(Ch) The Characteristic Polynomial Math 683L (Summer 2003)

Following the successful conclusion of the theoretical part of the course (the canonical form theory
of a single linear transformation) we now face the not insignificant task of finding canonical forms
in practice. If we could get our hands on the minimal polynomial, mp(z), of a given transformation
T € Endg(V) then we would have made good progress. The key tool which will help us is yet another
polynomial which has close relationship with my(x); the so-called characteristic polynomial.

Before we begin, let us review some elementary facts about determinants (see Curtis Chapter 5, for a
more detailed discussion). Let A = [[cy;]] € M, (F) and denote the ith row of A by a; = (a1, ..., in)
(1 < i < mn). A DETERMINANT FUNCTION is a function det: M, (F) — F, satisfying the following

conditions:
1. det(a1,...,ai-1,a; + aj,ait1, ..., an) = det(A) for 1 <i# j < mn;
2. det(ay,...,ai—1, A, Qit1,...,a,) = Adet(A) for 1 <i <n;and
3. det(I,) = 1.

It turns out, of course, that there is such a function, and it is unique; we therefore refer to det
as the determinant function. We now give a concrete, recursive definition of det. If n = 1, put
det(A) = det([[a]]) := . Forn > 1 and 1 < 4,5 < n, let A;; denote the (n — 1) x (n — 1) matrix
obtained by deleting the ith row and jth column of A € M,,(F). Now, for any 1 <14 < n, define

n

det(A) :=> (1) ay; det(A;)).
j=1
Among the many useful properties of the determinant, we highlight two for immediate use.
(i) For A, B € M,,(F), det(AB) = det(BA) = det(A) det(B).
(ii) If A € M,,(F) has an inverse, then det(A™1) = 1/det(A).

We next wish to define the determinant of a linear transformation. Let T' € Endg(V'), choose a basis
B of V, and put det(T) := det(gAr). Apparently, this definition depends upon the choice of B, but

the next result states that this is not the case.

(Chl) Lemma. If A" ~ A then det(A’) = det(A).
Proof. A’ ~ A iff there exists invertible P such that A’ = PAP~1. But then

det(A’) = det(PAP™!) = det(P) det(A) det(P~1) = det(P) det(P) ! det(A) = det(A). 0



Fix T' € Endg(V). We will call a scalar A € F an EIGENVALUE of T if there exists 0 # v € V such
that vT' = A\v; such a vector v is called an EIGENVECTOR of T' corresponding to A. For an eigenvalue
A of T, define the A-EIGENSPACE of T to be

Vr(A) :={v € V | v is an eigenvector of T" corresponding to A}.

We leave it as an easy exercise to show that V() is a subspace of V.

Let A € F and let 1y denote the identity transformation on V. Then A is an eigenvalue of
T iff 30 # v € NS(Aly — T) iff A1y — T is not invertible iff det(Aly — T) = 0. Define the
CHARACTERISTIC POLYNOMIAL of 7', denoted cp(z), to be

cr(z) :=det(xly —T),

a monic polynomial of degree n = dim(V'); the roots of ¢y (x) are called the CHARACTERISTIC VALUES

of T'. Hence, we have proved:
(Ch2) Lemma. The eigenvalues of T are the characteristic values of T'. (]

We define cy(x), for A € M, (F) in the obvious way. Note that, while computing determinants is
not particularly nice for large matrices, at least we have a formula for ¢p(x); the minimal polynomial
mr(x), on the other hand, is somewhat more elusive. The main goal of this lecture is to establish a
connection between those two polynomials.

Here are some elementary properties of cr(z) that we will need (recall that C(f) denotes the
companion matrix of the monic polynomial f(z) € Flz] and, for a T-invariant subspace W, Ty
denotes the restriction of T to W).

(Ch3) Lemma. LetT € Endg(V).
(i) If V.= W1 & Ws is a T-invariant decomposition of V, then cr(z) = cry, () - ery, (2).
(ii) If f € Flz], then cop)(x) = f(z).

(iii) If V is T-cyclic then mp(x) = cp(x).

Proof. For (i), if Wi @ Wy is a T-invariant decomposition, then select a basis B = By, By of V' with
B; a basis for W; (i = 1,2). It follows that

A 0
A=pgAr =

where, if T; denotes T'|y,, we have A; = g, Ar,. Hence

l’Inl — Al 0

det(xI, — A) = det
0 33‘[,12 — A2

) = det(xl,, — A1) - det(zly, — A2) = cr, (x) - ey (2).
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Part (ii) is (Can), Exercise 2. Part (iii) now follows easily. For, if V' is T-cyclic, then there exists a
basis of V relative to which T is represented by the matrix C(mr). Now, by part (ii) of the lemma,
we have e () = co(my)(T) = mr(z). O

We can now prove the main result of this lecture which will be of great value in trying to compute

the minimal polynomial of a linear transformation.

(Ch4) Theorem. [Generalised Cayley-Hamilton Theorem] Let T € Endg(V).
(a) my(x) divides cr(x).
(b) cr(zx) is the product of the invariant factors of T' (and hence also the product of the elementary
divisors of T').
(¢) mrp(z) and cp(x) have the same irreducible factors except for multiplicities.

(d) If mp(x) = p1(x)™ ...px(x)™ is the unique factorisation of my(x) into monic irreducibles, then
cr(z) = p1(z) ... pp(x)¥, where d; = n(p;(T)™)/ deg(p;).

Proof. By (Dec4), there exist unique monic polynomials

mT(x) = Q1(‘T)a QQ(x)v e ’Qm(m)

and a T-cyclic decomposition V =V, & Vo @ ... &V, such that ¢;(x) is the minimal polynomial of Ty,
for 1 <i <m. By (Ch3)(iii), cr, (z) = mp,, (z) = gi(z) and, by (Ch3)(i),

er(e) = [ [ eny, (@) = [ aita).
=1 i=1

This proves (a) and (b). For (c) note that, if an irreducible divides cr(x) = q1(2) ... gn(x), then it
must divide g;(z) for some 1 < i < mj; since ¢;(x)|q1(x), it must also divide mp(z). The converse is
trivial in view of (a). To prove (d) we turn to our other big decomposition theorem, (Dec3). For
1 <i <k, if W; = NS(p;(T)"), we have a T-invariant decomposition V. =W; ® Wy @ ... ® W}, (the
subspace W; is well known to us; it is just the sum of all of the Vj;s in (Dec3)). Let T; denote the
restriction of T to W;. Then mq,(z) = pi(x)™ so, by part (c) of this theorem, cr,(x) = p;(z)% for
some d; > n;. Hence

n(pi(T)") = dim(W;) = deg(cryy, (x)) = d; deg(ps),

and the result follows. O



Remark: Let’s summarise the situation for a linear transformation 7": the invariant factors of T'
determine T" up to similarity (or, alternatively, GL, (F)-conjugacy); mr(z) is the first invariant
factor; and cp(z) is the product of the invariant factors. Hence knowledge of both the minimal,
and characteristic polynomials of T gives a great deal of information about 7', but they alone

do not completely determine T'.

We have used eigenvalues to introduce the characteristic polynomial as a computational means of
obtaining information about the minimal polynomial. However, the determination and study of eigen-
values is of independent interest. We therefore conclude this lecture with some elementary properties
of, and comments concerning, eigenvalues and eigenspaces.

Suppose that (x —\)|cr(z) and suppose that m is the largest integer such that (z —\)"|cr(z); then
we call a(\) := m the ALGEBRAIC MULTIPLICITY of A. Next we define the GEOMETRIC MULTIPLICITY
of A to be the integer g(\) := dim(Vr(A)). It follows from (Dec3) and (Ch4)(c) that the T-invariant
subspace W := NS((z — A\)™) has dimension m. It is clear also that V(\) < W, whence g(\) < a(A).
Moreover, Vp(A) = W if and only if the minimal polynomial of T restricted to W is  — A, in which

case T induces the scalar transformation Aly on W. The following alternate characterisation of

diagonalisability now follows easily

(Ch5) Lemma. T € Endg(V) is diagonalisable if and only if cp(x) is a product of linear factors

(not necessarily distinct) and the geometric and algebraic multiplicities coincide. ([

Exercises.

1. Consider the 4 x 4 real matrix

1 1 0 0

-1 -1 0 O
A=

-2 -2 2 1

1 1 -1 0

Show that ca(z) = 2%(z — 1)? = ma(x).

2. Find a 3 x 3 matrix A such that ca(x) = 2% and ma(z) = 22

3. Let V = M, (F) be the vector space of n x n matrices over F and let A € M, (F) be fixed.
Let T4 be the element of Endg(V') defined by

Ta: M — MA.



Show that mp, (x) = ma(z).

. Let T € Endg(V) and let A # u be elements of F. Show directly that
Vr(A) + Vr(p) = Vr(A) & Vr(p).

. Let N € M,,(F) be nilpotent. Show that N" = 0.

. Let A be any 3 x 3 matrix whose nullspace is 2-dimensional. For each assertion below,
provide either a proof or counterexample.

(a) z? divides ca(z).

(b) The trace of A (the sum of its diagonal entries) is an eigenvalue of A.

(c) A is diagonalisable.
. Let V be a Q-space of dimension n. Let ¢ be an automorphism of V' which fixes no nonzero

vector. Suppose that ¢P is the identity map on V', where p is a prime number. Show that

p — 1 divides n.



