
(Geo) Geometric Spaces Math 683L (Summer 2003)

In many areas of mathematics where linear algebra is applied, vector spaces come equipped with
additional structure, and the interest focuses on transformations of the vector space which preserve
that structure. For example, if we take V = R

n, then we have the notion of distance between vectors.
Namely, if v = (α1, . . . , αn) and w = (β1, . . . , βn), then

d(v, w) =
√

(β1 − α1)2 + . . .+ (βn − αn)2

is the distance between v and w. In fact, if we define the dot product between two vectors via

v · w := vwtr = α1β1 + . . .+ αnβn,

then the magnitude of v (the distance of v from the origin) is given by ||v|| =
√
v · v. The dot

product endows V with “geometry” (for example, two vectors are perpendicular if and only if their
dot product is zero) and it of interest to consider the nature of transformations which preserve this
geometry. Let us consider a more general setting. A bilinear form on V is a function f : V ×V → F

which satisfies the two conditions

(L) f(αv1 + v2, w) = αf(v1, w) + f(v2, w) for all v1, v2, w ∈ V and α ∈ F. [left linearity]

(R) f(v, αw1 + w2) = f(v, w1) + αf(v, w2) for all v, w1, w2 ∈ V and α ∈ F. [right linearity]

General construction: For positive integers m,n, let Mm,n(F) denote the F-space of m × n
matrices over F. Let τ : Mm(F)→ F denote the trace map: τ([[αij ]]) =

∑m
i=1 αii (if m = 1, we

abuse notation and identify the 1 × 1 matrix [[α]] with α; hence, in this case, the trace map is
the identity map). As usual, for M = [[αij ]] ∈ Mm,n(F), M tr = [[αji]] denotes the transpose of
M . Let V = Mm,n(F) of dimension mn, fix A ∈ Mn(F), and define a map fA : V × V → F by
the assignment

fA(M,N) := τ(MAN tr).

Observing that the trace and transpose maps are both linear, one verifies easily that fA satisfies
(L) and (R) above, and hence is a bilinear form on V . Moreover, each distinct choice of A gives
rise to a different bilinear form fA.

We now justify the claim that the above construction is general. Clearly, if V is any F-space of
dimension n, then we can identify V with M1,n. We have just seen that each choice of A ∈ Mn(F)
produces a bilinear form fA having simplified form

fA(v, w) := vAwtr.
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Next let f be any bilinear form on V , choose a basis B = v1, . . . , vn for V , and define the matrix
representing f relative to B to be

B[f] := [[f(vi, vj)]].

Writing vectors in V as row vectors relative to B, an easy calulation verifies (Exercise 1) that the
bilinear form f is uniquely determined by the equation

f(v, w) = B(v) B[f] B(w)tr.

Hence, just as was the case with linear transformations, we see that there is 1–1 correspondence
between bilinear forms on V and n × n matrices over F. We saw also that if A and A′ are matrices
representing a linear transformation relative to different bases, then there is an invertible matrix P

such that A′ = PAP−1. Our first result shows that an analagous relationship exists among matrices
representing bilinear forms.

(Geo1) Lemma. Let f be a bilinear form on V . Then, for matrices A,A′ ∈Mn(F), there exist bases
B,B′ of V such that A = B[f] and A′ = B′ [f] if and only if there exists invertible P ∈Mn(F) such that
A′ = PAP tr.

Proof. Let B = v1, . . . , vn and B′ = v′1, . . . , v
′
n be bases of V . Let P be the base change matrix from

B to B′. That is, for each 1 ≤ i ≤ n, find scalars αij ∈ F such that v′i =
∑n

i=1 αijvi; then, putting
P := [[αij ]], we have B(v) = B′(v)P . Now, A = B[f] and A′ = B′ [f] if and only if

B′(v) A′ B′(w)tr = f(v, w) = B(v) A B(w)tr

= (B′(v)P ) A (B′(w)P )tr

= B′(v) (PAP tr) B′(w).

The result now follows by the uniqueness of B′ [f]. �

Notation and Terminology. Let f be a bilinear form on V .

• The pair (V, f) is called a geometric space.

• For vectors v, w ∈ V , we say that w is perpendicular to v if f(v, w) = 0.

• If X ⊂ V , let X⊥ denote the set of vectors in V to which all vectors in X are perpendicular.
That is,

X⊥ := {w ∈ V | f(x,w) = 0 for all x ∈ X}.

One easily verifies that, if W ≤ V is a subspace, then W⊥ is also a subspace (Exercise 2).

• The radical of V is defined to be the subspace rad(V ) := V ⊥; V is said to be nondegenerate

if rad(V ) = 0. A subspace W ≤ V is nonsingular if (W, f|W ) is nondegenerate (equivalently if
W ∩W⊥ = 0).
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(Geo2) Lemma. The geometric space (V, f) is nondegenerate if and only if B[f] is nonsingular for
all bases B of V .

Proof. For invertible P ∈Mn(F), the rank of PAP tr is the same as the rank of A. Hence it suffices
to prove the result for any basis of V . Let B be a basis of V . Then

B[f] singular ⇐⇒ ∃0 6= w such that B(w) B[f] = 0
⇐⇒ ∃0 6= w such that B(v) B[f] B(w)tr = 0 for all v ∈ V
⇐⇒ ∃0 6= w such that f(v, w) = 0 for all v ∈ V
⇐⇒ ∃0 6= w ∈ rad(V ).

The result now follows. �

(Geo3) Lemma. Let (V, f) be a nondegenerate geometric space, and let W ≤ V . Then

dim(W ) + dim(W⊥) = dim(V ).

Proof. Let dim(W ) = r, let v1, . . . , vr be a basis for W , and extend this basis to a basis B = v1, . . . , vn

of V . Let A = B[f] = [[f(vi, vj)]] and let Ar denote the n× r submatrix containing the first r columns
of A. Now y ∈W⊥ if and only if f(y, x) = 0 for all x ∈W which occurs if and only if

B(y) A etri = 0 for 1 ≤ i ≤ r,

where ei denotes the ith elementary basis vector of Fn. But this condition holds if and only if

B(y) Ar = 0, so y ∈ W⊥ if and only if y is in the nullspace of Ar. Hence dim(W⊥) = dim(NS(Ar)).
Furthermore, since V is nondegenerate, the matrix Ar has rank r (since A has rank n). The result
now follows, since n(Ar) = n− r(Ar) = n− r. �

It’s time now to pick up one more property possessed by the dot product and see where it leads
us. In fact the property in question is motivated by the following question:

Under what circumstances does there exist a basis B of V such that B[f] is a diagonal matrix?
Such a basis B = v1, . . . , vn is called an orthogonal basis for, if i 6= j, we have f(vi, vj) = 0. Note
the weaker property held by diagonal matrices, namely that of symmetry. Note also that, if A is a
symmetric matrix and P is invertible, then

(PAP tr)tr = (P tr)trAtrP tr = PAtrP tr = PAP tr.

That is, PAP tr is also symmetric. It follows that to have a hope of being “diagonalisable” the bilinear
form must be symmetric; we shall say that f : V × V → F is symmetric if f(v, w) = f(w, v) for all
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v, w ∈ V . Surprisingly, perhaps, we prove that this condition is also sufficient. To each symmetric
bilinear form, we associate a corresponding a quadratic form Q : V → F via the assignment

Q(v) := f(v, v)

(a quadratic form on V has the defining property that Q(αv) = α2Q(v)). To avoid certain technical
difficulties, from now on we shall that the field F has characteristic different from 2 (i.e. char(F) is
either 0 or an odd prime). Now we see that a bilinear form may be recovered from its associated
quadratic form by the identity

f(v, w) =
1
4
{Q(v + w)−Q(v − w)} . (1)

We can now prove the result alluded to above.

(Geo4) Theorem. Let V be a finite dimensional vector space over a field F of characteristic other
than 2, and let f be a symmetric bilinear form. Then there is a basis B of V such that B[f] is diagonal.

Proof. We proceed by induction on n = dim(V ), the case n = 1 being trivial. We may assume also
that f 6= 0 since the result is trivial in this case also. Suppose that Q(v) = f(v, v) = 0 for all v ∈ V .
Then, by (1), it follows that f = 0. Hence, we can find v ∈ V with f(v, v) 6= 0 (a nonsingular vector).
Define a linear transformation Tv : V → F by the assignment Tv(w) := f(v, w) for w ∈ V (note that
Tv is linear because f is bilinear). Then im Tv = F since v is nonsingular, so that NS(Tv) = 〈v〉⊥

has dimension n − 1. Clearly v 6∈ 〈v〉⊥, so we have the decomposition V = 〈v〉 ⊕ 〈v〉⊥. Let g denote
the restriction of f to the hyperplane 〈v〉⊥. By induction, there exists a basis C = w1, . . . , wn−1

such that C [g] = diag(f(w1, w1), . . . , f(wn−1, wn−1)). But then, if B = v, w1, . . . , wn−1, we have B[f] =
diag(f(v, v), f(w1, w1), . . . , f(wn−1, wn−1)). �

(Geo5) Corollary. A is a symmetric matrix if and only if there is an invertible matrix P such that
PAP tr is diagonal.

Proof. We have seen that each matrix represents some bilinear form relative to some basis, and
clearly a matrix is symmetric if and only if the bilinear form it represents relative to a fixed basis is
symmetric. The result now follows from the Theorem and (Geo1). �

(Geo6) Corollary. Let (V, f) be a nondegenerate geometric space with f a symmetric bilinear form
and V a vector space over the complex numbers. Then V possesses an orthonormal basis (that is, a
basis B = e1, . . . , en such that f(ei, ej) = δij).
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Proof. By the theorem, there exists a basis B = v1, . . . , vn such that B[f] = (λ1, . . . , λn), where
λi = f(vi, vi) ∈ C. Furthermore, if (V, f) is nondegenerate, then each λi 6= 0. For each 1 ≤ i ≤ n,
choose scalars µi ∈ C such that µ2

i = λi, and replace vi with ei := µ−1
i vi. It follows easily that

e1, . . . , en is orthonormal. �

We conclude this lecture with a look at transformations which preserve the geometry given to a
space by a bilinear form. Let (V, f) be a geometric space, where f is now any bilinear form. We say
that T ∈ EndF(V ) is an f-isometry if

f(vT,wT ) = f(v, w) for all v, w ∈ V.

We denote by I(V, f) the set of all f-isometries of V .

(Geo6) Theorem. Let (V, f) be a geometric space with f any nondegenerate bilinear form. Then
I(V, f) is a group under composition of transformations.

Proof. Clearly, for any bilinear form f, the identity transformation 1V is an f-isometry. The associa-
tivity axiom is also satisfied by the elements of I(V, f) by virtue of the fact that I(V, f) ⊂ EndF(V ).
Suppose that S, T ∈ I(V, f), and let v, w ∈ V . Then

f(v(ST ), w(ST )) = f((vS)T, (wS)T ) = f(vS,wS) = f(v, w),

so that I(V, f) is closed under composition. Finally, let T ∈ I(V, f) and suppose that x ∈ NS(T ).
Then, for all v ∈ V , we have

f(x, v) = f(xT, vT ) = f(0, vT ) = 0,

so that x ∈ rad(V ). Since f is nondegenerate, it follows that x = 0 and hence that T is invertible.
Moreover, for all v, w ∈ V , we have

f(vT−1, wT−1) = f(vT−1T,wT−1T ) = f(v, w),

so that T−1 ∈ I(V, f). Hence I(V, f) is a group. �

Let B be a basis of V , and let M = B[f]. Identify each vector v ∈ V with its coordinate vector

B(v) relative to B. Then f(v, w) = vMwtr. Next let T ∈ EndF(V ) and put A := BAT . Then, for all
v, w ∈ V , we have

f(vT,wT ) = (vA)M(wA)tr = vAMAtrwtr.
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By uniqueness of M = B[f], we have f(vT,wT ) = f(v, w) for all v, w ∈ V if and only of AMAtr = M .
Let us specialise now to the case where f is a nondegenerate symmetric form on a complex vector
space. By (Geo5), there exists a basis B of V such that B[f] = In, the n× n identity matrix. Hence,
writing elements of EndC(V ) as matrices relative to B, we see that A ∈Mn(C) is an f-isometry if and
only if AAtr = In. We call such matrices orthogonal matrices, and the isometry group I(V, f)
consisting of all such matrices is called the (complex) orthogonal group and is denoted On(C).

Exercises.

1. Let (V, f) be a geometric space and let B be any basis of V . Identify a vector v ∈ V with
its coordinate vector B(v) ∈ Fn relative to B. Show that the matrix M := B[f] ∈ Mn(F)
completely determines f via the equation f(v, w) = vMwtr.

2. Prove that if W is a subspace of V , then W⊥ is a subspace of V .
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