(Geo) Geometric Spaces Math 683L (Summer 2003)

In many areas of mathematics where linear algebra is applied, vector spaces come equipped with
additional structure, and the interest focuses on transformations of the vector space which preserve
that structure. For example, if we take V' = R", then we have the notion of distance between vectors.

Namely, if v = (a1,...,a,) and w = (B4, ..., ), then

d(v,w) = /(b1 — a1)? + ...+ (B — an)?
is the distance between v and w. In fact, if we define the DOT PRODUCT between two vectors via
veow = ow" =181 + ...+ anba,

then the MAGNITUDE of v (the distance of v from the origin) is given by |[v|| = /v -v. The dot
product endows V' with “geometry” (for example, two vectors are perpendicular if and only if their
dot product is zero) and it of interest to consider the nature of transformations which preserve this

geometry. Let us consider a more general setting. A BILINEAR FORM on V is a function f: V xV — F

which satisfies the two conditions
(L) flav) + va,w) = af(vi,w) + f(ve, w) for all vi,ve,w € V and a € F. [left linearity]

(R) f(v, awy + we) = f(v,w1) + af(v,ws) for all v,wi,ws € V and « € F. [right linearity]

General construction: For positive integers m,n, let My, ,(IF) denote the F-space of m x n
matrices over F. Let 7: M,,,(F) — F denote the TRACE map: 7([[cvi;]]) = D i aui (if m =1, we
abuse notation and identify the 1 x 1 matrix [[«]] with «; hence, in this case, the trace map is
the identity map). As usual, for M = [[a;;]] € My, ,(F), M*™ = [[vj;]] denotes the transpose of
M. Let V = M, ,(F) of dimension mn, fix A € M,,(F), and define a map f4: V x V — F by
the assignment

f4(M,N) :=7(MAN"™).

Observing that the trace and transpose maps are both linear, one verifies easily that f satisfies
(L) and (R) above, and hence is a bilinear form on V. Moreover, each distinct choice of A gives

rise to a different bilinear form f4.

We now justify the claim that the above construction is general. Clearly, if V' is any F-space of
dimension n, then we can identify V' with M ,. We have just seen that each choice of A € M, (IF)

produces a bilinear form f4 having simplified form

f4(v,w) := vAw™.



Next let f be any bilinear form on V', choose a basis B = vy,...,v, for V, and define the matrix

representing f relative to B to be
s(f] = [[£(vi, ;)]
Writing vectors in V' as row vectors relative to B, an easy calulation verifies (Exercise 1) that the

bilinear form f is uniquely determined by the equation

f(v,w) = 5(v) 5lf] (w)".

Hence, just as was the case with linear transformations, we see that there is 1-1 correspondence
between bilinear forms on V' and n x n matrices over F. We saw also that if A and A’ are matrices
representing a linear transformation relative to different bases, then there is an invertible matrix P
such that A’ = PAP~!. Our first result shows that an analagous relationship exists among matrices

representing bilinear forms.

(Geol) Lemma. Let f be a bilinear form on V. Then, for matrices A, A" € M,,(F), there exist bases
B,B" of V such that A = g[f] and A’ = g/[f] if and only if there exists invertible P € My, (F) such that
A’ = PAP',

Proof. Let B=w1,...,v, and B =v],...,v] be bases of V. Let P be the base change matrix from
B to B'. That is, for each 1 < i < n, find scalars «;; € F such that v; = """ | a;jv;; then, putting
P := [[aj]], we have p(v) = p/(v)P. Now, A = g[f] and A’ = p[f] if and only if

p0) A p) = fow) = p) Apw)”
(5(0)P) A (3 (w) P)"
= () (PAP™) p(w).

The result now follows by the uniqueness of p/[f]. O

Notation and Terminology. Let f be a bilinear form on V.

e The pair (V,f) is called a GEOMETRIC SPACE.

e For vectors v,w € V, we say that w is PERPENDICULAR to v if f(v,w) = 0.

e If X C V, let X+ denote the set of vectors in V to which all vectors in X are perpendicular.
That is,
Xt ={weV|flz,w)=0foral zec X}

One easily verifies that, if W < V is a subspace, then W+ is also a subspace (Exercise 2).

e The RADICAL of V is defined to be the subspace rad(V) := V+; V is said to be NONDEGENERATE
if rad(V) = 0. A subspace W < V' is NONSINGULAR if (W, fly) is nondegenerate (equivalently if
WnWwt =0).



(Geo2) Lemma. The geometric space (V, f) is nondegenerate if and only if g[f] is nonsingular for
all bases B of V.

Proof. For invertible P € M, (F), the rank of PAP'Y is the same as the rank of A. Hence it suffices
to prove the result for any basis of V. Let B be a basis of V. Then

glf] singular <= 30 # w such that p(w) p[f] =0

<= 30 # w such that g(v) plf] p(w)* =0 for allv € V
<= 30 # w such that f(v,w) =0 for allv e V
< 30 # w € rad(V).
The result now follows. (]

(Geo3) Lemma. Let (V,f) be a nondegenerate geometric space, and let W < V. Then

dim(W) 4 dim(W+) = dim(V).

Proof. Let dim(W) = r, let vy, ..., v, be a basis for W, and extend this basis to a basis B = v1,...,v,
of V. Let A = g[f] = [[f(vi,v;)]] and let A, denote the n x r submatrix containing the first » columns
of A. Now y € W+ if and only if f(y,2) = 0 for all 2 € W which occurs if and only if

ly) Ael" =0 for1<i<r,

where e; denotes the ith elementary basis vector of F”. But this condition holds if and only if
5(y) A, =0, so y € W if and only if y is in the nullspace of A,. Hence dim(W+) = dim(NS(A4,)).
Furthermore, since V' is nondegenerate, the matrix A, has rank r (since A has rank n). The result

now follows, since n(A4,) =n—r(4,) =n—r. O

It’s time now to pick up one more property possessed by the dot product and see where it leads
us. In fact the property in question is motivated by the following question:
Under what circumstances does there exist a basis B of V' such that glf] is a diagonal matriz?

Such a basis B = v1,...,v, is called an ORTHOGONAL BASIS for, if i # j, we have f(v;,v;) = 0. Note

the weaker property held by diagonal matrices, namely that of symmetry. Note also that, if A is a

symmetric matrix and P is invertible, then
(PAPtr)tr — (Ptr)trAtrPtr — PAtrPtr — PAPtr.

That is, PAPY is also symmetric. It follows that to have a hope of being “diagonalisable” the bilinear
form must be symmetric; we shall say that f: V x V — F is syYMMETRIC if f(v,w) = f(w,v) for all



v,w € V. Surprisingly, perhaps, we prove that this condition is also sufficient. To each symmetric

bilinear form, we associate a corresponding a quadratic form Q:V — F via the assignment

Q(v) := f(v,v)

(a QUADRATIC FORM on V has the defining property that Q(av) = o2Q(v)). To avoid certain technical

difficulties, from now on we shall that the field F has characteristic different from 2 (i.e. char(F) is
either 0 or an odd prime). Now we see that a bilinear form may be recovered from its associated

quadratic form by the identity

f(v,w) = 1 {Q(+w) ~ Qo —w)} 1)

We can now prove the result alluded to above.

(Geo4) Theorem. LetV be a finite dimensional vector space over a field F of characteristic other

than 2, and let f be a symmetric bilinear form. Then there is a basis B of V' such that glf] is diagonal.

Proof. We proceed by induction on n = dim(V'), the case n = 1 being trivial. We may assume also
that f # 0 since the result is trivial in this case also. Suppose that Q(v) = f(v,v) =0 for all v € V.
Then, by (1), it follows that f = 0. Hence, we can find v € V' with f(v,v) # 0 (a nonsingular vector).
Define a linear transformation T,,: V' — F by the assignment T, (w) := f(v,w) for w € V' (note that
T, is linear because f is bilinear). Then im T, = F since v is nonsingular, so that NS(T},) = (v)*

has dimension n — 1. Clearly v ¢ (v)*, so we have the decomposition V = (v) @ (v)*. Let g denote

the restriction of f to the hyperplane (v)'. By induction, there exists a basis C = w1, ..., wp_1
such that ¢[g] = diag(f(wi,w1), ..., f(wy—1,wy—1)). But then, if B = v,wi,..., w,—1, we have g[f] =
diag(f(vav)vf(wlawl)v- .- af(wnflawnfl))- g

(Geob) Corollary. A is a symmetric matriz if and only if there is an invertible matriz P such that
PAPY is diagonal.

Proof. We have seen that each matrix represents some bilinear form relative to some basis, and
clearly a matrix is symmetric if and only if the bilinear form it represents relative to a fixed basis is

symmetric. The result now follows from the Theorem and (Geol). O

(Geo6) Corollary. Let (V,f) be a nondegenerate geometric space with f a symmetric bilinear form
and V' a vector space over the complex numbers. Then V possesses an orthonormal basis (that is, a
basis B = e1, ..., e, such that fle;, e;) = 6;5).



Proof. By the theorem, there exists a basis B = vy,...,v, such that g[f] = (A1,...,\,), where
Ai = f(vi,v;) € C. Furthermore, if (V,f) is nondegenerate, then each \; # 0. For each 1 < i < n,
choose scalars pu; € C such that ,u? = )\, and replace v; with e; := pu; 1vz~. It follows easily that

€1,...,e, is orthonormal. O

We conclude this lecture with a look at transformations which preserve the geometry given to a
space by a bilinear form. Let (V,f) be a geometric space, where f is now any bilinear form. We say
that 7' € Endg(V) is an f-ISOMETRY if

f(vT,wT) = f(v,w) for all v,w € V.

We denote by I(V,f) the set of all f-isometries of V.

(Geo6) Theorem. Let (V,f) be a geometric space with f any nondegenerate bilinear form. Then

I(V, f) is a group under composition of transformations.

Proof. Clearly, for any bilinear form f, the identity transformation 1y, is an f-isometry. The associa-
tivity axiom is also satisfied by the elements of I(V,f) by virtue of the fact that I(V,f) C Endg(V).
Suppose that S, T € I(V,f), and let v,w € V. Then

f(v(ST), w(ST)) = f((vS)T, (wS)T) = f(vS,wS) = f(v,w),

so that I(V,f) is closed under composition. Finally, let T" € I(V,f) and suppose that x € NS(T).
Then, for all v € V', we have
f(x,v) = (2T, vT) = £(0,vT) = 0,

so that z € rad(V). Since f is nondegenerate, it follows that x = 0 and hence that T is invertible.

Moreover, for all v,w € V', we have
foT ™ wT ™) = fuT 1T, wT~T) = f(v, w),

so that T—! € I(V,f). Hence I(V,f) is a group. O

Let B be a basis of V, and let M = g[f]. Identify each vector v € V with its coordinate vector
B(v) relative to B. Then f(v,w) = vMw". Next let T € Endg(V) and put A := gAp. Then, for all

v,w € V, we have
f(vT, wT) = (VA)M(wA)™ = vAM A" w"™.



By uniqueness of M = g[f], we have f(vT,wT) = f(v,w) for all v,w € V if and only of AMA"™ = M.
Let us specialise now to the case where f is a nondegenerate symmetric form on a complex vector
space. By (Geob), there exists a basis B of V' such that g[f] = I,,, the n x n identity matrix. Hence,
writing elements of Endc (V') as matrices relative to B, we see that A € M, (C) is an f-isometry if and

only if AAY™ = I,,. We call such matrices ORTHOGONAL MATRICES, and the isometry group I(V,f)

consisting of all such matrices is called the (complex) ORTHOGONAL GROUP and is denoted O, (C).

Exercises.

1. Let (V,f) be a geometric space and let B be any basis of V. Identify a vector v € V' with
its coordinate vector g(v) € F" relative to B. Show that the matrix M := g[f] € M, (F)

completely determines f via the equation f(v, w) = vMw'.

2. Prove that if W is a subspace of V, then W+ is a subspace of V.



