
$$

This proves (a) and (b). For (c) note that, if an irreducible divides $c_{T}(x)=q_{1}(x) \ldots q_{m}(x)$, then it must divide $q_{i}(x)$ for some $1 \leq i \leq m$; since $q_{i}(x) \mid q_{1}(x)$, it must also divide $m_{T}(x)$. The converse is trivial in view of (a). To prove (d) we turn to our other big decomposition theorem, (Dec3). For $1 \leq i \leq k$, if $W_{i}=\operatorname{NS}\left(p_{i}(T)^{n_{i}}\right)$, we have a T-invariant decomposition $V=W_{1} \oplus W_{2} \oplus \ldots \oplus W_{k}$ (the subspace W_{i} is well known to us; it is just the sum of all of the $V_{i j} \mathrm{~s}$ in (Dec3)). Let T_{i} denote the restriction of T to W_{i}. Then $m_{T_{i}}(x)=p_{i}(x)^{n_{i}}$ so, by part (c) of this theorem, $c_{T_{i}}(x)=p_{i}(x)^{d_{i}}$ for some $d_{i} \geq n_{i}$. Hence

$$
n\left(p_{i}(T)^{n_{i}}\right)=\operatorname{dim}\left(W_{i}\right)=\operatorname{deg}\left(c_{T_{W_{i}}}(x)\right)=d_{i} \operatorname{deg}\left(p_{i}\right)
$$

and the result follows.

Remark: Let's summarise the situation for a linear transformation T : the invariant factors of T determine T up to similarity (or, alternatively, $\mathrm{GL}_{n}(\mathbb{F})$-conjugacy); $m_{T}(x)$ is the first invariant factor; and $c_{T}(x)$ is the product of the invariant factors. Hence knowledge of both the minimal, and characteristic polynomials of T gives a great deal of information about T, but they alone do not completely determine T.

We have used eigenvalues to introduce the characteristic polynomial as a computational means of obtaining information about the minimal polynomial. However, the determination and study of eigenvalues is of independent interest. We therefore conclude this lecture with some elementary properties of, and comments concerning, eigenvalues and eigenspaces.

Suppose that $(x-\lambda) \mid c_{T}(x)$ and suppose that m is the largest integer such that $(x-\lambda)^{m} \mid c_{T}(x)$; then we call $a(\lambda):=m$ the ALGEBRAIC MULTIPLICITY of λ. Next we define the GEOMETRIC MULTIPLICITY of λ to be the integer $g(\lambda):=\operatorname{dim}\left(V_{T}(\lambda)\right)$. It follows from (Dec3) and (Ch4)(c) that the T-invariant subspace $W:=N S\left((x-\lambda)^{m}\right)$ has dimension m. It is clear also that $V_{T}(\lambda) \leq W$, whence $g(\lambda) \leq a(\lambda)$. Moreover, $V_{T}(\lambda)=W$ if and only if the minimal polynomial of T restricted to W is $x-\lambda$, in which case T induces the scalar transformation $\lambda 1_{W}$ on W. The following alternate characterisation of diagonalisability now follows easily
(Ch5) Lemma. $T \in \operatorname{End}_{\mathbb{F}}(V)$ is diagonalisable if and only if $c_{T}(x)$ is a product of linear factors (not necessarily distinct) and the geometric and algebraic multiplicities coincide.

Exercises.

1. Consider the 4×4 real matrix

$$
A=\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
-1 & -1 & 0 & 0 \\
-2 & -2 & 2 & 1 \\
1 & 1 & -1 & 0
\end{array}\right)
$$

Show that $c_{A}(x)=x^{2}(x-1)^{2}=m_{A}(x)$.
2. Find a 3×3 matrix A such that $c_{A}(x)=x^{3}$ and $m_{A}(x)=x^{2}$.
3. Let $V=\mathbb{M}_{n}(\mathbb{F})$ be the vector space of $n \times n$ matrices over \mathbb{F} and let $A \in \mathbb{M}_{n}(\mathbb{F})$ be fixed. Let T_{A} be the element of $\operatorname{End}_{\mathbb{F}}(V)$ defined by

$$
T_{A}: M \mapsto M A
$$

Show that $m_{T_{A}}(x)=m_{A}(x)$.
4. Let $T \in \operatorname{End}_{\mathbb{F}}(V)$ and let $\lambda \neq \mu$ be elements of \mathbb{F}. Show directly that

$$
V_{T}(\lambda)+V_{T}(\mu)=V_{T}(\lambda) \oplus V_{T}(\mu)
$$

5. Let $N \in \mathbb{M}_{n}(\mathbb{F})$ be nilpotent. Show that $N^{n}=0$.
6. Let A be any 3×3 matrix whose nullspace is 2 -dimensional. For each assertion below, provide either a proof or counterexample.
(a) x^{2} divides $c_{A}(x)$.
(b) The trace of A (the sum of its diagonal entries) is an eigenvalue of A.
(c) A is diagonalisable.
7. Let V be a \mathbb{Q}-space of dimension n. Let φ be an automorphism of V which fixes no nonzero vector. Suppose that φ^{p} is the identity map on V, where p is a prime number. Show that $p-1$ divides n.
